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Abstract. Linear logic gives us additive pairs in the form of the additive5

conjunction. Intuitionistic type theory gives us dependent pairs in the6

form of the dependent sum type. What happens when we combine these7

two kinds of pairs together? And is this new pair type useful in practice?8

To answer these questions, we employ quantitative type theory, which9

can describe both substructural and dependent types simultaneously.10

We introduce dependent additive pairs and show how these pairs can11

be used in three completely different scenarios: folding data structures12

using linear recursion schemes, computing resource-aware proofs, and13

defining additive versions of inductive and coinductive types. Each of14

these scenarios is then illustrated by an implementation in the Janus15

language.16

1 Introduction17

Many programming languages use type systems. Their main purpose is to detect18

a wide variety of bugs before the program is even run. Throughout the years, type19

systems have become quite sophisticated, supporting features such as subtyping,20

parametric polymorphism, or metatypes. Today, some of the most expressive21

type systems are based on dependent type theories, such as the Martin-Löf type22

theory [11]. As the name suggests, a dependent type is a type which can depend23

on a value. A standard example is a vector: a list that contains its length in its24

type. Dependent types can be exploited to express very detailed properties of25

programs, which can then be automatically checked by the computer.26

However, dependent types are poorly suited to describe how a program uses27

its values. In particular, any value can be freely duplicated or discarded. A pro-28

grammer might want to ensure that a value representing an important resource,29

such as an open file, is not simply discarded. Substructural type systems seek to30

address this issue by restricting certain operations on variables. The most well31

known subclass of substructural type systems are linear type systems. In these32

systems, variables are typically split into two subsets: unrestricted and linear.33

The key restriction is that linear variables must be used exactly once. Other34

restrictions give rise to different systems, such as affine or relevant type systems.35

Quantitative type theory (QTT) [3] is a recent attempt at combining depen-36

dent and substructural types into a single theory. In QTT, variables are not split37
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into subsets. Instead, each variable is associated with an element of a semiring,38

so called multiplicity, which keeps track of how that particular variable is used.39

If the same variable occurs in different contexts, semiring operations are used to40

combine its constituent multiplicities into a single value.41

Different semirings give rise to various kinds of substructural systems. A42

single-element semiring results in a system in which all variables are unrestricted.43

The usual semiring on natural numbers results in a system where multiplicity44

tracks exact usage of a given variable, with 1 corresponding to linear use. The45

zero-one-many semiring avoids unnecessarily precise multiplicities while still sup-46

porting irrelevant, linear, and unrestricted variables.47

In QTT, multiplicities can also appear in some types. These indexed types48

replace the need for multiple versions of each connective, as is the case in linear49

logic. For example, instead of having linear (A⊸ B) and unrestricted (A → B)50

functions, QTT has a single (dependent) function type (x
σ
: A) → B. Linear51

and unrestricted functions can be obtained by choosing a suitable value for σ.52

However, since the value of σ can be arbitrary, each element of the semiring53

thus gives rise to a different variant of the function type. For example, in the N54

semiring, each number n gives a function that must use its parameter exactly n55

times.56

Substructural types can be further classified as either multiplicative or ad-57

ditive. Multiplicative types split resources. When introducing a new value, the58

resources are divided into groups and each group is used to construct a part59

of the value. When eliminating a value, each part must be used to ensure no60

resources are discarded. Additive types preserve resources. When introducing a61

new value, each part of the value has access to all resources. When eliminating62

a value, only one part must be used to ensure no resources are duplicated.63

Since QTT supports both dependent and substructural types, it gives us a64

unique opportunity to explore dependent versions of multiplicative and additive65

types. One example is the previously mentioned function type (x
σ
: A) → B.66

Another example is the dependent additive pair (x : A) & B, which is a gener-67

alization of the additive conjunction found in linear logic and is the main focus68

of this work.69

1.1 Goals70

The primary objective of this work is to identify and describe practical uses71

of dependent additive pairs. In particular, we seek problems in resource-aware72

programming that are best solved by these pairs. The solutions should make use73

of both the type dependency and the additive nature of this type. More generally,74

we also seek novel applications of these pairs where the type dependency can be75

useful but is not strictly necessary.76

A secondary objective is to provide an implementation of each solution in a77

language capable of expressing dependent additive pairs, which will demonstrate78

the correctness of our solutions and allow the reader to easily verify.79



1.2 Contributions80

To achieve the stated goals, we identify three distinct and novel scenarios that are81

best solved by dependent additive pairs. Firstly, we implement a linear paramor-82

phism, which is a recursion scheme that allows access to both the recursive result83

and the remainder of the structure. Secondly, we show how to compute resource-84

aware proofs, which demonstrate that a witness satisfies a given property while85

allowing their resources to be shared. Thirdly, we define additive versions of in-86

ductive lists and coinductive streams and implement linear versions of commonly87

used operations. Finally, we provide implementation in the Janus language [14].88

2 Related Work89

As mentioned in the introduction, some type systems split variables into multi-90

ple subsets that restrict how these variables can be used. Type dependency can91

also be added to these systems. An early example of such a dependent theory92

is Cervesato and Pfenning’s Linear Logical Framework [7]. LLF splits the typ-93

ing context into two parts: linear and intuitionistic. One major downside of this94

approach is that a dependent type may only refer to variables from the intu-95

itionistic context. A more recent example of this split-context system is given by96

