
Additive Types in Quantitative Type Theory⋆
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Abstract. Dependent type theories enable us to reason about properties
of our programs, while substructural type theories enable us to reason
about their resource use. Quantitative type theory seamlessly combines
dependent and substructural types by employing positive semirings to
keep track of variable usage and computational contexts. Existing treat-
ments of this theory typically focus on multiplicative connectives such
as functions or multiplicative pairs. In this work, we extend quantitative
type theory with additive zero, unit, unions and dependent pairs, as well
as annotated eliminators for various types. We then explain how these
additive types can be used to better describe resource use and how they
integrate with existing programming techniques. Finally, we implement
an interpreter for a language based on these extensions.

1 Introduction

Type systems allow us to describe and exhibit certain program properties in
a way that can be checked by a computer. Today, the most expressive type
systems are typically based on various dependent type theories, such as calculus
of constructions or Martin-Löf type theory. A typical example of a dependent
type is the vector: a list of elements whose length is part of the type. Functions
that operate on these vectors need to respect not only the type of the elements,
but also the lengths of the vectors. This restriction further constrains possible
implementations, reducing the chance of errors. Thanks to their expressiveness,
dependent type theories are found in proof assistants or programming languages
where verification is paramount.

However, whereas a proof assistant does not mind that an assumption is used
twice, a programmer might want to avoid the duplication of an extensive data
structure. Substructural type systems can be used to describe how a program
manipulates its resources. These type systems restrict when variables can be
duplicated or discarded. Combinations of these restrictions give rise to different
substructural type systems. A well-known example is the linear type system.
In this system, variables come in two flavors: unrestricted and linear. Linear
variables cannot be discarded or duplicated and must thus be used exactly once.

Since dependent types and substructural types are not mutually exclusive,
there have been attempts at combining them into a single type system. Histori-
cally, these attempts often restricted how dependent and substructural types are
able to interact, such as only allowing dependency on unrestricted variables.
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Quantitative type theory [1] (abbreviated QTT) is a recent type theory which
seamlessly combines dependent and substructural types. QTT drops the dis-
tinction between linear and unrestricted variables. Instead, each variable is an-
notated by multiplicity, an element of some semiring, which describes how the
variable is used. Semiring operations describe how the multiplicity changes when
the variable is used in different contexts. As an example, multiplication by zero
ensures that a variable occurrence in a type does not count towards its use.

Depending on the semiring, QTT can describe a wider variety of substruc-
tural types. Apart from the usual linear and intuitionistic function types, we can
have functions that cannot use its parameter in a relevant context, functions that
must use its parameter exactly n times, at most n times, and so on. Similar vari-
ations also exist for other types, such as pairs or modalities. Moreover, QTT can
also describe dependent versions of these types.

Substructural type systems distinguish between two kinds of types: multi-
plicative and additive. When constructing a value of a multiplicative type, the
resources are split into multiple groups, which are then used to create a part of
the value. Additive types do not split the resources. When constructing a value,
each part can access all resources. To ensure that these resources are not used
more than once, only one part of the resulting value can be accessed.

1.1 Contributions

We introduce the concept of an annotated eliminator, which enables the use of
the weakening rule on the bound variables rather than the eliminated expression.
We extend the theory with multiple additive types: zero, unit, unions and pairs.
In particular, we define dependent additive pairs, which do not exist in the
normal substructural type theories. We show how these types can be used in
practice and how they interact with existing programming techniques. Finally,
we build a bidirectional type system and implement it in an interpreter.1

1.2 Structure

The work is structured as follows. In the second section, we discuss other ap-
proaches to additive types. The third section provides an overview of key con-
cepts: semirings, multiplicities, and weakening. Multiplicative types, together
with the annotated eliminator, are introduced in the fourth section. Additive
types are introduced in the fifth section. This section also discusses possible uses
for these types, focusing primarily on dependent additive pairs. The sixth sec-
tion details the process of building bidirectional type checking for the modified
theory. The seventh section describes the interpreter and its implementation.

2 Related Work

The idea of combining linear and dependent types is not new. One of the earliest
such systems is Cervesato and Pfenning’s Linear Logical Framework [5]. In this

1 https://github.com/svobot/janus
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system, the typing context is split into a linear part and an intuitionistic part.
However, this split also creates some restrictions. As an example, a dependent
type cannot mention linear variables. A more recent example of a system that
distinguishes between linear and intuitionistic parts is Krishnaswami et al. [8].

