
Performance Analysis of Zippers

Vı́t Šefl

Faculty of Mathematics and Physics
Charles University, Prague, Czech Republic

sefl@ksvi.mff.cuni.cz

Abstract. The zipper is a powerful technique of representing purely
functional data structures in a way that allows fast access to a specific
element. It is often used in cases where the imperative data structures
would use a mutable pointer. However, the efficiency of zippers as a re-
placement for mutable pointers is not sufficiently explored. We attempt
to address this issue by comparing the performance of zippers and mu-
table pointers in two common scenarios and three different languages:
C++, C], and Haskell.

1 Introduction

Some programming techniques make use of the ability to keep a pointer to
internal parts of a data structure. Such a pointer is usually called a finger [9].
As an example, a finger can be used to track the most recently used node in
a tree. Tree operations can then start from the finger instead of starting from
the root of the tree, which can lead to a speedup if the program frequently
operates on values that are stored near each other.

However, fingers lose most of their utility when applied to purely functional
data structures. Operations that make use of fingers frequently require the struc-
ture to contain pointers to parent nodes or require mutability. Pointers to parent
nodes create loops which hugely complicate update operations.

The zipper [5] is a technique of representing purely functional data structure
in a way that allows direct access to a selected location. Different data struc-
tures have different zipper representations: we, therefore, distinguish between
list zippers, tree zippers, etc. Zippers differ from fingers in a crucial way. Unlike
a finger, a zipper contains the data structure. A finger can be removed, and the
structure it was pointing to remains intact while removing a zipper removes the
structure it contains. As a consequence, while two fingers give direct access to
two locations, two zippers do not.

Despite these differences, there is a variety of tasks that can be solved by both
approaches. Our goal was to compare the effectiveness of these two techniques.
We chose two tasks where the ability to directly access a location inside a data
structure and perform local updates is beneficial: traversing a tree in an arbitrary
way and building a tree from a sorted sequence. Each task was implemented in
Haskell, C++, and C], using the programming style common to that language.

2

Note that we compared the performance difference between these techniques,
rather than performance across programming languages.

This work is organized as follows. In the next section, we discuss zipper
representations. The third section looks at single location zippers in detail. The
testing methodology, as well as the programming tasks themselves, are presented
in the fourth section. Finally, the fifth section details our findings.

The source code used for performance testing is available online. 1

2 Related Work

Huet’s original zipper technique [5] relies on manually analyzing the data type
and then defining the corresponding zipper structure. Listing 1 shows an example
of such a zipper.

Listing 1. List and its zipper

data List a = Nil | Cons a (List a)

data ListZipper a = ListZipper

{ before :: List a

, focus :: a

, after :: List a

}

This approach becomes problematic when working with heterogeneous data
structures (a structure containing elements of multiple types), or when working
with many different zipper representations.

For heterogeneous collections, Huet’s zipper can be used to represent only
the positions of one type of elements, which is quite limiting. Adams [2] shows
how to build a zipper for heterogeneous collections by using generic programming
techniques based on the ideas of Lämmel and Peyton Jones [7]. Another benefit of
this approach is that new data structures do not need a custom implementation
of the zipper structure, which reduces the boilerplate that is usually present
when dealing with zippers.

Instead of using an explicit data structure, the zipper can be represented
as a suspended traversal of the original structure. Kiselyov [6] uses delimited
continuations to implement suspended computation to great effect. Applications
include creating a zipper for any type that is a member of Haskell’s Traversable
type class, zipping two data structures for side-by-side comparison and various
operations on zippers capable of representing multiple positions.

Another way of dealing with the boilerplate code is to automate the gen-
eration of auxiliary data structures. For each regular algebraic data type, the
type of one-hole contexts can be obtained by differentiating the original type,
not unlike differentiation in calculus [8,1]. A zipper is obtained by combining an
element of the given type and the one-hole context. As a result, the zipper does

1 https://github.com/vituscze/performance-zippers

https://github.com/vituscze/performance-zippers

3

not need to be defined for each data structure separately [4]. We explore this
technique in more detail in the following section.