Krishnaswami et al. [10].97

Semirings have also been used before to keep account of variable usage. One98

such example is given by Brunel et al. [6]. Semiring annotations are used with99

the exponential modality, which is then generalized into a full coeffect system.100

The typing context is not split. Unlike in QTT, it contains linear and discharged101

variables, which carry the semiring annotations.102

The key insight behind QTT is provided by McBride [12]. In his type system,103

semiring zero represents computational irrelevance. Types are then treated as104

computationally irrelevant and variable occurrences there do not count towards105

the total multiplicity, which allows types to depend on any kind of variable.106

This idea is further reinforced by providing a type-erasing translation which also107

removes the computationally irrelevant parts.108

QTT itself is described by Atkey [3]. This work addresses a problem with109

inadmissible substitution as well as extending the theory with dependent mul-110

tiplicative pairs and booleans. A categorical model is also provided. Note that111

other additive types are only available via encoding involving booleans and func-112

tion types.113

A graded dependent type system, an approach similar to QTT, is given by114

Choudhury et al. [8]. The key difference is that types are not forced to use the115

semiring zero for all variables. This change gives a finer control over resources116

at the type level and also places fewer restrictions on the semiring.117

QTT forms the basis of some programming languages. Idris 2 is a purely118

functional, general purpose programming language developed by Brady et al. [5]119

and based on the zero-one-many flavor of QTT. Brady [4] provides compelling120

examples of combining dependent and substructural types to increase the type121



safety of programs, such as dependent session types: a two party communication122

channels that enforce a protocol at the type level.123

QTT has been extended with dependent additive pairs and annotated elim-124

inators in our previous work [14]. Multiplicity annotations help resolve a few125

undesirable interactions between weakening and eliminators of the sum and pair126

types. This extended theory serves as the basis of the Janus language.127

3 Quantitative Type Theory128

3.1 Semirings129

QTT uses positive semirings to keep track of variable usage. A semiring is a tuple130

(S,+, ·, 0, 1) where S is a set, + and · are binary operations on S, 0 and 1 are131

elements of S such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid,132

· distributes over +, and 0a = 0 = a0. A positive semiring further satisfies the133

following two properties: if a+ b = 0 then a = 0 and b = 0, if ab = 0 then a = 0134

or b = 0.135

Without semiring positivity, we could have variables that are used nonzero136

times in two different contexts but their overall usage is still zero. Similar issue137

can occur with nested contexts, which are handled by semiring multiplication.138

In this work, we use the zero-one-many semiring. Its elements are 0, 1, and139

ω, which represents more than one use. The definitions of addition and multi-140

plication follow from these two equations: ω · ω = ω and ∀ρ. ρ+ ω = ω.141

3.2 Syntax142

An overview of the syntax of the particular QTT flavor used in this work is given143

below.144

π, σ ::= 0 | 1 | ω
Γ ::= · | Γ, x σ

: M

M,N,O ::= x | U
| λx. M | MN | (x σ

: M) → N

| (M,N) | letσ (x, y) = M in N | (x σ
: M)⊗N

| () | let () = M in N | 1
| inl M | inr M | caseσ M of {inl x → N ; inr y → O} | M ⊕N

| case M of {} | ⊥ (no introduction)

| ⟨M,N⟩ | fst M | snd M | (x : M) &N

| ⟨⟩ | ⊤ (no elimination)

Going from top to bottom, we have multiplicities π, σ; contexts Γ ; and terms145

M , N , O. When unambiguous, the empty context · is omitted. Contexts can be146



scaled and added together. Context addition is not used in this work and we147

thus only define scaling by π:148

π(·) = · π(Γ, x
σ
: M) = πΓ, x

πσ
: M

A term can be a variable or the universe constant U , representing the type of149

types. Each of the remaining lines then describes introduction, elimination, and150

formation (in this order) of all the types present in the system: dependent func-151

tion, dependent multiplicative pair, multiplicative unit, additive sum, additive152

zero, dependent additive pair, and additive unit.153

We also need a modified typing judgment that takes into account the multi-154

plicities:155

Γ ⊢ M
σ
: N

That is, given the context Γ , we can show that the term M is usable σ156

times and has the type N . A key restriction is that σ must be either 0 or 1.157

The judgment thus only communicates whether the term M can be used in a158

computationally relevant context.159

For further details, we encourage the reader to check the original presen-160

tation given by Atkey [3]. However, there are some notable differences worth161

emphasizing. Firstly, types and terms are not separated and instead of the El162

decoder, we have the universe constant U . The boolean type has been replaced163

with three additive types: sum, unit, and pair. And finally, the multiplicative164

pair and additive sum eliminators contain multiplicity annotations.165

3.3 Weakening166

As currently presented, the ω multiplicity is only applicable when a variable is167

used at least twice in a relevant context. However, we would like to associate ω168

with unrestricted use. The system must be able to treat other multiplicities as169