Semirings have also been used to keep track of usage. Brunel et al. [4] use
semiring annotations with exponential modality. This idea is then generalized
to encompass coeffects. The typing context is not split and contains both linear
and discharged variables, the latter of which contains a semiring annotation.

McBride [10] describes a dependent type theory in which semiring zero is used
to represent computational irrelevance. By treating types as a computationally
irrelevant context, this theory allows types to depend on both linear and intu-
itionistic variables. The work also describes weakening as well as a translation
into an untyped lambda calculus which erases irrelevant portions of the program.

However, the system described by McBride does not admit substitution. This
problem is fixed by Atkey [1], who also extends the theory with dependent mul-
tiplicative pairs and booleans, and provides a categorical model.

Note that QTT essentially disables resource checking for the irrelevant frag-
ment, which might be undesirable in some cases. Choudhury et al. [6] describe
a graded dependent type system which does not treat types in a special way
and can thus be applied to a wider range of semirings. Interestingly, this system
contains additive union eliminator which can consume the given value more than
once. However, this feature is not applied to any other eliminator in the system.

QTT has also been successfully implemented into programming languages.
A prime example is the Idris2 language, developed by Brady et al. [2,3]. Another
example is the language Juvix [11], which features dependent additive pairs.

3 Quantitative Type Theory

3.1 Semirings

QTT uses semirings to keep track of variable usage. A semiring is a tuple
(S,+, ·, 0, 1) where S is a set, + and · are functions of type S × S → S, 0
and 1 are elements of S such that (S,+, 0) is a commutative monoid, (S, ·, 1) is
a monoid, · distributes over +, and 0a = 0 = a0. Since variable usage cannot be
negative, the semiring also needs to be positive. A positive semiring additionally
requires: a+ b = 0 implies a = 0 and b = 0; ab = 0 implies a = 0 or b = 0.

Different semirings give rise to different variations of QTT. As an example,
the (N,+, ·, 0, 1) semiring tracks exact usage. In this work, we use the zero-one-
many semiring ({0, 1, ω},+, ·, 0, 1) where ω represents more than one use. In this
semiring, ω ·ω = ω and ρ+ω = ω, the rest follows from the semiring properties.
After we introduce weakening, we will be able to identify ω with any use, much
like unrestricted variables in linear type systems.

3.2 Typing Rules

The standard typing judgment Γ ⊢ M : T does not provide enough information
to correctly account for variable usage. Firstly, the typing context Γ needs to be



extended. Instead of containing pairs (x, T ) (written as x : T ) where x is a name
of a variable and T is its type, the context will now contain triples (x, T, π)
(written as x

π
: T ) where π is an element of the semiring.

Secondly, the judgment itself needs to track the usage context. There are
circumstances where variable occurrences do not count toward that variable’s
usage. In the extended judgment Γ ⊢ M

σ
: T , the usage context is given by σ,

an element of the semiring. In theory, any element can be used. However, this
work follows the description given by Atkey [1] where σ can only be semiring’s
zero (irrelevant context) or one (relevant context).

Finally, the typing rules need to correctly handle extended typing contexts.
The variable rule associates the multiplicity of the variable in the typing context
with the multiplicity in the judgment itself. Other multiplicities must be zero.

0Γ1, x
σ
: S, 0Γ2 ⊢

0Γ1, x
σ
: S, 0Γ2 ⊢ x

σ
: S

Var

In a linear type system, we need to distinguish between linear functions
(written as A ⊸ B) that must use its parameter exactly once, and unrestricted
functions (written as A → B). In QTT, these two types are a special case of
a more general function type, (x

π
: S) → T . Functions of this type can use

its parameter according to the multiplicity π. In our system, linear functions
correspond to (x

1
: S) → T and unrestricted functions to (x

ω
: S) → T . This

restriction is reflected in one of the typing rules for function application.

Γ1 ⊢ M
σ
: (x

π
: S) → T Γ2 ⊢ N

1
: S

Γ1 + σπΓ2 ⊢ M N
σ
: T [N/x]

→-E1

The rule follows a naming scheme used throughout this work: a type, a class
(formation, introduction, or elimination), and, if necessary, an index. The vari-
able usages from the function and the argument are added together. Additionally,
since the function can use its parameter π-times, the usage from the argument
needs to be scaled by π. Scaling of the context by π, πΓ , is done by multiplying
the multiplicity of each variable by π. Adding two contexts, Γ1 + Γ2, is done by
adding the multiplicities of matching variables.