Ramsey and Dias [11] use zippers to represent control flow graphs in a low-
level optimizing compiler. The compiler is written in OCaml, giving the opportu-
nity to use an imperative approach based on mutable pointers as well as a purely
functional approach based on zippers. As part of their analysis, the authors also
include performance comparison. Zippers are shown to perform slightly better
than mutable pointers.

3 Zipper

Huet’s zipper is based on the idea of pointer reversal. Reversing all pointers
along the path from the root of the structure to a selected element called a fo-
cus creates a structure that is rooted at the focus. This reversal has multiple
advantages. Direct access to the focus allows its modification in constant time.
Even in a purely functional setting where in-place modifications are not avail-
able, creating a copy of the focused node may be used instead. The rest of the
structure stays intact and can be shared.

Similarly, accessing the parent and children of the focus can be done in con-
stant time, which can be used to efficiently move the focus around the structure.
Moving the focus is accomplished by reversing the pointers.

Huet shows how to represent this kind of pointer reversal as a purely func-
tional structure. The nodes on the path from the root to the focus are stored in
a list. Each element of the list must contain the values and substructures that
are not descended into as well as the direction taken when moving towards the
focus. The list is reversed, ensuring the parent of the focus is in the head position
(instead of the root of the structure).

Listing 2. Binary tree and its zipper

data Tree a = Leaf | Node (Tree a) a (Tree a)

data PathChoice a

= NodeL a (Tree a) -- Focus is in the left subtree

| NodeR (Tree a) a -- Focus is in the right subtree

data Context = Context

(Tree a) -- Left subtree of the focus

(Tree a) -- Right subtree of the focus

[PathChoice a] -- Path to the root

data Zipper a = Zipper a (Context a)

Listing 2 defines a binary tree and its zipper. Listing 3 shows how to move
the focus of this zipper to the parent node.

Listing 3. Focus movement

up :: Zipper a -> Maybe (Zipper a)

4

up (Zipper _ (Context _ _ [])) = Nothing

up (Zipper x (Context l r (NodeL p pr:ps))) = Just $

Zipper p (Context (Node l x r) pr ps)

up (Zipper x (Context l r (NodeR pl p:ps))) = Just $

Zipper p (Context pl (Node l x r) ps)

However, since the zipper structure depends on the original data structure,
these types and operations need to be defined for each structure separately.
One way to solve this problem is to automate this process by using data type
differentiation [8,1]. We give a brief overview of this technique here.

An algebraic data type is a data type defined as a combination of products
(tuples) and sums (variants), potentially in a recursive way. Algebraic data types
that do not change the parameters in recursive occurrences are known as regular
types. For these types, the derivative is defined as follows.

∂x(0) = 0 (empty type)

∂x(1) = 0 (unit type)

∂x(y) = 0 (type variable)

∂x(x) = 1 (type variable)

∂x(F +G) = ∂x(F) + ∂x(G) (sum type)

∂x(F ×G) = ∂x(F)×G+ F × ∂x(G) (product type)

∂x(µy.F) = [µy.F/y]∂x(F)× List ([µy.F/y]∂y(F)) (least fixed point)

The expression [y/x]t denotes a capture-avoiding substitution. The variables
can be introduced as parameters of the entire type (such as a in List a) or by the
least fixed point operation, which is used to define recursive types. The resulting
derivative is a type of one-hole contexts. A one-hole context is a structure that
uniquely describes one position within the original data structure. Zipper then
consists of a one-hole context together with an element of the original structure.

For example, a binary tree is a regular algebraic data type, and its zipper
can be obtained by computing the derivative.

∂a(Tree a) = ∂a(µx.1 + x× a× x)

= [Tree a/x]∂a(1 + x× a× x)× List ([Tree a/x]∂x(1 + x× a× x))

= [Tree a/x](x× x)× List ([Tree a/x](a× x+ x× a))

= Tree a× Tree a× List (a× Tree a+ Tree a× a)

This derivative matches the definition of the tree context given in Listing 2.
The zippers used for performance testing in this work were based on alge-

braic data type differentiation. The resulting zipper representation was manually
adjusted to provide better control over its strictness properties.

