
The Double
Digest Problem

using genetic
algorithms

David Kuboň & Petr Martišek

Problem definition ‒ biology
❖ restriction enzyme: enzyme that cuts the DNA at specific (short) nucleotide sequences

❖ restriction site: an occurrence of a sequence of nucleotides specific for a given

restriction enzyme

❖ restriction map: positions of all the restriction sites in the DNA sequence

❖ given sorted set of positions X = {x1, x2, … xn}:

➢ partial digest: δX = {xj - xi | 1 ≤ xi < xj ≤ xn}

➢ full digest: ΔX = {x2 - x1, x3 - x2, …, xn - xn-1}

❖ restriction mapping problem: given an experimentally obtained subset E ⊆ δX,

reconstruct X

Problem definition ‒ biology
❖ Double Digest Problem:

➢ sequence S, enzymes A and B

➢ input

■ ∆A … full digest using enzyme A

■ ∆B … full digest using enzyme B

■ ∆AB … full digest using both enzymes

➢ output

■ A … location of the cuts for enzyme A

■ B … location of the cuts for enzyme B

Problem definition ‒ computer science
❖ input:

➢ ∆A … fragment length using enzyme A

➢ ∆B … fragment lengths using enzyme B

➢ ∆AB … fragment lengths using both enzymes

❖ task:

➢ find a permutation of ∆A and ∆B such that when we cut the sequence using both

the obtained maps A and B simultaneously, the resulting fragments will be ∆AB

❖ NP-complete

Genetic algorithms
❖ meta-algorithm inspired by natural

evolution

❖ solutions to a given problem are encoded

as chromosomes

❖ the (randomly initiated) population

undergoes crossover, mutation and

selection using a defined fitness function

Genetic algorithms ‒ encoding of an individual
❖ a candidate solution to a DDP is encoded as a pair of permutations of the set of

fragments ∆A and the set of fragments ∆B

➢ similar to the Traveling Salesman Problem

❖ example:

Input data

∆A = {375, 282, 2205, 746, 2352, 9040}

∆B = {3518, 1887, 389, 5916, 2017, 1273}

∆AB = {375, 282, 2205, 656, 90, 1797, 389, 166, 5750, 2017, 1273}

One possible individual

([3, 0, 1, 5, 2, 4] , [1, 4, 3, 0, 2, 5])

Genetic algorithms ‒ fitness function
❖ fitness of an individual is given by computing the combined restriction map AB and

comparing the generated set of fragments ∆AB’ with the given set of fragments ∆AB

❖ fitness is computed as number of matches divided by total number of fragments in

∆AB

Fitness function ‒ example
Input data

∆A = [375, 282, 2205, 746, 2352, 9040]; ∆B = [3518, 1887, 389, 5916, 2017, 1273]

∆AB = [375, 282, 2205, 656, 90, 1797, 389, 166, 5750, 2017, 1273]

Individual
([4, 5, 3, 1, 2, 0], [4, 2, 5, 3, 1, 0])

Generated cuts
A = [0, 2352, 11392, 12138, 12420, 14625, 15000]

B = [0, 2017, 2406, 3679, 9595, 11482, 15000]

Generated ∆AB’ fragments vs. input ∆AB fragments (sorted)

∆AB’ = [54, 90, 282, 335, 375, 656, 1273, 1797, 2017, 2205, 5916]

∆AB = [90, 166, 282, 375, 389, 656, 1273, 1797, 2017, 2205, 5750]

Fitness = #matches / count(∆AB) = 8 / 11 = 0.7272

Genetic algorithms ‒ mutation
❖ swapping mutation

➢ randomly choose two elements in the permutation and swap them

[4, 5, 3, 1, 2, 0] ⟶ [4, 1, 3, 5, 2, 0]

❖ inversion mutation
➢ randomly choose a portion of the permutation and invert it

[4, 5, 3, 1, 2, 0] ⟶ [4, 2, 1, 3, 5, 0]

Genetic algorithms ‒ crossover
❖ Order 1 Crossover

➢ A swath of consecutive alleles from parent 1 with remaining values placed in the order of parent 2.

