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• DNA Sequence Comparison: First Success Stories 

• Strings 

• Dot Matrix Methods 

• Sequence Alignment – Edit Distance 

• Scoring functions and matrices 

• Global-, local-, repeat- and overlap alignment of two 
sequences using dynamic programming 



Bioinformatics Algorithms 

DNA Sequence Comparison: First 

Success Story  

• Finding sequence similarities with genes of known function is a 

common approach to infer a newly sequenced gene’s function 

 

• In 1984 Russell Doolittle  and colleagues  found similarities between 

cancer-causing gene and normal growth factor (PDGF) gene 
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Cystic Fibrosis  

• Cystic fibrosis (CF) is a chronic and frequently fatal genetic 

disease of the body's mucus glands (abnormally high level of 

mucus in glands). CF primarily affects the respiratory systems in 

children.  

• Mucus is a slimy material that coats many epithelial surfaces and 

is secreted into fluids such as saliva 

• In early 1980s biologists hypothesized that CF is an autosomal 

recessive disorder caused by mutations in a gene that remained 

unknown till 1989 

Shorter byway 
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Finding Similarities between the Cystic 

Fibrosis Gene and ATP binding proteins  
 
• ATP binding proteins are present on cell membrane and act as 

transport channel 

 

• In 1989 biologists found similarity between the cystic fibrosis gene 

and ATP binding proteins 

 

• A plausible function for cystic fibrosis gene, given the fact that CF 

involves sweet secretion with abnormally high sodium level  
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Cystic Fibrosis: Mutation Analysis   

If a high % of cystic fibrosis (CF) patients have a certain mutation in the 

gene and the normal patients don’t, then that could be an indicator of a 

mutation that is related to CF 

  

A certain mutation was found in 70% of CF patients, convincing 

evidence that it is a predominant genetic diagnostics marker for CF 
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Cystic Fibrosis and CFTR Gene 

CFTR = Cystic Fibrosis 

Transmembrane 

conductance Regulator 

Shorter byway 
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Cystic Fibrosis and the CFTR Protein 
• CFTR (Cystic Fibrosis 

Transmembrane 

conductance Regulator) 

protein is acting in the 

cell membrane of 

epithelial cells that 

secrete mucus 

• These cells line the 

airways of the nose, 

lungs, the stomach wall, 

etc. 
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Mechanism of Cystic Fibrosis 

• The CFTR protein (1480 amino acids) regulates a chloride ion 

channel 

• Adjusts the “wateriness” of fluids secreted by the cell 

• Those with cystic fibrosis are missing one single amino acid in their 

CFTR 

• Mucus ends up being too thick, affecting many organs 
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Bring in the Bioinformaticians 

• Gene similarities between two genes with known and unknown 

function alert biologists to some possibilities 

• Computing a similarity score between two genes tells how likely it is 

that they have similar functions 
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Strings 

• Definition: An alphabet  S is a finite nonempty set. The elements of 

an alphabet are called symbols  or letters. A string S over an 

alphabet S is a (finite) concatenation of symbols from S. The length  

of a string S is the number of symbols in S, denoted by |S|. The set 

of strings of length n over S is denoted by Sn. 

• For DNA-sequences S = { A,G,C,T }. 

• Known notions: a concatenation, substring, prefix, suffix 

• Let S be an alphabet and let S = s1 ... sn  with si  S. For all i, j  {1, 

... , n}, i < j, we denote the substring si ... sj by S[i, j]. 
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Dot matrix sequence comparison 

• An (n×m) matrix relating two sequences of length n and m 

respectively is produced: by placing a dot at each cell for which the 

corresponding symbols match. Here is an example for the two 

sequences IMISSMISSISSIPPI and MYMISSISAHIPPIE: 



Bioinformatics Algorithms 

Dot plot 

• Definition: Let S = s1s2 ... sn and T = t1...tm be two strings of length n 

and m respectively. Let M be an n × m matrix. Then M is a dot plot if 

for i, j, 1 i  n, 1  j  m : M[i, j] = 1 for si = tj and M[i, j] = 0 else. 