4 Performance Testing

To compare the performance of zippers and fingers, we implemented tree traver-
sal and tree insertion in three different programming languages. The solutions

5

based on zippers were implemented in Haskell. The solutions based on fingers
were implemented in C++ and C]. We included two imperative languages, one
with manual memory management and the other with garbage collection, to
check how the memory management model affected the relative performance.
Unless specified otherwise, when discussing the imperative solutions, we are talk-
ing about the C++ solution.

The tasks were chosen to test the performance under two different memory
allocation requirements. Tree traversal can avoid memory allocation altogether,
while tree insertion cannot. Both tasks were tailored to finger-based solution,
which was done to better represent the common use case of finger- and zipper-
based approaches. In the following, we use the term cursor to refer to either
a zipper or a finger.

4.1 Tree Traversal

The first task focuses on tree traversal. We are given a binary tree and a vector
describing positions within the tree together with replacement values. The goal
is to replace the specified elements of the original tree with the given values.

For cursor-based solutions, the input vector contains instructions that specify
the movement of the cursor relative to its previous location. These movement
instructions are interspersed with the replacement instructions. The element
under the cursor is replaced with the given value whenever such instruction
is encountered. As an example, replacing the left child of the root with 10 and
right child with 20 would be represented as fromList [Mov L, Set 10, Mov U,

Mov R, Set 20].
We compared this approach to a solution where the replacement operation

always starts at the root of the tree. The input vector describes the positions
relative to the root of the tree. When a replacement value is encountered, the
specified element is replaced, and the position is reset back to the root of the tree.
The vector corresponding to the previous example would be fromList [Mov L,

Set 10, Mov R, Set 20]. We do not allow Mov U as it is not necessary to
describe a position.

This input format was chosen for better control over the spatial locality of
the positions, which allowed us to observe how the cursor-based solutions behave
depending on the average distance between positions. This task also allowed us
to compare the performance of imperative solutions when memory allocation is
not a factor.

Listing 4 specifies the desired behavior of both solutions. For simplicity, the
specification does not handle incorrect inputs (such as positions outside the tree).

Listing 4. Tree traversal specification

data Tree a = Leaf | Node (Tree a) a (Tree a)

data Dir = L | R | U

-- Replace an element at position determined by a list

-- of left/right directions.

6

replace :: a -> [Dir] -> Tree a -> Tree a

replace v [] (Node l _ r) = Node l v r

replace v (L:ds) (Node l x r) = Node (replace v ds l) x r

replace v (R:ds) (Node l x r) = Node l x (replace v ds r)

replace _ _ t = t

data Cmd a = Mov Dir | Set a

-- Specifies the behavior of cursor -based solutions.

cursor :: Tree a -> Vector (Cmd a) -> Tree a

cursor tree = fst . foldl step (tree , [])

where

step (t, ds) (Mov U) = (t, tail ds)

step (t, ds) (Mov d) = (t, d:ds)

step (t, ds) (Set v) = (replace v (reverse ds) t, ds)

-- Specifies the behavior of root -based solutions.

root :: Tree a -> Vector (Cmd a) -> Tree a

root tree = fst . foldl step (tree , [])

where

step (t, ds) (Mov d) = (t, d:ds)

step (t, ds) (Set v) = (replace v (reverse ds) t, [])

4.1.1 Imperative Solution Listing 5 defines the structures used to represent
the binary tree. Member functions are omitted for brevity.

Listing 5. Imperative binary tree (memory layout)

struct node_t {

node_t* parent;

node_t* left;

node_t* right;

int64_t value;

};

struct tree_t {

node_t* root;

node_t* finger;

};

Movement instructions are represented by integer constants to simplify the
code. The input vector is processed by iterating over all its elements, applying
the corresponding finger operation at each step. We evaluated the imperative
solutions on a perfect binary tree of a specified depth.