ω, which can be accomplished by adding an ordering to the semiring and using170

a weakening rule, as described by McBride [12]. In particular, σ ≤ π means that171

a variable with σ uses may be treated as a variable with π uses.172

Unsurprisingly, such ordering needs to be reflexive, transitive and must re-173

spect the semiring operations. A suitable ordering is 0 ≤ ω and 1 ≤ ω. Since we174

want 1 to represent linear use, 0 ≤ 1 must not hold.175

Contexts can also be ordered. If the contexts Γ1 and Γ2 only differ in multi-176

plicities (0Γ1 = 0Γ2), we define Γ1 ≤ Γ2 as a pointwise extension of the semiring177

ordering ≤. In other words, Γ1 ≤ Γ2 iff the multiplicity of each variable in Γ1 is178

less than or equal to the multiplicity of the same variable in Γ2. The weakening179

rule then states that if the typing judgment holds in a typing context Γ1, it also180

holds in any greater typing context Γ2:181

Γ1 ⊢ M
σ
: T Γ1 ≤ Γ2

Γ2 ⊢ M
σ
: T

Weak



3.4 Annotated Eliminators182

While weakening works well in most cases, there is an issue with its interaction183

with eliminators of some types. Consider the following judgment:184

p
ω
: (

1
: N)⊗ N ⊢ let (x, y) = p in x+ x

1
: N

If we remove the multiplicities, we obtain a judgment that is valid in an185

intuitionistic setting. One of the goals of weakening in the system is the ability186

to treat ω as unrestricted use, turning that fragment of the system into a regular187

intuitionistic type theory.188

However, adding weakening does not make this judgment valid. Atkey’s elim-189

ination rule for multiplicative pairs states that while checking the subterm x+x,190

the variables x and y must be added to the typing context with multiplicity 1,191

which prevents y from being discarded and x from being duplicated. Notice that192

the weakening rule can be used to treat the single use of p in the eliminator as193

ω to match the multiplicity of p in the typing context. The problem is thus the194

inability of the eliminator to use p multiple times.195

In theory, we could have only a single copy of p in the typing context and196

use the exponential modality for the elements of the pair, but such solution is197

not very flexible since the programmer must know ahead of the time where all198

such values will be required.199

Instead, the eliminator is extended with a multiplicity annotation [14] which200

lets it consume the eliminated pair ω times. To ensure resource correctness, this201

multiplicity is propagated to the freshly bound variables. At that point, the202

weakening rule may be applied, allowing us to treat the zero uses of y as ω uses.203

The following judgment is now valid:204

p
ω
: (

1
: N)⊗ N ⊢ letω (x, y) = p in x+ x

1
: N

Apart from the dependent multiplicative pair (x
σ
: S) ⊗ T , this annotation205

may also be added to the eliminator of the additive sum S ⊕ T . However, in206

the case of additive sums, the annotation cannot be 0 as the eliminator provides207

computationally relevant information.208

4 Dependent Additive Pairs209

An additive pair consists of two elements that have access to the same resources.210

This property can lead to seemingly unsound resource use. Consider the following211

judgment:212

x
1
: T ⊢ ⟨x, x⟩ 1

: T & T

Each element is forced to use the variable x and yet x is still considered213

linear. The trick lies in the elimination: only one element of the additive pair214

can be extracted and the other must necessarily be discarded. The end result is215

that the variable x is indeed used once.216



In the original presentation of QTT, an additive pair S & T is represented217

by a function from booleans to either S or T . Similar encoding can be used in218

our presentation, since booleans are a special case of the more general additive219

sum type. Indeed, we can define the boolean type 2 as 1 ⊕ 1. An additive pair220

S & T is then defined by the following term:221

S
0
: U , T 0

: U ⊢ (b
1
: 2) → case1 b of {inl t → S; inr f → T} 0

: U

Introduction and elimination follow immediately from this definition. Note222

that in a computationally relevant context, the units contained in the additive223

sum need to be eliminated as well. For brevity, this step is not explicitly written224

out and is only implied by using () in place of the bound variable.225

Notice that the resource use matches our expectations. The eliminator of226

additive sums has a property similar to the additive pair introduction: each227

branch of the case analysis has access to the same resources. Resource soundness228

of the pair elimination comes from the fact that function application counts as a229

use of that function. In particular, if we wish to extract both elements of such a230

pair, we need to apply the function twice and thus use it twice. As an example,231

we can implement an operation to swap the elements of the pair.232

p
1
: S & T ⊢ λb. case1 b of {inl () → p (inr ()); inr () → p (inl ())} 1

: T & S

However, this approach has two major downsides. Firstly, dependent type233

theories often lack function extensionality principle, which complicates reasoning234

about functions. Proving that two additive pairs are the same thus becomes quite235

difficult. Adding function extensionality as an axiom presents other problems.236

Using a different notion of equality, such as in observational type theory [2] or237

homotopy type theory [16], might be possible but is out of the scope of this238

work.239

The second, bigger problem is that this encoding is incapable of expressing240

type dependency between S and T . Since the two alternatives of the additive241

sum type elimination are independent, neither type has access to a value of the242

other type.243

Instead of using an encoding, dependent additive pairs are built into the244

system as one of its base types. Formation, introduction and elimination are245

defined by the following rules:246

0Γ ⊢ S
0
: U 0Γ, x

0
: S ⊢ T

0
: U

0Γ ⊢ (x : S) & T
0
: U

&-F
Γ ⊢ M

σ
: S Γ ⊢ N

σ
: T [M/x]