Parent 1: [8, 4, 7, 3, 6, 2, 5 ,1, 9, 0]

Parent 2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Child 1: [0, 4, 7, 3, 6, 2, 5, 1, 8, 9]

❖ PMX Crossover
➢ A swath is taken from parent 1 and the corresponding swath from parent 2 is sprinkled about in the

child. Then the remaining alleles are copied directly from parent 2.

Parent 1: [8, 4, 7, 3, 6, 2, 5 ,1, 9, 0]

Parent 2: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Child 1: [0, 7, 4, 3, 6, 2, 5, 1, 8, 9]

Genetic algorithms ‒ selection
❖ Tournament

➢ Individuals chosen randomly

➢ The strongest wins the right to mate

❖ Roulette
➢ Individuals are assigned circle

segments based on their fitness

➢ A roulette is spun to choose one

Experiments

Bombyx mori
(bourec morušový)

Drosophilia
(octomilka)

Macaque
(makak)

House mouse
(myš domácí)

Chimpanzee
(šimpanz učenlivý)

enzyme #sites enzyme #sites enzyme #sites enzyme #sites enzyme #sites

short BspHI
EcoRI

5
5

PacI
SacI

5
5

ScaI
BsgI

5
5

XbaI
BtsI

5
5

SmlI
Eco57I

5
5

mid TseI
HphI

10
10

TseI
BbvI

9
9

FalI
TstI

10
10

TatI
Bdai

10
10

SspI
AccI

10
10

long PacI
Hin4I

16
18

BdaI
TfiI

12
13

FauI
HaeIV

15
15

EcoRII
SfaNI

15
15

ApoI
TseI

16
16

Test data

Cuts performed by http://www.restrictionmapper.org

Convergence for
increasing number
of restriction sites

❖ 1000 generations
❖ 200 individuals in

population

Mutation
❖ 1000 generations
❖ 200 individuals in

population

Crossover
❖ 1000 generations
❖ 200 individuals in

population

Selection
❖ 1000 generations
❖ 200 individuals in

population

Short data
❖ 1000 generations
❖ 200 individuals in

population

Short data
❖ 1000 generations
❖ 200 individuals in

population
❖ tournament selection

Mid-length data
❖ 1000 generations
❖ 200 individuals in

population
❖ tournament selection

Long data
❖ 1000 generations
❖ 200 individuals in

population
❖ tournament selection

CSP comparison
❖ First attempt

➢ Artificial sequence with 10 restriction sites easy to find

➢ GA: 1s CSP: 20s

■ ∆A = [1 2 3 4 5 6 7 8 9 10]

■ ∆B = [1 10 1 10 1 10 1 10 1 10]

■ ∆AB = [1 10 1 1 9 1 2 8 1 3 7 1 4 6]

❖ Second attempt
➢ Artificial sequence with 10 restriction sites harder to find

➢ GA: 3s CSP: 45 minutes and still running

■ ∆A = [1 2 3 4 5 6 7 8 9 10 11 12]

■ ∆B = [1 2 3 4 5 6 7 8 9 10 11 12]

■ ∆AB = [1 2 3 4 2 3 6 2 5 5 3 6 3 5 5 2 6 3 2 4 3 2 1]

Related works

Construction of Restriction Maps Using a Genetic Algorithm
(Darren M. Platt, Trevor I. Dix, 1993)

❖ PMX + inversion mutation

❖ experiments with more than 2 enzymes

➢ improved discrimination of the error measure, but the ability of the algorithm to converge on the correct

solution is not enhanced

❖ notes the problem that small changes by mutation or crossover (e.g. swapping 2 fragments)

lead to drastic change of the fitness function

➢ “inability to make small iterative adjustments without making radical changes to the restriction map”

Genetic Algorithm for Double Digest Problem
(S. Sur-Kolay et col., 2005)

❖ attempts to find (almost) all solutions, not just a single one

❖ cassette equivalence classes

Genetic Algorithm Solution for Double Digest Problem
(M. Ganjtabesh et. col, 2012)

❖ handles erroneous data

➢ error ~ # of unmatched fragments

❖ only single solution (GA halts if optimal solution found)

❖ faster than Sur-Kolay (probably due to simpler method and no equivalence classes)

Thank you!