4.1.2 Functional Solution The functional solution is more involved. Since
the task is meant for a cursor-based approach, the zipper lends itself to this
problem naturally. However, the root-based solution presents a few problems
that have to be addressed.

7

The tree and zipper definitions shown in Listing 6 follow the definitions from
Listing 2, with the exception that each data type contains strictness annotations.
Fields annotated with ! are evaluated whenever the enclosing structure is, which
ensures that the entire tree is fully evaluated at all times.

Listing 6. Binary tree and its zipper (with strictness annotations)

data Tree = Node !Tree !Int64 !Tree | Leaf

data Path

= PathLeft !Int64 !Tree !Path

| PathRight !Tree !Int64 !Path

| Nil

data Zipper = Zipper !Tree !Int64 !Tree !Path

As a consequence, the standard list type is replaced with a custom type. GHC
is also instructed to unbox the integer fields, which is done to ensure that the
cost of operating on boxed values does not have any impact on the performance.
Unboxed vectors from the vector package are used to represent the input vector.

The zipper comes with operations that replace the focused element and move
the focus left, right, and up. Processing the input vector is implemented as
a strict left fold. The zipper is the accumulator value, and in each step, we apply
zipper operation that corresponds to the element of the vector.

When starting from the root, replacing an element of the tree can be done
easily with a recursive function that reads the vector in each recursive call and
descends into the correct subtree. The problem is propagating the information
about how many elements of the input vector were consumed so that the next
operation can start from the correct position.

State Monad Solution To make sure the root-based solution is efficient, we com-
pared a few ways of dealing with this issue. The obvious solution is to use a state
monad. Note that laziness in the state is unwanted, and the strict monad version
is about twice as fast. Analyzing GHC’s core language [10], the monadic code
was optimized away, and most parameters were unboxed. The only value that
was not unboxed was the state returned by the replacement operation. Replacing
the standard state monad with a handwritten one that uses unboxed integer did
not improve the performance in a statistically significant way, however.

ST Monad Solution Another way of passing the state is to use the imperative ST
monad. The standard implementation of STRef is limited to boxed types, which
hugely degraded the performance. The standard references had to be replaced
with unboxed references from the unboxed-ref package.

findIndices Solution Instead of propagating the new position via various versions
of the state monad, the modification operation can be given hints on where to
start. These hints can be provided by an auxiliary vector containing the positions
where each descent starts. We can create this vector by using the findIndices

function from the vector package.

8

findIndex Solution This approach has a few issues. The input vector has to be
traversed twice, and the auxiliary vector has to be stored in the memory. We
can avoid the memory allocation by computing the hints as needed, instead of
all at once, by using the findIndex function. To measure the impact of this
double traversal, we also implemented a function where the vector of hints is
a part of its input. The vector is precomputed, and its time requirements were
not included in the comparison.

Much like the imperative solution, all functional solutions were evaluated on
a perfect binary tree of a specified depth.

4.2 Tree Insertion

The second task focuses on tree building. Building a search tree can be done
much more efficiently when the input sequence is sorted. The search for a new
insertion point can be skipped since it will always be the leftmost or the rightmost
node (depending on the order of the input sequence). This node can be tracked
with a finger that is updated each time a new element is inserted. The same can
be done with a zipper, although the standard tree insert operation cannot be
reused.

To test a zipper for a different structure, we chose 2-3 trees [3] for this task.
The structure is redundant: all data is kept in the leaf nodes, and internal nodes
contain the minimum of their right subtree (and of the middle subtree, whenever
applicable). The task is then to build a redundant 2-3 tree from a descending
sequence of the given length. The standard solutions start from the root of the
tree when looking for the insertion point. The cursor-based solutions start in the
leftmost node and perform no additional search.

4.2.1 Imperative Solution Listing 7 defines the structures used to represent
the 2-3 tree. Member functions are omitted for brevity.

