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Abstract. The C++ template system is capable of performing arbi-
trary compile-time computations, which is typically exploited in generic
programming libraries. However, the template language itself is syntac-
tically cumbersome. A variety of tools, ranging from libraries to dedi-
cated compilers, was created to alleviate this issue. One such approach
is translating a functional program into a template metaprogram. In this
work, we present a new way of translating functional programs based on
lambda calculus into template metaprograms. The translation produces
metaprograms with clearly defined lazy semantics and supports com-
mon functional features such as recursion and algebraic data types. We
demonstrate its viability by providing a proof-of-concept implementa-
tion.

1 Introduction

In C++, templates facilitate parametric polymorphism. The system itself is
based on type abstraction, substitution, and specialization, which can be used to
express arbitrary computations. Moreover, since templates are evaluated during
compilation, they can be used to compute arbitrary values before the program is
run. We refer to such computations as metaprograms [11]. In addition to compile-
time computations, metaprograms are frequently used in generic programming.

The template system forms a language within a language. This sublanguage
does not have a mutable state nor any of the typical control flow statements,
allowing us to treat it as a simple, purely functional language. However, since
metaprogramming is outside of its intended use case, it usually requires a large
amount of boilerplate code and other similar syntactic annoyances. Language
features such as the constexpr keyword seek to provide an alternative but are
currently not powerful enough to fully replace template metaprogramming.

Consequently, a variety of tools was created to simplify writing template
metaprograms. The approaches vary from libraries that hide some of the boiler-
plate code [1,2,9] to external tools that allow the programmer to write the code
in a different language and then translate it back into a metaprogram [3,6].

Since the language of templates is functional, some tools [3,10] choose a func-
tional language as the source language for the translation. Functional languages
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are often based on lambda calculus, whose core concepts match the template
mechanisms very closely. However, while higher-order functions can be expressed
in terms of template-template parameters, these parameters are not flexible and
need to be handled separately from the standard type parameters.

In this work, we detail a new direct way of translating lambda calculus into
template metaprograms that avoids these pitfalls and is compatible with any
standard compliant compiler. We then provide the translation of various fea-
tures commonly found in functional languages: local bindings, recursion, pat-
tern matching, and algebraic data types, as well as a novel formal treatment of
the semantics of the resulting metaprograms. In particular, we show that these
metaprograms have well-defined, non-strict semantics.

In order to demonstrate the viability of this translation method, we also pro-
vide a proof-of-concept compiler for a simple functional language based on this
work. The language uses Hindley-Milner type system and its syntax is inspired
by Haskell. 1

This work is organized as follows. In the next section, we discuss other ap-
proaches to this problem. The third section gives a brief overview of template
metaprogramming in C++. The core translation is laid out in the fourth sec-
tion and the translation of the additional features in the fifth section. The sixth
section details the semantics of the resulting metaprograms. The final section
provides examples of integration with regular C++ code.

2 Related Work

The most prominent examples of C++ libraries that facilitate metaprogramming
are Boost Hana [2] and Boost Metaparse [9]. These libraries aim to provide an
easier and more convenient way of writing template metaprograms. Boost Hana
provides a general framework for writing metaprograms, while Boost Metaparse
functions specifically as a parser generator. However, since these libraries still
operate within C++ itself, they cannot be used to eliminate all boilerplate code.

The other approach is the use of external tools. The main advantage is that
these tools hide most of the complexities of template metaprogramming from
the programmer.

MetaFun [3] is an example of a tool that translates a simple functional lan-
guage into metaprograms. The translation is straightforward, making use of
template-template parameters to express higher-order functions. To our knowl-
edge, this tool is not capable of expressing currying or lambda abstraction.

This approach to metaprogramming is the closest to the approach chosen
by this work. A major advantage is that the resulting metaprograms remain
legible to C++ programmers and can, if necessary, be adjusted manually. This
flexibility is invaluable when the generated metaprograms need to interact with
existing metaprograms, which are generally not immediately compatible.

EClean [10] uses a more complicated process of translation. The input lan-
guage is translated into an intermediate language, which is then interpreted by
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a template metaprogram. This interpreter is a graph rewriting engine that eval-
uates expressions similarly to how compiled Haskell code is executed. A similar
approach is suggested by Porkoláb [5].