Γ ⊢ ⟨M,N⟩ σ
: (x : S) & T

&-I

Γ ⊢ M
σ
: (x : S) & T

Γ ⊢ fst M
σ
: S

&-E1

Γ ⊢ M
σ
: (x : S) & T

Γ ⊢ snd M
σ
: T [fst M/x]

&-E2

In the dependent additive pair (x : S) & T , the type T can refer to the value247

of the first element via the variable x. As expected, the introduction rule gives248

both elements of the pair access to the entire context Γ .249



Notice that the second elimination rule uses both fst M and snd M , seem-250

ingly resulting in unsound resource use. However, because the first element is251

accessed in a computationally irrelevant context, resource soundness is not af-252

fected. The behavior of these eliminators is as follows:253

fst ⟨M,N⟩⇝M

snd ⟨M,N⟩⇝ N

5 Programming with Dependent Additive Pairs254

In this section, we discuss three distinct scenarios that benefit from the use255

of dependent additive pairs. We restrict ourselves to linear uses of these pairs.256

Indeed, in the presence of weakening, additive and multiplicative pairs are mostly257

interchangeable.258

Each definition found in this section is also implemented in Janus. Janus is259

a language based on the extended QTT mentioned in Section 3. It comes with260

a type checker and an interactive evaluator, which are implemented in Haskell261

and their source code is available online [15]. It is provided as a Cabal package262

and can be built and run with any recent version of ghc and cabal.263

The examples are provided as .jns files and are available online. 1 These264

files can be loaded into Janus with the :load command, which performs type265

checking and adds the new definitions to the context. The user may then evaluate266

them or query their type using the :type command. If querying a type is not267

sufficient, the .jns files contain very detailed type information.268

5.1 Linear Folds269

In functional programming, operations that eliminate values of recursively de-270

fined data types are typically called folds. Consider the case of a singly-linked271

list type: List. The constant Nil represents an empty list, Cons introduces a272

non-empty list. We can define a simple fold operation with these two equations:273

fold f z Nil = z

fold f z (Cons x xs) = f x (fold f z xs)

To borrow a term from the category theory, these simple folds are called274

catamorphisms. In more technical terms, a catamorphism is a unique homomor-275

phism out of an initial algebra. Since we are in a dependent setting, we would276

like to give this operation a fully dependent type. If we replace the return type277

with a dependent motive P : List A → U , we obtain the following:278

A : U , P : List A → U ⊢ fold : (f : (x : A) → (r : P ?) → P (Cons x ?)) →
(z : P Nil) → (l : List A) → P l

1 https://github.com/vituscze/dependent-additive-pairs

https://github.com/vituscze/dependent-additive-pairs


However, we are unable to specify the type of f . The type of r as well as279

the type of the result need to mention the list xs, which is not available at this280

point. The only way to solve this problem is to add an additional parameter to281

f . We get different versions of fold depending on how this extra parameter is282

used. Since we are also in a substructural setting, we can specify and enforce this283

usage. Let us analyze the previous equations to see how the other parameters284

are used.285

We can see that if the function f consumes the elements and the recursive286

results linearly, the whole list is also consumed linearly. The value z is also used287

exactly once. The only input that is not used linearly is the function f itself,288

which can be used any number of times, including zero. However, thanks to289

weakening, the ω multiplicity can be used to describe this usage. In this case,290

the additional parameter is not used in a relevant context. We obtain a resource-291

aware version of the previous type.292

A
0
: U , P 0

: (l
0
: List A) → U ⊢ fold

1
:

(f
ω
: (x

1
: A) → (xs

0
: List A) → (r

1
: P xs) → P (Cons x xs)) →

(z
1
: P Nil) → (l

1
: List A) → P l

If we allow the function f to use the additional parameter, we obtain a293

paramorphism. More generally, a paramorphism is a generalized catamorphism294

which allows the combining function access to both the recursive result and the295

remaining structure. We can again express this fact using two equations:296

para f z Nil = z

para f z (Cons x xs) = f x (xs, para f z xs)

In a substructural setting, we have an additional decision to make regarding297

the function f . If f uses both elements of the pair, we need to use a multiplicative298

pair. In this case, the variable xs is used twice and thus the list cannot be299

consumed linearly. If f uses exactly one of the elements of the pair, we need to300

use an additive pair. The variable xs is now used exactly once and the list can301

be consumed linearly. However, we cannot guarantee that the value z is used302

once. We obtain the following type:303

A
0
: U , P 0

: (l
0
: List A) → U ⊢ para

1
:

(f
ω
: (x

1
: A) → (p

1
: (xs : List A) & P xs) → P (Cons x (fst p))) →

(z
ω
: P Nil) → (l

1
: List A) → P l

These linear paramorphisms are useful whenever only a part of the structure304

needs to be traversed. Examples include various insertion and deletion oper-305

ations. A deletion operation can be linear as long as the deleted element is306

returned alongside the rest of the structure.307

The original fold can be implemented using para quite easily. However, since308

catamorphisms are also the eliminators of inductive types, it should be possible309

to implement para in terms of fold. Since the combining function does not310



have access to the rest of the list, it has to reconstruct it. The reconstructed311

list and recursive result are stored in an additive pair. The following definition312

demonstrates the desired semantics:313

para = λf z l. snd (fold (λx xs p. ⟨Cons x (fst p), f x p⟩) ⟨Nil, z⟩ l)