Listing 7. Imperative 2-3 tree (memory layout)

struct node_t {

std::array <int64_t , 2> values;

std::array <node_t*, 3> children;

node_t* parent;

bool is_two_node;

};

struct tree_t {

node_t* root;

node_t* last_inserted;

};

Tree insertion follows the standard algorithm. We obtain the insertion point
and attempt to insert the value into the corresponding leaf node. When the leaf
node is full, we allocate a new node and redistribute all the values from the
original node. After this split, we are left with a two-node and a three-node. We

9

take the middle value and the right node and attempt to insert them into the
parent node. We repeat this process until no split occurs or the root is reached.
Note that splitting an inner node results in two two-nodes because the middle
value does not need to be duplicated.

The split operation puts the inserted value into a two-node when inserting
values in descending order. As a result, leaf nodes are only split every second
insertion. The implementation could be improved slightly to also provide similar
benefit for insertion in ascending order.

We also tried the following variations of the tree operations: non-recursive
destructor, split operation that allocates the left node, and recursive root-based
insertion. The impact on the performance was either detrimental or statistically
insignificant.

We repeatedly insert values into the tree in descending order and measure
the time taken. In the case of C++ solution, this measurement also includes the
time spent on deallocation, giving a fairer comparison to the languages with
garbage collection.

4.2.2 Functional Solution Listing 8 shows a definition of 2-3 trees with
strictness annotations.

Listing 8. Functional 2-3 tree

data Tree

= Leaf

| Node2 !Tree !Int64 !Tree

| Node3 !Tree !Int64 !Tree !Int64 !Tree

To insert a value into the tree, we recursively insert it into the correct subtree.
The result of this insertion is either one subtree or two subtrees and a value.
The first case is handled by replacing the corresponding subtree; the second
case indicates that a split occurred and is handled similarly to the imperative
solution.

To obtain a zipper, we compute the derivative of a parametrized version of
the 2-3 tree type.

F = 1 + ax2 + a2x3

∂a(F) = x2 + 2ax3

∂x(F) = 2ax+ 3a2x2

∂a(Tree a) = ∂a(µx.F)

= [Tree a/x]∂a(F)× List ([Tree a/x]∂x(F))

= ((Tree a)2 + 2a(Tree a)3)× List (2a(Tree a) + 3a2(Tree a)2)

If the focus is in a two-node, then there is only one choice for the element, and
the context is given by the two subtrees. This case is represented by (Tree a)2. If
the focus is in a three-node, there are two choices for the element (left or right).

10

The context is given by the three subtrees and the value of the element that was
not chosen, or 2a(Tree a)3.

The path also distinguishes between two-nodes and three-nodes. In the case
of a two-node, there are two choices for the focus position (left or right subtree).
The context is given by the value of the element and the other subtree. This
case is represented by 2a(Tree a). In the case of a three-node, there are three
choices for the focus (left, middle, or right subtree) and the context is given by
the values of two elements and the other two subtrees, resulting in the final term
3a2(Tree a)2.

Since the insertion algorithm only needs to know the position of the last
insertion and not the particular element, we simplify the zipper by removing
this choice point. The type variable is replaced with Int64 and the list type is
replaced with a custom strict list. Listing 9 shows the resulting type.

Listing 9. 2-3 tree zipper

data Nonempty

= Nonempty2 !Tree !Int64 !Tree

| Nonempty3 !Tree !Int64 !Tree !Int64 !Tree

data PathChoice

= Path2L !Int64 !Tree

| Path2R !Tree !Int64

| Path3L !Int64 !Tree !Int64 !Tree

| Path3M !Tree !Int64 !Int64 !Tree

| Path3R !Tree !Int64 !Tree !Int64

data Path = Nil | Cons !PathChoice !Path

data Zipper = Zipper !Nonempty !Path

Inserting a value by using a zipper more closely resembles the imperative
solution. The key difference is that instead of pointers to parent nodes, the zipper
contains a list of choices along the path from the root to the focus. Instead of
descending into the tree, the zipper-based insertion needs to descend into this
list.