Note that the translation of the source language can also be performed by
a metaprogram. As an example, this hybrid approach is used to extend C++
with a self-contained domain specific language [7].

These methods typically sacrifice clarity and transparency of the translated
metaprograms in order to improve their efficiency or to reduce the dependency on
third party tools. As mentioned previously, this opaqueness might be undesirable
in some situations.

3 Template Metaprogramming

C++ templates facilitate parametric polymorphism. However, when combined
with other language constructs such as static const or using, templates be-
come expressive enough to describe arbitrary compile-time computations. A brief
overview of this concept is given in this section.

Listing 1 shows a standard use case of templates. The class definition is
parameterized over the element type. This template can then be instantiated
with a concrete type and used as a regular data type.

template <typename T>

class vector {

T& operator []( size_t index);

};

using int_vector = vector <int >;

Listing 1. Parametric polymorphism in C++

The strength of the template system lies in the ability to define compile-
time constants that depend on the template parameter. A template can thus be
treated as a function, where the input is the template parameter and the output
is the defined constant. The result of a metaprogram is obtained by instantiating
the template with the desired arguments.

Compile-time constants can be defined with a using statement (for type
constants) or as static const class members (for value constants). There are
other ways of defining compile-time constants (such as enumeration labels), but
they are interchangeable as far as template metaprogramming is concerned.

Some values can be promoted to the type level, which allows the metaprogram
to treat its inputs uniformly as type parameters. Listing 2 shows how to promote
int constants. The value is accessed by referring to the static const member.

template <int N>

struct Int { static const int value = N; };

using int_array = std::array <int , Int <5>::value >;

Listing 2. Type-level promotion



A template may also be specialized, providing a more specific definition for
a subset of template parameters, which can be used by metaprograms to perform
case analysis. The template definition is chosen based on how well the arguments
fit the specialization, rather than trying the definitions in some predetermined
order. Listing 3 combines template specialization and recursion to implement
type-level factorial.

template <typename T>

struct factorial;

template <>

struct factorial <Int <0>> {

using type = Int <1>;

};

template <int N>

struct factorial <Int <N>> {

using type = Int <N * factorial <Int <N - 1>>::type::value >;

};

factorial <Int <3>>::type:: value == 6

Listing 3. Factorial function

Similarly, variadic templates may be used to represent ordered sequences
and template-template parameters to represent higher-order functions. Listing 4
shows an example of such a function. The first parameter represents a template
function, which is then applied twice to the second parameter. To treat a qualified
name that depends on a template parameter as a type (template), the typename

(template) keyword must be used.

template <template <typename > class F, typename X>

struct twice {

using type = typename F<typename F<X>::type >:: type;

};

twice <factorial , Int <3>>::type::value == 720

Listing 4. Higher-order function

4 Translating Lambda Calculus

Lambda calculus is a simple functional language. Template metaprogramming
and lambda calculus share some core concepts but the correspondence is not
perfect. In this section, we show possible ways of representing lambda calculus
as template metaprograms and discuss their advantages and disadvantages. We
select one representation to be used as the basis of the translation.

A lambda calculus expression can be either a variable, an abstraction, or
an application. The basic idea is to use template parameters or type names as



variables, template definition as an abstraction, and template instantiation as
an application.

Notice that the code in Listing 4 needs to know which parameters represent
a function. However, lambda calculus generally makes no distinction between
functional and non-functional parameters.

One option is to consider only the simply-typed lambda calculus. In this
variation of lambda calculus, each variable has a concrete type and can thus
be used to distinguish between functional and non-functional parameters. The
functional parameters can then be expressed as template-template parameters of
the appropriate nesting and every other parameter as a regular type parameter.

The main downside of this approach is that a single expression needs to
be translated into multiple template metaprograms, one for each combination of
parameter arities. Another issue is that template-template parameters cannot be
used directly with the using statement. Instead, the template structure needs
to be reconstructed whenever such a parameter is encountered.

The other option is to unify regular and templated types. Every template
parameter can then be treated uniformly as a type. Each template can be asso-
ciated with a simple type by wrapping the template in another class. The identity
function defined in Listing 5 shows an example of this unification. Note that this
self-application would not be possible with template-template parameters.