3.3 Weakening

In this system, each expression has a unique variable usage. In some situations,
such rigidity is undesirable. In linear type theories, unrestricted variables can be
used any amount of times, including once. As mentioned previously, we would like
to use ω from the {0, 1, ω} semiring to represent unrestricted use. The system
thus needs to be able to treat the multiplicities 0 and 1 as ω, which can be
accomplished by adding an ordering to the semiring.

The ordering, ≤, needs to be reflexive, transitive, and needs to respect the
semiring operations. A suitable ordering for our semiring is defined by 0 ≤ ω
and 1 ≤ ω. 0 ≤ 1 is not present since it would allow us to treat unused variables



as linear. We can now extend this ordering to typing contexts: Γ1 ≤ Γ2 iff the
multiplicity of each variable in Γ1 is less than or equal to the multiplicity of
the matching variable in Γ2. The weakening rule states that relaxing a typing
context does not change the validity of the judgment.

Γ1 ⊢ M
σ
: T Γ1 ≤ Γ2

Γ2 ⊢ M
σ
: T

Weak

4 Multiplicative Types

4.1 Multiplicative Pairs

When introducing a multiplicative pair, the typing context is split into two
parts and each part is then used to construct one element of the pair. When
eliminating a multiplicative pair, both elements of the pair must be used to
ensure no resources are discarded.

In QTT, the multiplicative pair type (x
π
: S)⊗ T additionally contains mul-

tiplicity annotation π which specifies how many times can the first element be
used. The type of the second element can also depend on the value of the first el-
ement. The following rules summarize formation, introduction, and elimination.
The constant U is the type of types.

0Γ ⊢ S
0
: U 0Γ, x

0
: S ⊢ T

0
: U

0Γ ⊢ (x
π
: S)⊗ T

0
: U

⊗-F

σπ = 0 0Γ ⊢ M
0
: S

Γ ⊢ N
σ
: T [M/x]

Γ ⊢ (M, N)
σ
: (x

π
: S)⊗ T

⊗-I0
Γ1 ⊢ M

1
: S Γ2 ⊢ N

σ
: T [M/x]

σπΓ1 + Γ2 ⊢ (M, N)
σ
: (x

π
: S)⊗ T

⊗-I1

Γ1 ⊢ M
σ
: (x

π
: S)⊗ T

0Γ1, z
0
: (x

π
: S)⊗ T ⊢ U

0
: U Γ2, x

σπ
: S, y

σ
: T ⊢ N

σ
: U [(x, y)/z]

Γ1 + Γ2 ⊢ let (x, y) = M in N
σ
: U [M/z]

⊗-E

4.2 Multiplicative Unit

Unit types also come in two variants. The multiplicative unit uses no resources
and although it cannot be discarded, it can always be eliminated.

0Γ ⊢
0Γ ⊢ 1

0
: U

1-F
0Γ ⊢

0Γ ⊢ ( )
σ
: 1

1-I

Γ1 ⊢ M
σ
: 1 0Γ1, x

0
: 1 ⊢ S

0
: U

Γ2 ⊢ N
σ
: S[( )/x]

Γ1 + Γ2 ⊢ let ( ) = M in N
σ
: S[M/x]

1-E



4.3 Exponential Modality

Multiplicative units and pairs can be combined to form the exponential type
!πS, which is defined as (

π
: S) ⊗ 1. Values of this type are introduced and

eliminated by combining the introductions and eliminations of the constituent
parts. Introduction, !x, is defined as (x, ( )). Elimination, let !x = M in N , is
defined as let (x, i) = M in let ( ) = i in N .

4.4 Extended Eliminator

However, the multiplicative pair eliminator does not interact well with weaken-
ing. Suppose the typing context contains p

ω
: (

1
: S) ⊗ T (abbreviated S ⊗ T ).

Unless we want to eliminate p multiple times, we first need to apply the weaken-
ing rule to obtain p

1
: S⊗T . Now the elimination let (x, y) = p in N can be used,

which adds the variables x and y to the context. Notice that their multiplicities
are 1 and thus the variables cannot be duplicated or discarded.

The expression let (x, y) = p in (y, y) does not seem to violate any resource
constraints. Indeed, if p is unrestricted, so should be its elements. The only way
around this problem is to know beforehand that the elements of p will be used
in this way and change the type to !ωS ⊗ !ωT .