When a node splits and we attempt to add the value and one of the freshly
split nodes to the parent node, we also need to include information about the
position of the split node in relation to the value. This position is necessary
to reconstruct the extra information contained in the zipper. The imperative
solution assumes the split node is always to the right.

Much like the imperative solution, we repeatedly insert values into the tree
in descending order and measure time taken.

5 Results

All experiments were performed on Intel Core i7-4750HQ processor with 24
GB of main memory under Windows 10 operating system. Each program was
compiled with the highest available level of compiler optimizations, and in the

11

case of GHC, LLVM backend was used for code generation. Garbage collectors
were allowed to only run in a single thread. Each solution was executed with an
increasing number of iterations until a time limit of three minutes was reached.
The measured times were normalized to one iteration. Mean execution time, as
well as standard deviation, were computed. Error bars represent one standard
deviation. The raw measurements are available online. 2

5.1 Tree Traversal

The input files were generated by randomly picking 1,000,000 elements out of
a perfect binary tree with 20 levels and outputting the path between them. We
evaluated the tree traversal in four scenarios which were obtained by biasing
the random generator towards particular areas of the tree: no bias, bottom bias,
right bias, and bottom-right bias. One input file was generated for each scenario
to ensure any performance differences were not due to different input data.

This comparison only includes results of the fastest variant of the functional
root-based solution: the approach based on findIndex. Its precomputed version
is only marginally faster, showing that the double traversal has a low impact
on the performance. The state and ST solutions are much slower. Interestingly,
the ST solution is slightly slower than the purely functional state solution. Full
comparison of these variants can be found in Figure 6.

C++ C] Haskell
0

500

1,000

1,500

T
im

e
(m

s)

Root

Cursor

Fig. 1. Tree Traversal Performance (no bias)

When the spatial locality is low (Figures 1 and 2), the root-based solutions
show a clear advantage over the cursor-based solutions. The relative gains of the
root-based approach are in the range of 50% to 60% for the imperative solutions
and around 20% for the functional solution.

When the spatial locality is high (Figure 3 and Figure 4), the cursor-based
solutions take over. In the case of the right bias, C++ reaches 150% speedup, C]

2 https://github.com/vituscze/performance-zippers/blob/master/data.csv

https://github.com/vituscze/performance-zippers/blob/master/data.csv

12

C++ C] Haskell
0

500

1,000

1,500

T
im

e
(m

s)

Root

Cursor

Fig. 2. Tree Traversal Performance (bottom bias)

C++ C] Haskell
0

50

100

150

T
im

e
(m

s)

Root

Cursor

Fig. 3. Tree Traversal Performance (right bias)

C++ C] Haskell
0

50

100

150

T
im

e
(m

s)

Root

Cursor

Fig. 4. Tree Traversal Performance (bottom-right bias)

13

135% and Haskell 220%. Bottom-right bias increases this gap even more. C++

reaches 205% speedup, C] 175% and Haskell 280%.
Notice that the root-based solutions also show a considerable performance

boost when the input data has high spatial locality. This boost is a consequence of
cache-friendly memory access pattern. In all scenarios, the zipper-based solution
exhibits smaller performance losses (low spatial locality) and higher performance
gains (high spatial locality) when compared to the finger-based solutions.

5.2 Tree Insertion

Evaluating insertion into a 2-3 tree was done by repeatedly constructing a tree
containing 10,000,000 elements. The ordered sequence was not part of the input.
Instead, the elements of this sequence were generated on the fly and inserted
into the tree directly, without any auxiliary structure. As mentioned earlier, this
task compared fingers and zippers in an environment where memory allocation
is necessary. For this reason, the C++ solution also evaluated the time it took to
deallocate the structure, giving a better comparison with C] and Haskell.