However, this definition requires some changes to satisfy the type checker. We314

have two choices for the motive P : λ . (l′ : List A)&P l′, or λl. ( : List A)&P l.315

The first one fails when applying the final snd because the first element is not316

the list l. The second one fails when applying f because xs and fst p are different317

lists. In both cases, the type checker is not convinced that the original and the318

reconstructed list are the same.319

The motive offers us a hint. Notice we are either ignoring the lambda param-320

eter or the first element of the pair. However, to use both of these, we will need321

an identity type. In particular, we need the following constants for the formation322

and introduction:323

A
0
: U , x 0

: A, y
0
: A ⊢ x ≡ y

0
: U

A
0
: U ⊢ refl

1
: (x

0
: A) → x ≡ x

We use based path induction [13] as the eliminator.324

A
0
: U , x 0

: A, y
0
: A ⊢ J

1
: (P

0
: (y′

0
: A) → (

0
: x ≡ y′) → U) →

(f
1
: P x (refl x)) → (p

1
: x ≡ y) → P y p

The new motive contains the additive pair and the proof that the original325

and reconstructed list are the same:326

Triple = λl. (p
1
: (l′ : List A) & P l′)⊗ (fst p ≡ l)

Of course, the fold now needs to construct this proof as it goes and then use it327

at the very end. The latter can be accomplished by using the identity l′ ≡ l to328

rewrite the type of the result from P l′ to P l. The following function uses the329

proof contained in Triple l to produce P l.330

extract = λt. let1 (p, q) = t in J (λl′ . P l′) (snd p) q

For the former, we start with the proof Nil ≡ Nil. The inductive step asks331

us to prove Cons x (fst p) ≡ Cons x l given fst p ≡ l, which is accomplished by332

using the congruence property. That is, if p
1
: x ≡ y then cong f p

1
: f x ≡ f y.333

Putting it all together, we obtain the following:334

para = λf z l. extract (fold (λx xs t. let1 (p, q) = t in

(⟨Cons x (fst p), f x p⟩, cong (λl. Cons x l) q)) (⟨Nil, z⟩, refl Nil) l)

This definition is now correct and matches the type given earlier. The type of335

para is thus justified. Note that in practice, paramorphisms would not be defined336



in terms of catamorphisms, as the need to reconstruct the structure removes one337

of their main benefits.338

While we focused on list paramorphisms here, this definition can be general-339

ized to any tree-like structure. For example, the combining function for a binary340

tree paramorphism would have the following type:341

(x
1
: A) → (l

1
: (t : Tree A) & P t) → (r

1
: (t : Tree A) & P t) →

P (Node x (fst l) (fst r))

5.2 Resource-Aware Proofs342

Dependent type theories use dependent pairs to express existential quantifica-343

tion. The first element of such a pair is typically called a witness, as it is a value344

that witnesses the inhabitation of the type of the second element.345

In some cases, the witness can be computationally relevant. This kind of346

witness is typically found in operations that prove some correctness properties347

as their output. There are also cases where the witness is mainly used to specify348

the type of the second element, even though it might carry computationally349

relevant information itself. This use case can be found whenever the indices of350

dependent types cannot (or should not) be specified.351

In the intersection of these two cases are operations that compute a relevant352

witness and a relevant dependent value that hides one or more of its indices.353

Consider a filter operation on vectors. Instead of using a natural number as the354

witness, we could use an entire List.355

A : U , n : N ⊢ filter : (p : A → 2) → (xs : Vec A n) →
(l : List A)×Vec A (length l)

The list and the vector have the same length. But since the length of the356

list is not a part of its type, the length of the vector is still effectively hidden.357

However, the user has a much more interesting choice: if the hidden index is no358

longer necessary, the witness still carries all the useful information.359

Partition The filter example does not quite fit into our substructural setting.360

The input list cannot be used linearly since its elements might be discarded.361

Instead of using a different example, we will adjust the filter operation as it362

allows us to demonstrate a couple of useful techniques.363

First of all, if we want the operation to be linear, it also needs to return the364

elements that have been filtered out, ideally in a separate list. Such operation is365

sometimes called partition. Since the lists contain different elements, they need366

to be in a multiplicative pair.367

A
0
: U ⊢ partition

1
: (p

ω
: (a

1
: A) → 2) → (l

1
: List A) →

(
1
: List A)⊗ List A



The first problem we encounter is that applying the predicate p consumes the368

element of the list, leaving us with nothing to put into the result. Changing the369

multiplicity of the first parameter to zero would solve this issue, but predicates370

that are not allowed to inspect their input are generally not useful.371

Instead, we require the predicate to also return a new version of the input,372

such as p
ω
: (a

1
: A) → (

1
: 2)⊗ A. With this change, implementing partition is373

easy. Now, suppose we want to also return a description of the resulting partition.374

We can use the following type:375

A
0
: U , xs ys zs 0

: List A ⊢ Union xs ys zs
0
: U

A
0
: U , xs ys zs 0

: List A ⊢ Left
1
: (x

1
: A) → (u

1
: Union xs ys zs) →

Union (Cons x xs) ys (Cons x zs)

A
0
: U , xs ys zs 0

: List A ⊢ Right
1
: (x

1
: A) → (u

1
: Union xs ys zs) →

Union xs (Cons x ys) (Cons x zs)