We solve this problem by adding a multiplicity annotation to the eliminator,
allowing it to consume the pair more than once. To ensure no resources are dis-
carded, the multiplicity is propagated to the variables representing the elements
of the pair. In the example, the weakening rule can now be used on x instead of
p, allowing us to discard it in the expression (y, y).

Γ1 ⊢ M
σ
: (x

π
: S)⊗ T

0Γ1, z
0
: (x

π
: S)⊗ T ⊢ U

0
: U Γ2, x

ρσπ
: S, y

ρσ
: T ⊢ N

σ
: U [(x, y)/z]

ρΓ1 + Γ2 ⊢ letρ (x, y) = M in N
σ
: U [M/z]

⊗-E

Since multiplicative pairs have a single introduction, the eliminator does not
provide any computationally relevant information apart from the two elements.
In particular, the eliminator functions properly even when the annotation is zero.

With this modification, the exponential type can be introduced as needed
and does not have to be added beforehand. Indeed, we can easily transform ω
copies of S ⊗ T into a single copy of !ωS ⊗ !ωT with the following function.

⊢ λp. letω (x, y) = p in (!x, !y)
1
: (

ω
: S ⊗ T ) → !ωS ⊗ !ωT

In fact, using this extended eliminator, we can show that !ω(S ⊗ T ) and
!ωS ⊗ !ωT are isomorphic.

⊢ λp′. let !p = p′ in letω (x, y) = p in (!x, !y)
1
: (

1
: !ω(S ⊗ T )) → !ωS ⊗ !ωT

⊢ λp. let1 (x′, y′) = p in let !x = x′ in let !y = y′ in !(x, y)
1
: (

1
: !ωS ⊗ !ωT ) → !ω(S ⊗ T )



These definitions can also be used with dependent pairs. However, we have
to account for the change of the type of the first element. We can construct the
type !ω((x

1
: S) ⊗ T ) under the assumption x

0
: S ⊢ T

0
: U . However, if the type

of the first element is !ωS, it needs to be unwrapped before it can be used in T .
The second type is then (x

1
: !ωS)⊗ !ωT [(let !y = x in y)/x].

We can also add the multiplicity annotation to the unit eliminator. In the
{0, 1, ω} semiring, the only useful annotation is 1, which corresponds to the
regular eliminator. If the context contains ω copies of a unit, no elimination is
necessary due to weakening. This annotation can be useful with other semirings.

5 Additive Types

5.1 Additive Unions

Disjoint unions are an ideal example of an additive type. When constructing
a value of this type, the typing context is passed without any changes. Disjoint
unions have two introductions and one elimination, which performs case analysis.

0Γ ⊢ S
0
: U 0Γ ⊢ T

0
: U

0Γ ⊢ S ⊕ T
0
: U

⊕-F

Γ ⊢ M
σ
: S 0Γ ⊢ T

0
: U

Γ ⊢ inlM
σ
: S ⊕ T

⊕-I1
Γ ⊢ M

σ
: T 0Γ ⊢ S

0
: U

Γ ⊢ inrM
σ
: S ⊕ T

⊕-I2

ρ ̸= 0 Γ1 ⊢ M
σ
: S ⊕ T 0Γ1, z

0
: S ⊕ T ⊢ U

0
: U

Γ2, x
ρσ
: S ⊢ N

σ
: U [inl x/z] Γ2, y

ρσ
: T ⊢ O

σ
: U [inr y/z]

ρΓ1 + Γ2 ⊢ caseρ M of {inl x → N, inr y → O} σ
: U [M/z]

⊕-E

The eliminator is annotated with multiplicity, just like in the case of multi-
plicative pairs. The requirement that ρ ̸= 0 is crucial. In that case, although the
elements of the disjoint union cannot be used in a relevant context, the union as
a whole carries computationally relevant information: the choice of introduction.

We can use the extended eliminator to show that !ω(S ⊕ T ) and !ωS ⊕ !ωT
are isomorphic. Like before, only one direction requires this extension.

⊢ λs′. let !s = s′ in caseω s of {inl x → inl !x, inr y → inr !y}
1
: (

1
: !ω(S ⊕ T )) → !ωS ⊕ !ωT

⊢ λs. case1 s of {inl x′ → let !x = x′ in !inl x, inr y′ → let !y = y′ in !inr y}
1
: (

1
: !ωS ⊕ !ωT ) → !ω(S ⊕ T )

5.2 Additive Zero

The empty type has no introductions and a single elimination.