C++ C] Haskell
0

1,000

2,000

3,000

T
im

e
(m

s)

Root

Cursor

Fig. 5. 2-3 Tree Insertion Performance

The results are shown in Figure 5. All three solutions show a preference for
cursor-based approaches. In C++ and C], the finger-based insertion is roughly
20% faster than the root-based insertion. In Haskell, the zipper-based insertion
is 210% faster.

Note that both the root-based and finger-based insertion allocate O(1) nodes
(amortized) per insertion in imperative languages. The root-based functional
solution needs to copy the path from the root to the insertion point, leading
to O(log n) new nodes per insertion. The zipper-based insertion, therefore, not
only avoids the cost of finding the insertion point but also leads to significantly
reduced allocation count.

Comparing the C++ and C] results did not point to memory management
as a major factor. Reducing the size of the tree (by performing fewer insertions)

14

showed that the gap between C++ and C] decreased slightly, which hints to
a minor performance benefit from using garbage collection.

The C++ solution could be further optimized by using a memory pool in-
stead of the standard new and delete operators. However, we did not want to
deviate from the standard memory management models. In a similar vein, we
decided against fine-tuning the garbage collector parameters for the Haskell and
C] solutions.

6 Conclusion

While zippers lack the flexibility and ease of use of mutable pointers, they are
nevertheless a powerful tool when working with purely functional data struc-
tures. However, it was unclear whether zippers offer the same performance ben-
efit as the imperative approach.

We compared fingers and zippers in two scenarios: arbitrary tree traversal
and tree insertion. The first test measured the effectiveness of zippers when
its imperative counterpart does not have to allocate memory. This test focused
on fast access to a selected element as well as the ability to move the focus.
The second test considered the case where both the imperative and functional
approaches need to allocate memory. It focused on the pointer reversal aspect
of zippers.

We provided evidence that when zippers are used in a functional setting,
they offer higher performance gains compared to mutable pointers used in an
imperative setting. More importantly, zippers provide this gain without under-
mining the benefits of purely functional data structures. We hope that this work
encourages functional programmers to use zippers before reaching for imperative
techniques when optimizing their code.

15

References

1. Abbott, M., Altenkirch, T., McBride, C., Ghani, N.: ∂ for data: Differentiating
data structures. Fundam. Inf. 65(1-2), 1–28 (Aug 2004)

2. Adams, M.D.: Scrap your zippers: A generic zipper for heterogeneous types. In:
Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming. pp.
13–24. WGP ’10, ACM, New York, NY, USA (2010)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

4. Hinze, R., Jeuring, J., Löh, A.: Type-indexed data types. Sci. Comput. Program.
51(1-2), 117–151 (May 2004)

5. Huet, G.: The zipper. J. Funct. Program. 7(5), 549–554 (Sep 1997)
6. Kiselyov, O.: Generic zipper: the context of a traversal. http://okmij.org/ftp/

continuations/zipper.html (2015)
7. Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: A practical design pattern for

generic programming. In: Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation. pp. 26–37. TLDI
’03, ACM, New York, NY, USA (2003)

8. McBride, C.: The derivative of a regular type is its type of one-hole contexts
(extended abstract). http://strictlypositive.org/diff.pdf (2001)

9. Mehta, D., Sahni, S.: Handbook Of Data Structures And Applications, chap. 11.
Finger Search. Chapman & Hall/CRC (2004)

10. Peyton Jones, S., Santos, A.: A transformation-based optimiser for Haskell. Sci.
Comput. Program. 32(1-3), 3–47 (Sep 1998)

11. Ramsey, N., Dias, J.: An applicative control-flow graph based on Huet’s zipper.
Electron. Notes Theor. Comput. Sci. 148(2), 105–126 (Mar 2006)

http://okmij.org/ftp/continuations/zipper.html
http://okmij.org/ftp/continuations/zipper.html
http://strictlypositive.org/diff.pdf

16

A Additional Charts

Uniform Bottom Right Bottom-
right

0

50

100

150

200

R
el

a
ti

v
e

ti
m

e
(%

)

State

ST

findIndices

findIndex

Precomputed

Fig. 6. Tree Traversal Performance (Haskell)