A
0
: U ⊢ Stop

1
: Union Nil Nil Nil

Union xs ys zs is a proof that the lists xs and ys can be interleaved to obtain376

the list zs. The introductions Left and Right are used to express whether the377

first element of the result came from the first or the second list. The elimination378

is left out as it will not be needed in this case. Since the type of the result is379

quite large, it might be useful to split it into a couple of auxiliary definitions.380

Result1 = λA. (
1
: List A)⊗ List A

Result2 = λA zs r1. let0 (xs, ys) = r1 in Union xs ys zs

Result = λA zs. (r1 : Result1 A) &Result2 A zs r1

Pred = λA. (x
1
: A) → (

1
: 2)⊗A

With that, we can state the full type of the partition operation as follows:381

A
0
: U ⊢ partition

1
: (p

ω
: Pred A) → (l

1
: List A) → Result A l

Since the type of the result depends on the input list, we need to use the382

dependent fold defined earlier. The base case has the type Result A Nil and383

only has a single valid value: ⟨(Nil,Nil),Stop⟩. The inductive case can be broken384

down into three steps. Firstly, we define auxiliary functions that add the new385

element to one of the Result1 lists.386

add′
l = λx r1. let1 (l, r) = r1 in (Cons x l, r)

add′
r = λx r1. let1 (l, r) = r1 in (l,Cons x r)

Secondly, we use these definitions to add the new elements to the whole387

Result. However, since the first element does not reduce to a pair, the type388

of the second element remains some form of Result2, rather than reducing to389

Union. We can fix this by inspecting the first element to force reduction.390

addl = λx r. ⟨add′
l x (fst r), let0 ( , ) = fst r in Left x (snd r)⟩



However, this definition has a problem similar to the one before. This time391

it is the term snd r whose type does not reduce. Without access to dependent392

pattern matching [9], we need to eliminate into a function type. That way, the393

type of the argument reduces and can be given to Left. The resulting function394

is then applied to snd r.395

addl = λx r. ⟨add′
l x (fst r), (let0 ( , ) = fst r in λr2. Left x r2) (snd r)⟩

addr = λx r. ⟨add′
r x (fst r), (let0 ( , ) = fst r in λr2. Right x r2) (snd r)⟩

We can easily check that all auxiliary definitions have the expected types:396

. . . ⊢ add′
l add

′
r

1
: (x

1
: A) → (r1

1
: Result1 A) → Result1 A

. . . ⊢ addl addr
1
: (x

1
: A) → (r

1
: Result A zs) → Result A (Cons x zs)

Finally, we can apply the predicate and then use addl or addr depending397

on the result.398

step = λp x r. let1 (b, x′) = p x in

case1 b of {inl () → addl x
′ r; inr () → addr x

′ r}

However, both addl x
′ r and addr x′ r produce Result A (Cons x′ xs) as399

we were forced to use x′, which does not match Result A (Cons x xs) required400

by fold. The problem is that the predicate is allowed to return any value and401

thus we cannot assume that x and x′ are the same. We can force it to return the402

same value by adding the identity type to the definition of Pred.403

Pred = λA. (x
1
: A) → (

1
: 2)⊗ (x′ 1

: A)⊗ (x′ ≡ x)

The proof can be extracted with a second let term. It can then be used to404

rewrite the type of the result, which is done by using the substitutivity of the405

identity type. In particular, if v
1
: P x and p

1
: x ≡ y then subst P p v

1
: P y. We406

can now fix the step function.407

step = λp x r. let1 (b, s) = p x in let1 (x′, q) = s in

subst (λx. Result A (Cons x xs)) q

(case1 b of {inl () → addl x
′ r; inr () → addr x

′ r})

And finally, we can put it all together to implement the partition operation408

itself.409

partition = λp l. fold (step p) ⟨(Nil,Nil),Stop⟩ l

It should be noted that the reduction behavior of Result2 might not be410

desirable in some situations. Even though it will eventually reduce to a Union,411

the type checker cannot see that without eliminating the pair first. In cases like412

this, it is generally recommended to move the computation to the indices of the413



type. We can define projections Fst and Snd for the multiplicative pair that414

may be used in types. We can then define another version of Result2.415

Result2 = λA zs r1. Union (Fst r1) (Snd r1) zs

We have implemented partition for both versions, but here we only present416

the one that does not require additional auxiliary definitions to function.417

Insertion As mentioned previously, many insertion operations may be imple-418

mented by using a paramorphism. We can reuse the Union type to implement419

a sorted list insertion operation that also produces a resource-aware proof. In420

particular, if the list l is a result of inserting a new element x into the list xs,421

we expect Union xs (Cons x Nil) l to hold. We shall abbreviate Cons x Nil422

as [x]. We begin with a couple of auxiliary definitions.423

Result = λA x xs. (l : List A) &Union xs [x] l

Cmp = λA. (x
1
: A) → (y

1
: A) →

(b
1
: 2)⊗ (x′ 1

: A)⊗ (y′
1
: A)⊗ (

1
: x′ ≡ x)⊗ (y′ ≡ y)

As before, we use the identity type to make sure the comparison function re-424

turns the same values it was given. We can now state the full type of a dependent425

insert operation.426

A
0
: U ⊢ insert

1
: (c

ω
: Cmp A) → (x

1
: A) → (xs

1
: List A) → Result A x xs

The base case is seemingly trivial: we only need to insert x into the empty list.427