Another advantage of this approach is that the resulting translation is type-
agnostic, and may be used with both typed and untyped source languages.

struct id {

struct type {

template <typename T>

struct apply {

using type = typename T::type;

};

};

};

id::type::apply <id >:: type == id::type

Listing 5. Flexible identity function

The inner class type provides a layer of indirection, which is necessary to
handle self-referential expressions as well as to simplify the translation of addi-
tional features. A direct translation of self-referential expressions would lead to
an invalid C++ code due to the use of incomplete types.

The downside is that simple types cannot be used as metaprogram argu-
ments. Instead, these types need to be wrapped in another class. Listing 6 shows
a wrapping class and its use with the previously defined identity function.

template <typename T>

struct wrap { using type = T; };

id::type::apply <wrap <Int <2>>>::type == Int <2>

Listing 6. Argument wrapping



The full translation of lambda expressions is given in Listing 7. The transla-
tion of variables and abstractions matches the earlier translation of the identity
function. The translation of applications requires the use of inner classes. The
names of these classes, S1 and S2, must be unique to prevent name collisions.
Similarly, since templates do not allow parameter name shadowing, variables
must be fresh.

Note that the class S1 is not strictly necessary and could be removed by
changing the name of the inner definition in the translation of the expression
E1. For simplicity, we do not present this optimization here.

translate(x)
def
=

using type = typename x::type;

translate(λx.E)
def
=

struct type {

template <typename x>
struct apply { translate(E) };

};

translate(E1E2)
def
=

struct S1 { translate(E1) };

struct S2 { translate(E2) };

using type = typename S1::type:: template apply <S2 >::type;

Listing 7. Lambda expression translation

5 Translating Functional Languages

Pure lambda calculus lacks many features of modern functional languages that
make programming more convenient and better tractable. In particular, the pro-
gram cannot be structured into multiple named expressions and data needs to be
encoded as functions. In this section, we address this issue by providing a trans-
lation of bindings, recursive definitions, and data types.

5.1 Bindings

A binding is used to associate an expression with a name, which can be used to
break the program apart into small reusable definitions. Since metaprograms are
already associated with a type name, the translation simply wraps the definition
inside an appropriately named class. Local bindings, which are used to name
subexpressions, use identical translation. The translation is shown in Listing 8.

translate(x = E)
def
=

struct x { translate(E) };

Listing 8. Binding translation



5.2 Recursion

While recursion can be accomplished with the use of a fixed-point combinator,
recursive bindings are more convenient to work with.

A template may recursively refer to itself, which can be used to directly
translate recursive bindings of the form x = λy.E(x). However, recursive bind-
ings of the form x = x or x = E1(x)E2(x) present a problem. The translation
of the recursive occurrences of x requires the definition of x::type which is not
available at that point.

One option is to restrict the recursion to functions only. The expression in
the problematic bindings may then be η-expanded to λy.x y or λy.E1(x)E2(x) y.

The other option is to translate the recursive bindings in two steps. In the first
step, the recursive bindings are replaced with regular bindings by adding fixed-
point combinators. Regular bindings are then translated using the techniques
described earlier. This process is described in Listing 9.

translate(x = E(x))
def
= translate(x = Y λr.E(r))

Listing 9. Recursive binding translation

The choice of the fixed-point combinator is not important. We have used the
Y combinator which is defined as λf.(λx.f (xx))(λx.f (xx)). It is sufficient to
translate the combinator just once and then refer to it from the rest of the code.

The same result can be accomplished with a handwritten, directly recursive
combinator, such as the one shown in Listing 10. This particular implementa-
tion is optimized to produce as few nested types and template instantiations as
possible.

The main advantage of this approach is its flexibility. There is a large variety
of fixed-point combinators that can be used to translate more complex recursion
schemes, such as mutual recursion. The direct translation cannot be used in this
case because C++ does not allow forward declarations of nested classes.

struct fix {

struct type {

template <typename F>

struct apply {

using type = typename

F::type:: template apply <apply <F>>::type;

};

};

};

Listing 10. Fixed-point combinator

5.3 Simple Data Types

C++ templates can use non-type parameters in their definition. One subset of
these non-type parameters are the values of integral and enumeration types.
Such values can be promoted to the type level and then used as regular type



parameters. For example, if Int is the type promoted version of int, then an
integer constant can be translated as shown in Listing 11. The values of other
data types can be translated similarly.

translate(n)
def
=

using type = Int <n>;