0Γ ⊢
0Γ ⊢ ⊥ 0

: U
⊥-F

Γ ⊢ M
σ
: ⊥ 0Γ, x

0
: ⊥ ⊢ S

0
: U

Γ ⊢ case M of {} σ
: S[M/x]

⊥-E



5.3 Additive Pairs

Defining the additive version of a pair type presents a problem. We cannot split
the resources but we still need to construct both elements of the pair. The only
option is to give the same resources to both elements, which seemingly results in
resource duplication. We can avoid such duplication by restricting the eliminator
to only ever access one of the elements.

Such a type can be constructed with the tools we already have. Since the
eliminator of unions shares the typing context between both cases, we can use
it to introduce an additive pair. The content of the union is not important, only
the introduction is. We thus use the simplest union type: 1⊕ 1 (written as 2).

To allow the elements of the pair to have different types, we need to use
a dependent type for the result of the elimination. We thus define the type of
additive pairs S & T as (b

1
: 2) → case1 b of {inl t → S, inr f → T}.

Introduction, ⟨x, y⟩, is defined as λb. case1 b of {inl t → x, inr f → y}.
We also need to consume the units t and f , but the eliminators are left out for
brevity. Eliminations, fstM and sndM , are defined as M (inl( )) and M (inr( )).
Importantly, we cannot extract both elements of an additive pair without apply-
ing the function multiple times. This restriction guarantees resource soundness.

However, while this encoding has the necessary properties to qualify as an
additive pair, it is not without issues. In dependent type theories, we often use the
identity type to ask whether two values are equal. Functions are notoriously hard
to compare, since these theories often lack the function extensionality principle.

Moreover, the definition of S & T does not allow any dependency between
S and T . Both types are on separate branches of the additive union eliminator
and thus must be independent. Notice that dependency between S and T is, in
principle, possible. Even though we are only allowed to access one element of the
pair in a relevant context, this restriction does not extend to irrelevant contexts.

Instead of using a combination of unions and functions, additive pairs, (x :
S) & T , are defined explicitly. The variable x can occur in the type T . We use
the same syntax for introduction, ⟨x, y⟩, and elimination, fstM and sndM .

0Γ ⊢ S
0
: U 0Γ, x

0
: S ⊢ T

0
: U

0Γ ⊢ (x : S) & T
0
: U

&-F
Γ ⊢ M

σ
: S Γ ⊢ N

σ
: T [M/x]

Γ ⊢ ⟨M,N⟩ σ
: (x : S) & T

&-I

Γ ⊢ M
σ
: (x : S) & T

Γ ⊢ fstM
σ
: S

&-E1

Γ ⊢ M
σ
: (x : S) & T

Γ ⊢ sndM
σ
: T [fstM/x]

&-E2

5.4 Additive Unit

The multiplicative unit can be viewed as a neutral element to multiplicative
pairs. Indeed, the types (x

1
: S)⊗ 1 and S are isomorphic. Similarly, an additive

unit, ⊤, should be a neutral element to additive pairs.
One side of the isomorphism is trivial. When given p

1
: S&⊤, we can extract

a value of type S by using fst p. The other direction presents a problem. When



given s
1
: S, we need to construct a pair ⟨s, ⟨ ⟩⟩ where ⟨ ⟩ is the additive unit

introduction. However, the use of the variable s is inconsistent between the two
elements. The introduction ⟨ ⟩ must thus count as a use of the variable s. The
additive unit represents some unknown, but unused resources. And since there is
no general way to consume unknown resources, the unit must not be eliminated.

We can define ⊤ as a function (e
1
: ⊥) → case e of {}. A value of the empty

type can be used to consume any variable, for example by eliminating it into
a function and then applying that function to the desired variables. This function
cannot be eliminated as it would require us to provide a value of the empty type.

We can also define the type ⊤ and its introduction ⟨ ⟩ explicitly. Notice the
introduction works in any context Γ , not just 0Γ . No elimination is present.