However, because para requires the base case to have multiplicity ω, simply using428

[x] would require x
ω
: A. We instead eliminate into a linear function. The function429

can be discarded and thus the ω multiplicity is not a problem. In particular, we430

use the following motive:431

A
0
: U ⊢ λxs. (x

1
: A) → Result A x xs

0
: (xs

0
: List A) → U

The base case is then trivial.432

base = λx. ⟨[x],Right x Stop⟩

The inductive case is more interesting. If the inserted element x is smaller433

than or equal to y (according to the comparison function), we have found the in-434

sertion point and no further recursion is necessary. Recall that a paramorphism435

gives us access to an additive pair r containing the rest of the list and the recur-436

sive result. We ignore the recursive result and return Cons x (Cons y (fst r)).437

We also need to construct a proof of the following type:438

Union (Cons y (fst r)) [x] (Cons x (Cons y (fst r)))



Clearly, x must have come from the Right list. We then need a simple lemma439

to show that Union l Nil l holds for any l. The proof consists of a Left for each440

element of l and a Stop at the end.441

lem = λl. fold (λx xs r. Left x r) Stop l

Putting it all together, we obtain the done function that handles the non-442

recursive case.443

done = λx y r. ⟨Cons x (Cons y (fst r)),Right x (lem (Cons y (fst r)))⟩

If x is greater than y, we must recursively insert x into the sublist by using444

the second element of the additive pair, giving us a new list and also a proof.445

· · · ⊢ snd r x
1
: (l : List A) &Union (fst r) [x] l

Of course, we need to add the element y back to the list and return the446

list Cons y (fst (snd r x)). Additionally, we need to construct a proof of the447

following type:448

Union (Cons y (fst r)) [x] (Cons y (fst (snd r x)))

The element y must have come from the Left list this time. The remain-449

ing proof obligation is satisfied by using the second element of (snd r) x, the450

induction hypothesis. The following go function handles the recursive case:451

go = λx y r. ⟨Cons y (fst (snd r x)),Left y (snd (snd r x))⟩

Combining the functions done and go gives us a single step of the insertion.452

Note that we use a shortcut to represent the use of four let1 eliminations required453

to unpack the result of the comparison c x y.454

step = λc y r x. let1 (b, (x′, (y′, (px, py)))) = c x y in

case1 b of {inl () → done x′ y′ r; inr () → go x′ y′ r}

The result of this function has the type Result A x′ (Cons y′ (fst r)), which455

does not match the type required by para. As before, we use the proofs px and456

py to rewrite this type. However, we now need to use the subst operation twice.457

step = λc y r x. let1 (b, (x′, (y′, (px, py)))) = c x y in

subst (λx. Result A x (Cons y (fst r))) px

(subst (λy. Result A x′ (Cons y (fst r))) py

(case1 b of {inl () → done x′ y′ r; inr () → go x′ y′ r}))

And finally, we have everything needed to define the dependent insert oper-458

ation itself.459

insert = λc x xs. para (step c) base xs x



Notice that the linearity of insert provides some guarantees for free. In460

particular, we know that the value xmust be present in the list. Similarly, none of461

the elements of the original list could be discarded or duplicated. The computed462

proof makes these guarantees explicit, allowing their further use in other proofs.463

Additionally, it shows that the insertion does not change the relative positions464

of the original elements.465

5.3 Inductive and Coinductive Types466

So far we have seen additive pairs used with other data types. Let us consider467

what happens when these pairs are used to define a data type. Going back to468

the List type, we can see that its definition does not explicitly mention pairs.469

However, inductive types can be represented as least fixed points. List A is the470

least fixed point of the following type function:471

ListF = λX. 1⊕ (
1
: A)⊗X

This representation reveals the implicit use of a pair type. If we replace the472

multiplicative pair with an additive pair and compute the new fixed point we473

obtain the following type:474

A
0
: U ⊢ List+ A

0
: U

A
0
: U ⊢ Nil+

1
: List+ A

A
0
: U , p 1

: ( : A) & List+ A ⊢ Cons+ p
1
: List+ A

If additive pairs represent a choice between two resources, an additive list475

represents a choice between n resources, where n is not known ahead of time.476

However, before we even attempt to define the eliminator, we quickly run into477

an issue. In a linear context, we cannot create a list with a single element.478

A
0
: U , x 1

: A ⊬ Cons+ ⟨x,Nil+⟩ 1
: List+ A

The second element of the pair discards x. We could fix it by also changing479

the multiplicative unit 1 to the additive unit ⊤. However, we would be treating480

symptoms rather than the cause, which is that a choice between zero resources481

does not make sense. We therefore want nonempty lists, which can be accom-482

plished by replacing Nil+ with Last+. Last+ x represents a list with a single483

element x. Let us analyze the behavior of the eliminator so that we can assign484

the correct multiplicities.485

fold+ f z (Last+ x) = z x

fold+ f z (Cons+ p) = f ⟨fst p, fold+ f z (snd p)⟩

The function f is discarded in one case and duplicated in the other and thus486

needs the ω multiplicity. However, the function z also needs ω, as it is discarded487

in the second case.488

A
0
: U , P 0

: U ⊢ fold+ 1
: (f

ω
: (

1
: ( : A) & P ) → P ) →

(z
ω
: (

1
: A) → P ) → (l

1
: List+ A) → P



Additive lists admit some common list operations, such as map+. However,489

unlike the normal map, we can guarantee that the mapped function is used490

linearly. Notice that since the combining function given to fold+ is used ω times,491

referencing the mapped function inside it would not count as linear use. Instead,492

we eliminate into a function type and thread the mapped function through the493

entire fold. That is, instead of the usual type List B we eliminate into the type494