Listing 11. Integer translation

However, standard operators cannot be applied to these type-promoted con-
stants. Instead of translating these operators directly, it might be preferable to
collect their implementation into a separate header file to reduce the amount of
generated code. The header can then be included with the rest of the translated
code. As an example, Listing 12 shows an implementation of boolean negation.

struct not_ {

struct type {

template <typename B>

struct apply {

using type = Bool <!B::type::value >;

};

};

};

Listing 12. Boolean negation

5.4 Complex Data Types

Simple data types use unary templates with a non-type parameter to store one
value of integral type. This approach can be extended to more complex data
types by using templates with more parameters. For example, any template
with two type parameters can be used to represent type-level pairs. However,
as with simple data types, the non-trivial task is implementing operations to
manipulate the values of such data types.

Instead of focusing on a particular data type, we describe the translation of
a class of data types known as algebraic data types. An algebraic data type is
a data type formed as a combination of products (tuples) and sums (variants).
These data types, therefore, include all records (tuples without any variants)
and enumerations (variants without any tuples).

For each data type, we need to specify how its values are represented, con-
structed (introduced), and deconstructed (eliminated). Let the data type D con-
sist of m variants. Let Di(f1, . . . , fni

) be a value of D, where Di is the variant
and f1 to fni

are the fields.

Representation The values can be represented in two ways. Each variant Di

can be represented as a unique template with ni type parameters. If the variant
has no fields, a non-templated type is used instead.



The other approach is to use one variadic template with one non-type pa-
rameter and a variable number of type parameters. The non-type parameter
determines the variant and the other type parameters are the fields. Listing 13
shows such a template.

template <int Variant , typename ... Fields >

struct data { };

Listing 13. Algebraic data type representation

These two representations behave identically in normal situations, but differ
slightly when misused.

Construction A value of D is constructed by picking the desired variant Di

and providing a value for each field. The translation is shown in Listing 14. Like
before, the names Sj need to be unique.

translate(Di(E1, . . . , Eni))
def
=

∀j ∈ {1, . . . , ni}
struct Sj { translate(Ej) };

using type = data <i, . . ., typename Sj ::type , . . .>;

Listing 14. Constructor translation

Instead of constructing Di directly, it might be preferable to use λx1 . . . xni .
Di(x1, . . . , xni

), which can be partially applied and used with higher-order func-
tions.

Deconstruction The values of D are deconstructed by performing a case analy-
sis. The input of the case analysis is an expression E which represents some value
of the data type D. Each case is described by a clause which is a pair consisting
of a pattern pati and an expression Ei. A pattern can either be a wildcard pattern
(represented by an underscore) or a variant pattern Dj followed by a sequence
of distinct variables x1 to xnj

. The expression Ei may refer to the variables that
appear in pati.

We require the patterns to be distinct (up to variable renaming) and the
case analysis to be complete (if a variant does not have a corresponding variant
pattern, a wildcard pattern must be present).

Case analysis proceeds by evaluating E to a value Di(f1, . . . , fni
) for some

i. Next, the corresponding clause patj → Ej is selected and, if applicable, the
variables x1 to xni

are bound to the values of fields f1 to fni
. The result of the

case analysis is then the value of the expression Ej .
A wildcard pattern is selected only when no matching variant pattern is

found, which guarantees that the selection of a clause is unique thanks to the
distinctness and completeness conditions above.

Case analysis can be translated as a template with one type parameter. The
definition of this template consists of a template specialization for each of the
clauses. The full translation is shown in Listing 15.



translate(caseE {pat1 → E1, . . . , patp → Ep})
def
=

template <typename >

struct _case;

∀i ∈ {1, . . . , p}
translate(pati → Ei)

struct S { translate(E) };

using type = typename _case <typename S::type >:: type;

translate(Di x1 . . . xni → E)
def
=

template <typename f1, . . ., typename fni >

struct _case <data <i, f1, . . ., fni >> {

∀j ∈ {1, . . . , ni}
struct xj { using type = fj; };

translate(E)
};

translate( → E)
def
=

template <typename >

struct _case {

translate(E)
};

Listing 15. Deconstructor translation

If a variant contains no fields, the corresponding template specialization is
a full specialization. An example of full template specialization is shown in List-
ing 16.

template <>

struct _case <data <0>> { };

Listing 16. Full template specialization

Until C++17, a full specialization of a class could only occur at the names-
pace level. When working with older C++ compilers, only partial specialization
should be used, which can be accomplished by adding an extra type parameter
to the data template. The value of this parameter is irrelevant since it is never
used.

