RNA secondary structure visualization using tree edit distance

"mmm m

Richard Eliáš, David Hoksza

SIRET Research Group

Department of Software Engineering

Faculty of Mathematics and Physics

Charles University in Prague

Outline

- Motivation
- Tree edit distance
- Template-based visualization algorithm
- Experimental results

RNA secondary structure

- RNA pairs in the same way as DNA, but it is single-stranded
- Base-pairing interactions within a molecule
- Close approximation of the structure

Algorithm outline

- Template-based visualization \rightarrow preservation of **common motifs**
 - Template = homologous structure with known optimal layout
- 1. Convert input target and template structure into tree representation
- 2. Compute tree edit distance between template and target \rightarrow sequence of tree edit operations
- 3. Map the tree edit operations to visual operations to convert template layout to target layout

RNA Tree edit distance

- Structure \rightarrow tree
 - Base pairs \rightarrow inner nodes
 - Unpaired nucleotides \rightarrow leafs

AUGGAGCUGGAACCAU

- Generalization of string edit distance
- Operations
 - Update relabeling
 - **Delete** deletion of a node and reconnection of children to the parent
 - Insert insertion of a node between two connected nodes and reconnection of children

• Backtracking procedure resulting in sequence of operations

Visual operations

- Update
 - Relabeling
- Insert
 - Leaf node
 - No siblings \rightarrow formation of a new loop
 - Existing siblings \rightarrow loop extension \rightarrow uniform distribution along a circle
 - Inner node
 - Insert base pair at given position
 - Shift all its "inner node" descendants
 - Recompute position of its possible leaf children on a circle
- Delete
- Multi-branch loops treated individually

Ribosomal RNA test

- Reconstruction of visualizations of known 16S ribosomal subunits from the Metazoa kingdom
- 16 organism
- Every pair of organisms tested → 272 layouts
- 3 crossings per layout on average

Future work

- Recursion
- Web server
- Automatic selection of suitable templates