(f
1
: (

1
: A) → B) → List B. The result is then applied to the mapped function.495

map+ = λf l. fold+ (λp f. Cons+ ⟨f (fst p), snd p f⟩)
(λx f. Last+ (f x)) l f

A linear operation that can be implemented on additive lists but not normal496

lists is replicate. Since we are using nonempty lists, we need to ensure that497

replicate is not used with zero, or generate a list one element longer. We also498

need to define natural numbers, though for this example only the non-dependent499

eliminator rec with the usual semantics will suffice.500

P
0
: U ⊢ rec

1
: (f

ω
: (

1
: P ) → P ) → (z

1
: P ) → (n

1
: N) → P

Like before, the replicated value needs to be threaded through, this time in501

an additive pair.502

replicate = λn x. fst (rec (λp. ⟨Cons+ ⟨snd p, fst p⟩, snd p⟩)
⟨Last+ x, x⟩ n)

Many linear operations that can be implemented only on additive lists gener-503

ate the list from a single seed value. Types that are defined using these unfolding504

operations are called coinductive types. As the name suggests, they are dual to505

inductive types. If an inductive type corresponds to a least fixed point, a coin-506

ductive type corresponds to a greatest fixed point. Values of such types are507

potentially infinite.508

While inductive definitions need to exhibit termination, the same cannot be509

required of coinductive definitions, which may produce infinite values and thus510

do not always terminate. Instead, coinductive definitions need to exhibit pro-511

ductivity. A productive definition always produces a new piece of the final value512

after a finite amount of time. Coinductive types thus naturally lend themselves513

to describing processes that always progress but might not terminate, such as a514

Turing machine simulation.515

In a linear setting, an infinite value makes sense only if each of its elements516

uses the same finite resources. Coinductive types thus naturally lend themselves517

to definitions using additive pairs. Let us consider infinite Streams as an exam-518

ple. When defining a coinductive type, the eliminators are regarded as primary.519

A
0
: U ⊢ Stream A

0
: U

A
0
: U , s 1

: Stream A ⊢ head s
1
: A

A
0
: U , s 1

: Stream A ⊢ tail s
1
: Stream A



Introduction is defined by specifying what happens when an eliminator is520

applied to it. Just like the behavior of eliminators of inductive types can be ex-521

pressed using pattern matching, we can express the behavior of this introduction522

using copattern matching [1].523

head (unfold f s) = fst (f s)

tail (unfold f s) = unfold f (snd (f s))

No matter which eliminator is used, the seed value s is used exactly once.524

The generating function f is duplicated in the second case and thus needs to525

have the ω multiplicity. We obtain the following type for the introduction:526

S
0
: U , A 0

: U ⊢ unfold
1
: (f

ω
: (

1
: S) → ( : A) & S) → (s

1
: S) → Stream A

Some of the operations defined on additive lists earlier can be expressed much527

more naturally using streams. For example, we can define repeat, an infinite528

version of replicate. If we want to create streams that consist of more than one529

distinct value, we can use its generalization, the iterate operation.530

repeat = λa. unfold (λa. ⟨a, a⟩) a
iterate = λf a. unfold (λa. ⟨a, f a⟩) a

We also expect streams to support a mapping operation. Just like before,531

the mapped function cannot be directly referenced in the generating function.532

However, unlike before, we do not have full control over the output of unfold533

and thus cannot use a function type. Since we need both the stream and the534

function to be accessible, we must use a multiplicative pair. That is, instead of535

the usual seed type Stream A, we use (f
1
: (

1
: A) → B)⊗ Stream A.536

maps = λf s. unfold (λp. let1 (f, s) = p in ⟨f (head s), (f, tail s)⟩) (f, s)

While we focused on the standard infinite streams here, coinductive types can537

also contain type dependencies. In that case, the type of at least one eliminator538

mentions the other eliminators and a dependent additive pair is required to539

specify the type of the generating function in the introduction.540

6 Conclusion541

The most important aspect of additive types is that they extend resource han-542

dling with the notion of choice. This choice comes in two different flavors: external543

choice, which happens during introduction; and internal choice, which happens544

during elimination.545

External choice is typically provided by an additive sum. This type is com-546

monly found in substructural systems and has many well-documented use cases.547

Internal choice is less common, typically provided by an additive pair. Many sub-548

structural systems either do not support this type at all or only support it via549

an inconvenient encoding, which cannot express any form of type dependency.550



In this work, we showed that additive pairs in general and dependent additive551

pairs in particular are not only an interesting theoretical construct but also a552

practical tool for solving problems in resource-aware programming. Specifically,553

we identified three distinct kinds of problems that are best solved by these pairs,554

and successfully implemented solutions in the Janus language. We hope this555

work inspires further adoption of both dependent and ordinary additive pairs in556

QTT and other substructural systems, as well as a wider use of these pairs in557

this style of programming.558
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