As presented, the case template cannot distinguish between two variants of
different data types. This is not a problem if the source language can guarantee
that case analysis is only performed on the correct values. If no such guarantee
exists, it is preferable to represent each variant with a unique template instead
of using the generic data template.

A more complex case analysis with overlapping cases or nested patterns can
be implemented in terms of the simple case analysis given here [4].

As an example, Listing 25 uses this encoding on a singly-linked list.



6 Semantics

In order to show that the translated metaprograms behave in a consistent way, we
first only consider strongly normalizing expressions of the source language (ex-
pressions whose reduction always terminates). We then show that these metapro-
grams reduce in normal order. Note that this section only accounts for the rele-
vant portion of the underlying template model [8].

6.1 Preservation

Consider a well-behaved expression in the source language. We need to show
that the translation preserves reduction. In particular, we need to consider func-
tion application, local bindings, and case analysis. The reduction behavior of
operations on promoted data types, once fully applied, is simply given by the
underlying C++ computational model. A step-by-step explanation is also avail-
able. 2

Function Application Reduction of function application is given by the β-
rule (λx.M)N  M [x := N ]. The translated metaprogram (Listing 17) unpacks
the inner type of the lambda abstraction and then instantiates the inner tem-
plate apply, which contains the translation of M . The instantiation replaces all
free occurrences of x with the class S2. Notice that these variables now refer
to S2::type which is the translation of N . Thus, the resulting metaprogram
matches the translation of M [x := N ].

translate((λx.M)N) =
struct S1 {

struct type {

template <typename x>
struct apply { translate(M) };

};

};

struct S2 { translate(N) };

using type = typename S1::type:: template apply <S2 >::type;

Listing 17. Reduction of function application

Note that since we require variables to be fresh, the substitution does not
have to consider the capture of free variables or variable shadowing.

Local Bindings The reduction of non-recursive local bindings is given by
letx = N inM  M [x := N ]. We can see that the free occurrences of x in
the translation of M (Listing 18) directly refer to the translation of N and the
resulting metaprogram thus matches the translation of M [x := N ].

2 https://github.com/vituscze/norri/blob/master/semantics.md
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translate(letx = N inM) =
struct x { translate(N) };

translate(M)

Listing 18. Reduction of local bindings

Case Analysis The reduction of the case analysis (deconstruction) is given
by case (Di(N1, . . . , Nj)) {. . . , Di x1 . . . xj → M, . . . } M [x1 := N1, . . . , xj :=
Nj ]. If the constructor tag does not match any of the patterns, the wildcard
pattern, which must be present, is used. Without loss of generality, we only
consider the case of a unary constructor.

The translated metaprogram (Listing 19) constructs the encoded value of the
algebraic data type in the class S. S::type contains the constructor tag i and
its second parameter refers to the translation of N .

translate(case (Di(N)) {. . . , Di x→M, . . . }) =
template <typename >

struct _case;

template <typename f >
struct _case <data <i, f >> {

struct x { using type = f ; };

translate(M)
};

struct S {

struct S1 { translate(N) };

using type = data <i, typename S1::type >;

};

using type = typename _case <typename S::type >:: type;

Listing 19. Reduction of case analysis

S::type is then given to the template class case. Since the constructor
tags are unique across the template specializations, the encoded value matches
at least one specialization (case analysis is guaranteed to cover all cases) and at
most two specializations (one with a matching tag and one wildcard).

In case there is only a single match, C++ has no choice but to use that
match. When there are two matches, C++ prefers the more specific match,
which is the specialization with the matching constructor tag. In either case, the
correct template specialization is selected.

Once the correct specialization is instantiated, the value stored in the encoded
constructor is wrapped in the class x and the final result is the translation of M ,
which can refer to the translation of N via the variable x. This result matches
the translation of M [x := N ].



6.2 Evaluation Order

Two Phase Compilation Template code is compiled in two phases. In the first
phase, the compiler only processes the parts of the code that do not depend on
the template parameters. No instantiation takes place at this time. This phase
ensures the template is well-formed, even if it is never used.