• Note: The longest common substring within the two strings S and T 

is then the longest matrix subdiagonal containing only 1’s. However, 

rather than drawing the letter 1 we draw a dot, and instead of a 0 we 

leave the cell blank. Some of the properties of a dot plot are 

• the visualization is easy to understand 

• it is easy to find common substrings, they appear as contiguous dots 
along a diagonal 

• it is easy to find reversed substrings (see assignment) 

• it is easy to discover displacements 

• it is easy to find repeats 
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Dot matrix 

• Example: DNA sequences which encode the Bacteriophage lambda 

and Bacteriophage P22 repressor proteins: 
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A window size  and a stringency 

• Real dot plots of biological sequences will contain a lot of dots, 

many of which are considered as noise. 

• To reduce the noise, a window size w and a stringency s are used 

and a dot is only drawn at point (x, y) if in the next w positions at 

least s characters are equal. For the example above: 

w = 1, s = 1           w = 11, s = 7          w = 23, s = 15 
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Dot matrix repeat detection 

• Dot matrix analysis of human LDL receptor against itself (protein 

sequence): 

w = 1, s = 1    w =?, s =? 

Exercise: Determine which w and s are best to use in this case, and interpret the 

result. 

http://en.wikipedia.org/wiki/LDL_receptor
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Sequence alignment 

• Procedure of comparing sequences by searching for a series of 

individual characters or character patterns that are in the same order 

in both sequences. 

• two (pair-wise alignment) or  

• more (multiple alignment)  

• Two sequences are aligned by writing them in two rows. Identical or 

similar characters are placed in the same column, whereas non-

identical characters are either placed in the same column as a 

mismatch or are opposite a gap in the other sequence. 

Two strings:          Alignment: 

IMISSMISSISSIPPI  I-MISSMISSISIPPI-                   

               ¦¦||||¦||¦¦¦||||¦ 

MYMISSISAHIPPIE  MYMISS-ISAH-IPPIE 
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String alignment 

• Given two strings X and Y . An alignment A of X and Y is obtained 

by inserting dashes (‘-’) so that both resulting strings X’ and Y’ of 

equal length can be written one above the other in such a way that 

each character in the one string is opposite to a unique character in 

the other string. 

• Usually, we require that no two dashes are aligned in this way. 

• Example: 

X =   Y E - S T E R D A Y 

Y =   - E A S T E R S - - 

• We need a scoring system. 
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Distance 

• Definition: A set X of elements x, y, ...  X is called a metric 

space if for each pair x, y  X there exists a real number d(x, y) 

with: 

1. d(x, y)  0,    d(x, y) = 0  x = y 

2. d(x, y) = d(y, x)  

3. d(x, y)  d(x, z) + d(z, y)  z  X 

    d(x, y) is called the distance of x and y. 
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Minkowski metric 

• Definition: Let x = (x1, ... , xn) and y = (y1, ... , yn) be two elements of 

an n-dimensional space X. Then 

  

 

 

• is called the Minkowski distance with parameter p. 

• Note: For p = 1 the distance is also called the Manhattan (or city-

block) distance, for p = 2 we have the well-known Euklidean 

distance. 
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Hamming metric 

• Definition: Let x = (x1, ... , xn) and y = (y1, ... , yn) be two strings of 

length n over an alphabet S. Then 

   dH(X, Y ) = |{ i | i  {1, ..., n}, xi  yi}|  

 is called the Hamming distance. 

• Example: 

 The Hamming distance of the two sequences 

X = A T A T A T A T 

Y = T A T A T A T A 

 is equal to dH(X, Y ) = __. 
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Levenshtein or edit distance 

• number of editing operations needed to transform one string into the 

other 

• Definition: The Levenshtein distance or edit distance dL between 

two strings X and Y is the minimum number of edit operations of 

type 

  {Replacement, Insertion, or Deletion } 

that one needs to transform string X into string Y : 

dL(X, Y ) = min{R(X, Y ) + I(X, Y ) + D(X, Y )}. 

 

• the two strings need not be of equal length 

• Using M for match, an edit transcript is a string over the alphabet 

{I,D,R,M} that describes a transformation of X to Y. 
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Edit distance 

• Example:  

 Given two strings 

X= YESTERDAY 

Y= EASTERS 

 The edit distance is equal to 5, which can be easily seen from the 
minimum edit transcript:  =  D M I M M M M R D D 

       X  =  Y E   S T E R D A Y 

       Y  =    E A S T E R S 

• As we see from this example, edit transcripts and alignments are 
mathematically equivalent ways of describing a relationship between 
two strings. 