0Γ ⊢
0Γ ⊢ ⊤ 0

: U
⊤-F

0Γ ⊢
Γ ⊢ ⟨ ⟩ σ

: ⊤
⊤-I

5.5 Usage

Since an additive zero, multiplicative pairs, and additive unions are commonly
used types in functional programming, we focus on possible uses of an addi-
tive unit and additive pairs. Additionally, we restrict ourselves to linear uses of
these types. If values of these types can be discarded or duplicated, they are
functionally equivalent to the normal, intuitionistic pairs and units.

The uses of the additive unit are rather limited. Once a value is introduced,
it can never be removed. Using it to signal some kind of resource error is also
not ideal, since such errors cannot be handled. However, because the additive
unit is a neutral element to additive pairs, it can be used as the base case
for type operations. Suppose we have a type of lists, List, together with two
introductions, Cons and Nil, and an eliminator, foldr. When given a list of
types, we can construct an additive tuple of these types as follows.

⊢ foldr U U (λT R. ( : T ) &R) ⊤ 0
: (

0
: List U) → U

In functional programming, higher-order functions are frequently used in
place of control flow statements. Take for example the if function. It takes a value
of type 2, two values of some type T and returns a value of type T . We make the
function polymorphic by quantifying over the type T , which gives us the type
(T

0
: U) → 2 → T → T → T .
If we attempt to mark the other parameters with multiplicities, we soon run

into a problem. The parameter of type 2 is used exactly once, but of the two
following parameters, only one is used and the other is discarded. One possible
solution is to use the multiplicity ω and rely on weakening to discard one of the
values. This change severely limits this function’s usefulness in linear contexts.

The requirement that exactly one value must be used can be expressed using
an additive pair, which allows us to give the if function a fully linear type:
(T

0
: U) → (b

1
: 2) → (c

1
: ( : T ) & T ) → T . Indeed, whenever we need to express

this kind of 1-of-n requirement, we can use the aforementioned additive tuple.



A paramorphism is a recursion scheme where the function handling the re-
cursive step has access to the result of the recursion and the remainder of the
original structure. To ensure the elements of a given structure are consumed
once, the combining function must either use the recursive result or the remain-
der, but not both. Since the base case of the recursion might not be reached, we
must be allowed to discard it. We define the list paramorphism, para, via foldr.

⊢ λS T c n l. snd (foldr S (( : List S) & T )

(λa b. ⟨Cons a (fst b), c a b⟩) ⟨Nil, n⟩ l)
ω
: (S

0
: U) → (T

0
: U) → (c

ω
: (a

1
: S) → (b

1
: ( : List S) & T ) → T ) →

(n
ω
: T ) → (l

1
: List S) → T

Note that in practice, para would either be given directly or implemented
recursively. The foldr implementation needlessly reconstructs the original list.

We can use this recursion scheme to implement an insertion operation for
sorted lists. Once we find the point of insertion, we do not need to traverse
through the rest of the list and we can use the remainder. At first glance, this
operation cannot be linear: the elements need to be compared and then used in
the resulting list. To solve this problem, we can use a comparison operation that
also returns the compared values, such as leq

ω
: (p

1
: A⊗A) → 2⊗A⊗A.

⊢ λv l. para A ((
1
: A) → ListA)

(λa w i. let1 (b, p) = leq (a, i) in let1 (a′, i′) = p in

if (List A) b ⟨Cons a′ (snd w i′), Cons i′ (Cons a′ (fst w))⟩)

(λi.Cons i Nil) l v
ω
: (v

1
: A) → (l

1
: List A) → List A

A dependent additive pair type can be used to generalize the type of para
and allow the type of the result to depend on the input list. This function can
be defined via a dependent foldr, but the implementation has to carry a proof
that the original and reconstructed lists are the same, and is skipped for brevity.

⊢ para′
ω
: (S

0
: U) → (T

0
: (l

0
: List S) → U) →

(c
ω
: (a

1
: S) → (b

1
: (r : List S) & T r) → T (Cons a (fst b))) →

(n
ω
: T Nil) → (l

1
: List S) → T l

6 Bidirectional Type System

In contrast with the declarative presentation of the typing rules, there also exists
the bidirectional form, which reduces the number of explicit type annotations
the user of a language with these typing rules is expected to provide, thus the im-
plementation of the typing algorithm is based on a bidirectional form of the rules.

In bidirectional presentation of the typing rules, judgments come in two types:
the type checking judgment, Γ ⊢ M

σ⇐ S, and the type synthesising judgment,



Γ ⊢ M
σ⇒ S. The difference is that in type checking the type S is an input of

the judgment and the derivation proves that the term M can indeed be of type
S; whereas, in type synthesis the type S is an output derived from the term M .