The second phase occurs when the template is used with concrete arguments.
This forces the instantiation of the template, substituting the template param-
eters with the given arguments. Code that depends on those parameters can be
processed at this time.

In some cases, first phase processing might be undesired. As an example,
static assert which unconditionally fails with a given message can be used to
give clearer error messages to partial functions. However, such assertion would
be triggered during the first phase processing, before the function is even used.

First phase processing can be avoided by tricking the compiler into assum-
ing the code depends on the parameter. The template always false in List-
ing 20 does not depend on the template parameter, but to see that, the compiler
needs to instantiate the template. As a result, the static assert in the template
succeeds does not see that its parameter is false during the first phase pro-
cessing and the assert is only triggered when the outer template is instantiated
during the second phase processing.

template <typename T>

struct always_false

{ static const bool value = false; };

template <typename T>

struct fails {

static_assert(false);

};

template <typename T>

struct succeeds {

static_assert(always_false <T>:: value);

};

Listing 20. Fake parameter dependency

Instantiation C++ templates distinguish between implicit and explicit in-
stantiation. Implicit instantiation occurs when a code refers to the template in
a context that requires its definition. Explicit instantiation occurs as a result of
a special instantiation statement.

template <typename T>

struct s { using type = int; };

s<int >:: type x = 5; // implicit

template struct s<int >; // explicit

Listing 21. Implicit and explicit instantiation



Explicit instantiation of a class template forces the instantiation of all its
members, whereas implicit instantiation only instantiates whatever is necessary.
In other words, implicit instantiation is lazy.

Laziness The translation exploits the previous observation by using the inner
type name type. The classes are set up in such a way where referring to the class
itself does not force instantiation of any of its members. Referring to the inner
type name type forces their instantiation, which drives the evaluation. Another
benefit of this approach is that the translation does not need fake parameter
dependencies.

This difference is best exemplified on the encoding of algebraic data types.
Notice that the arguments passed to the data template are of the form x::type
for some x. This observation suggests that those data types are strict. And
indeed, a C++ compiler will quickly hit the template instantiation limit when
trying to compile an infinite data structure.

However, we are not forced to access the inner type member when creating an
encoded value. We can change the translation of the constructor from Listing 14
and the the pattern from Listing 15 as follows.

translate(Di(E1, . . . , Eni))
def
=

∀j ∈ {1, . . . , ni}
struct Sj { translate(Ej) };

using type = data <i, . . ., Sj , . . .>;

translate(Di x1 . . . xni → E)
def
=

template <typename x1, . . ., typename xni >

struct _case <data <i, x1, . . ., xni >> {

translate(E)
};

Listing 22. Non-strict algebraic data types

And indeed, when a metaprogram is translated using this modification, it can
create and operate on infinite data structures. Value recursion also functions as
expected.

While the translated metaprograms are lazy, it is also possible to force strict
evaluation. For example, the seq operation from Haskell’s Prelude, which forces
the evaluation of its first argument and then returns the second one, can be
implemented by translating λxy.y and replacing the translation of y by the code
in Listing 23.

template <typename X, typename Y>

using _snd = Y;

using type = _snd <typename x::type , typename y::type >;

Listing 23. The seq operation

Notice that when translating top-level bindings, the translated metaprograms
are not contained in any template. As a result, they will be evaluated during



compilation regardless of whether they are used. If necessary, we can simply
wrap these metaprograms inside a template class as shown in Listing 24.

template <typename _T>

struct tmp_impl {

translate(x1 = E1; . . . ;xn = En)
};

using tmp = tmp_impl <void >;

Listing 24. Top-level template wrapping

6.3 Compilation Errors

Translated metaprograms produce error messages during compilation if their
reduction gets stuck or does not terminate. As a result, well-behaved expressions
in the source language translate into metaprograms that do not produce error
messages. Thanks to lazy evaluation, this guarantee extends even to expressions
that are well-behaved only under a certain evaluation order.

However, C++ compilers impose a limit on the template instantiation depth,
which can result in compilation failure even for well-behaved metaprograms.
Compilers typically emit a specific error which makes this issue easy to diag-
nose. If necessary, compiler flags can be used to increase this limit (for example
-ftemplate-depth in GCC).

While the translation itself does not avoid compilation errors, most of these
errors can be removed by restricting which expressions are valid in the source
language. For example, simply-typed lambda calculus is strongly normalizing
and its reduction does not get stuck. All expressions are thus well-behaved and
if translated, the resulting metaprogram can only fail to compile due to the
template instantiation depth limit.

In essence, template compilation errors can be transformed into type errors
in the source language. Such errors are much easier to understand and correct.

7 Practical Examples

In this section, we provide two examples of combining the resulting metapro-
grams with existing metaprogramming code.

The translated metaprograms can often be used directly. Nevertheless, an
auxiliary metaprogram can simplify the code, such as when manipulating en-
coded data types. Instead of a list, we might wish to use a pack of template
parameters. This representation is not only more succinct, but it also allows the
pack to be expanded into expressions.

Suppose that a strict list data type consists of a nullary variant Nil and
a binary variant Cons, and the encoding uses explicit names instead of the
generic data template. Listing 25 shows a conversion between such lists and
template parameter packs. Note that template parameter packs are not first-
class citizens of C++ and must, therefore, be wrapped in an auxiliary template



pack. The add metaprogram adds a new element to a template parameter pack.
The list encoding is recursively constructed by to list and deconstructed by
from list.

template <typename ...> struct pack;

template <typename , typename > struct add;

template <typename ...> struct to_list;

template <typename > struct from_list;

template <typename T, typename ... U>

struct add <T, pack <U...>> {

using type = pack <T, U...>;

};

template <>

struct to_list <> {

using type = Nil;

};

template <typename T, typename ... U>

struct to_list <T, U...> {

using type = Cons <T, typename to_list <U...>::type >;

};

template <>

struct from_list <Nil > {

using type = pack <>;

};

template <typename T, typename U>

struct from_list <Cons <T, U>> {

using type =

typename add <T, typename from_list <U>::type >:: type;

};

Listing 25. List conversion

Similarly, existing metaprograms can be adapted for use in higher-order func-
tions. Unary predicates from the type traits header can be adapted as shown
in Listing 26. This process can be automated and extended for predicates and
functions of higher arity.

template <template <typename > class F>

struct predicate {

template <typename T>

struct apply {

using type = Bool <F<typename T::type >::value >;

};

};

Listing 26. Type function conversion



7.1 Precomputation

Since metaprograms are evaluated during compilation, they can be used to pre-
compute constants. The main advantage of this approach is that the computation
can be parametrized, which is especially useful when multiple constants depend
on a small set of input parameters.

One example is the precomputation of small prime numbers, which is useful
when generating large prime numbers. This computation comes with a natural
tradeoff: the more time we spend precomputing primes during compilation, the
less time we spend finding primes during run time. The metaprogram gener-
ates prime numbers smaller than a given value, which gives us control over the
tradeoff.

diff = λstep start list . case list
{Nil → Nil
,Cons x xs → case compare x start
{LT → Cons x (diff step start xs)
,EQ → diff step (start + step) xs
,GT → diff step (start + step) (Cons x xs)
}

}

sieve = λlist . case list
{Nil → Nil
,Cons x xs → Cons x (sieve (diff xx2 xs))
}

between = λx y. casex ≤ y
{False → Nil
,True → Cons x (between (x + 1) y)
}

primes = λn. sieve (between 2n)

Listing 27. Sieve of Eratosthenes

The metaprogram is based on the sieve of Eratosthenes. The generated primes
are stored in a list, which is then used to initialize an array. The definitions can
be found in Listing 27. The compare x y expression answers whether x is less
than, equal to, or greater than y.

The list of prime numbers is obtained by applying the primes function to
the upper bound. The function generates a list of candidate numbers up to the
bound and then performs the sieve operation. At each step, the head of the list x
is marked as a prime number, and multiples of x (starting with x2) are removed
from the remainder of the list.

Once these definitions are translated into a C++ metaprogram, the resulting
list can be accessed as primes::type::apply<wrap<Int<n>>>::type (for some
number n).