Every term M that synthesises type S can also have its type checked using
S, thus, in bidirectional formulation of typing rules, we need to decide which
terms can have their type synthesised and which terms can only have its type
checked. In our work we follow the Pfenning recipe [7]:

If the rule is an introduction rule, make the principal judgment check-
ing and if the rule is an elimination rule, make the principal judgment
synthesising.

A principal judgment is the judgment containing the logical connective that is
being introduced or eliminated.

In the bidirectional form, the order in which the premises are derived is
important, because one judgment may synthesise a type that is later used in
a different judgment. We derive them from left to right. For example, in the fol-
lowing rule we first synthesise the type (x

π
: S) → T from M and only then can

we use the S to check N with.

Γ1 ⊢ M
σ⇒ (x

π
: S) → T Γ2 ⊢ N

1⇐ S

Γ1 + σπΓ2 ⊢ M N
σ⇒ T [N/x]

→-E1

The rules above are translated into their bidirectional form using the recipe.
We introduce an additional type-synthesising term, M : S, and an associated
rule that forms it from two type-checking terms, M and S.

0Γ ⊢ S
0⇐ U Γ ⊢ M

σ⇐ S

Γ ⊢ M : S
σ⇒ S

Ann

7 Implementation

This work is accompanied by an interpreter of a language based on hitherto
described extensions to QTT. To implement an efficient typing algorithm, the
typing rules had to be modified somewhat, as we describe below.

7.1 Language Interpreter

The accompanying implementation is written in Haskell and, while originally
based on the dependently typed λ-calculus interpreter LambdaPi [9], has had
all its parts rewritten from scratch, making use of modern Haskell packages:
parser is written using the parser combinator library Megaparsec; text-based
user interface is based on the Haskeline library, wrapped in Repline; and the
pretty-printer uses the Prettyprinter package.

The Haskell modules that constitute our implementation are documented
throughout, using Haddock-style comments.



7.2 Typing Algorithm

To translate the typing rules into an efficient algorithm, we would need to have
a way of a priori deciding how to split the resources in a given context when
deriving multiple premises; for example, in the rule →-E1, we need to split the
context Γ1+σπΓ2 into Γ1 and Γ2. Instead, we consider an additional output for
our judgments: recorded resource usage of the judged term. Usage accumulates
the resource consumption from throughout the term and the typing algorithm
uses it to check that an appropriate amount of every resource is available. Thus,
in the example of rule →-E1, there is no need to know how to split Γ1 + σπΓ2,
instead the premises produce usages Ψ from M and Ω from N , which get com-
bined into Ψ + Ω and returned as the usage of M N . The addition on usages
works analogously to contexts.

To judge that the resource usage of a term is appropriate for the given con-
text, we check that the collected usage of a variable is less than or equal to, with
regards to the given semiring ordering ≤, the multiplicity with which it occurs
in the context of a judgment. For global variables, i.e. variables that are free in
the whole term, this check is done at the end of the typing algorithm, but for
the local variables, i.e. variables that have a binding occurrence somewhere in
the term, the check is done after accumulating its usage from its scope.

Since the usage check takes the weakening into consideration, we no longer
need the explicit Weak rule. Consequently, our typing rules almost completely
syntax-directed ; that is, the derivation rule which can be used is determined by
the syntax of the term. There are two exceptions to this: first, when constructing
a multiplicative pair, we first check if σπ = 0 and use the rule ⊗-I0, otherwise we
use ⊗-I1; and second, when applying a function, we synthesise the type of the
function first and then check if σπ = 0, using the rule →-E0 if true and →-E1

otherwise.

8 Conclusion

Additive types are an important part of substructural type systems. Indeed,
one of the most commonly used types in functional programming is the disjoint
union, which is typically only available in the additive version. However, other
additive types are used rather sparingly. QTT allows us to explore these types
in a fully dependent setting.

We present an extended theory containing an additive unit and dependent
additive pairs. Thanks to the annotated eliminators, the theory is also more
expressive in the presence of the weakening rule. A variety of examples show
how these extensions may be used. We demonstrate the viability of the theory by
providing a bidirectional type system and its implementation in an interpreter.

We hope that this work encourages both existing and future treatments of
QTT to consider these additive types as first class citizens, rather than relying
on an inconvenient and limited encoding via functions.
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