The list cannot be used to directly initialize an array. Instead, the list needs
to be converted into a template parameter pack, which can then be expanded



into the array initializer. A template parameter pack T, whose elements are types
that contain a value constant, can be expanded via {T::value...}. Listing 28
details how to automate this process.

template <typename >

struct to_array;

template <typename ... T>

struct to_array <pack <T...>> {

static const int size = sizeof ...(T);

static const int data [];

};

template <typename ... T>

const int to_array <pack <T...>>::data[] = {T:: value ...};

Listing 28. Array initialization using a template parameter pack

And finally, Listing 29 shows how to combine these operations to initialize
and use a precomputed array of prime numbers.

using list = primes ::type::apply <wrap <Int <50>>>::type;

using array = to_array <to_pack <list >::type >;

for (int i = 0; i < array::size; ++i)

std::cout << array::data[i] << " ";

Listing 29. Precomputed array usage

7.2 Generic Programming

Template metaprograms are commonly employed in generic programming. As
an example, metaprograms from the type traits header are frequently used
to check the prerequisites of the elements of standard library containers. These
operations range from checking whether the element type supports a given op-
eration to manipulating types in an iterator definition.

Suppose we want to create a pool allocator for a set of types. A pool allocator
allocates a large chunk of memory at the start, which is then divided evenly into
blocks large enough to hold a value of any of the given types. Allocation proceeds
by finding an empty block and returning it. Empty blocks can be tracked using
a linked list, which allows the operations to function in O(1) time.

The allocator first ensures that all types meet the given criteria. The check
function is used for this task. Its input is a list of predicates and a list of types.
The check succeeds if all types satisfy all predicates. It is implemented in terms of
the all function, which checks whether all elements of a list satisfy one predicate.

The block size is also calculated during compilation. The blockSize function
computes the size of the block as the maximum size among the input types,
which is then rounded to the nearest power of two by the nextPower function.
The expression max x y denotes the maximum of x and y. The size function
computes the size of its input.



The definitions can be found in Listing 30. Two auxiliary functions are used:
foldr and loop. The foldr function combines all elements of a list into a sin-
gle value, using a combining function and an initial value. The loop function
repeatedly applies a given function to a value while a condition holds.

foldr = λf z list . case list
{Nil → z
,Cons x xs → f x (foldr f z xs)
}

loop = λp f x. case p x
{False → x
,True → loop p f (f x)
}

all = λp. foldr (λx r. p x ∧ r)True
check = λps xs. all (λp. all p xs) ps
nextPower = λn. loop (λx. x < n) (λx. 2x) 1
blockSize = λts.nextPower (foldr (λx r.max (size x) r) 1 ts)

Listing 30. Type check and block size calculation

The size function is defined separately as an auxiliary metaprogram in order
to use the sizeof operator. The definition can be found in Listing 31.

struct size {

struct type {

template <typename T>

struct apply {

using type = Int <sizeof(typename T::type)>;

};

};

};

Listing 31. Type size metaprogram

Listing 32 shows a possible definition of such an allocator. For the sake of
brevity, the allocator only checks one predicate (std::is pod). The predicate list
predicates and the type list types are passed to the translated check metapro-
gram and its result is used in static assert, which halts the compilation and
reports the specified error message if the check fails.

Similarly, the type list types is passed to the translated blockSize metapro-
gram and its result is used to initialize the block size constant, which can then
be used in the appropriate allocation operation.

template <typename ... T>

struct allocator {

using predicates = to_list <predicate <std::is_pod >>;

using types = to_list <T...>;

static_assert(check::type::apply <predicates >

::type::apply <types >

::type::value );



static const int block_size =

blockSize ::type::apply <types >:: type:: value;

};

Listing 32. Allocator for a set of types

8 Conclusion

While recent C++ standards offer more options for performing compile-time
computations thanks to the constexpr keyword, the support of type-level pro-
gramming is still lacking. Template metaprogramming thus remains an impor-
tant tool for implementing generic data structures and functions. However, tem-
plate metaprograms are often hard to read and write. Some tools seek to alleviate
these problems by translating functional code into metaprograms.

We present a new way of translating functional code based on lambda cal-
culus into template metaprograms. The main advantages of our method are
its simplicity and well-defined, non-strict semantics. The translation uses direct
rules and the resulting metaprograms can be easily incorporated into existing
C++ code. The translation can be used with both typed and untyped languages,
and also includes bindings, recursion, and complex data structures.

Since the source language is based on an existing programming paradigm,
a wealth of existing programming techniques can be reused. Similarly, the source
language can be subject to existing optimizing transformations. We hope that
this work encourages programmers to write more complex metaprograms as well
as to simplify the existing ones.
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