• However, an edit transcript implies a set of putative mutational 
events, whereas an alignment presents a static picture of the 
relationship. 
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Calculation of edit distance 

• Given two strings X = x1...xn  and Y = y1...ym . We want to compute 

the edit distance DL(X, Y ) between X and Y . 

• Let D(i, j) denote the edit distance of the two prefixes x1...xi   and   

y1...yj . 

• Clearly, it is DL(X, Y ) = D(n,m), and we want to obtain D(n,m)  by 

computing D(i, j)  for all i, j with 0  i  n  and 0  j  m. 

• This is the standard dynamic programming approach 

• the recurrence relation, 

• the tabular computation, and 

• the traceback. 
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Dynamic programming for computing 
edit distance 
• the recurrence relation:  D(i, j – 1) + 1 

           D(i,j ) =  min    D(i – 1, j ) + 1 

      D(i – 1, j – 1) + t(i, j ) 

where          0  if xi = yj , 

   1  else. 

Base conditions: 

• We set D(i, 0) = i for all 0  i  n. This corresponds to an alignment in 

which the first i characters of X are aligned to the left of the first 

character of Y . 

• We set D(0, j ) = j for all 1  j  m. This corresponds to an alignment in 

which the first j characters of Y occur to the left of the first character of 

X. 

t(i, j ) = 



Bioinformatics Algorithms 

Dynamic programming for computing 
edit distance 
• The recursion is computed in tabular form: 
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Dynamic programming for computing 
edit distance – traceback 
 • While computing the values D(i, j ) one also saves (in an 

independent matrix) which of the three terms in the recurrence 

relation was minimal and used for D(i, j ). Then from the final D(n,m) 

the edit transcript (and therefore the alignment) can be achieved by 

backtracking or traceback of the entries in the second matrix. 
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Weighted edit distance 

 
• We can generalize the edit distance by  

• weighting each of the edit operations I, D and R by a number 

 The operation weighted edit distance between two sequences X and Y 

is the minimum sum of weights of any edit transcript from X to Y . 

• making the score of an edit operation depend on the two characters involved  

 This gives rise to the alphabet weighted edit distance. 

• Definition:  Let S be a finite alphabet and d a metric on S. Let S denote 

the gap symbol. Then for two strings X and Y of length n and m 

respectively 

DL(i, j):=min {DL(i, j −1) +d(, yj ), DL(i −1, j) + d(xi, ), DL(i −1, j −1) + d(xi, yj)}, 

  and DL(n,m) is the alphabet weighted Levenshtein distance of X and Y . 
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Global distance alignment 

  

 • When comparing two biological sequences, we want to determine 

whether and how they diverged from a common ancestor by a 

process of mutation and selection. 

• basic mutational processes are substitutions, insertions and 

deletions. The latter two give rise to gaps. 

• The total score assigned to an alignment is the sum of terms for 

each aligned pair of residues, plus terms for each gap. 

• We assume: mutations at different sites occur independently of 

each other.  

• This is often reasonable for DNA and proteins, but not for 

structural RNA, where base pairing introduces very important 

long-range dependences. 
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Global distance alignment 

  

 • Let X = x1...xn and Y = y1...ym be two sequences over an alphabet 

S. Let A be a global alignment of length lA of X and Y . Let  be the 

gap symbol. Let X’ = x’1...x’lA and Y’ = y’1...y’lA denote the two 

strings obtained after inserting dashes (for the gap symbol ). Let 

d(a, b), a, b  S {} be a distance on the alphabet. This 

represents the cost of a mutation of a into b or the cost of inserting 

or deleting a letter. Then define  

 

 

• The alignment for which the total score is minimal is called 

optimal. 
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String distance → string similarity 

• We have seen how to express string relatedness using the 

Levenshtein or edit distance. In biology, we are usually interested 

in similarity rather than distance, as we will see further below. 

• A similarity score matrix S : S {} × S {}  R assigns a 

similarity score to each pair of characters 

• For a given alignment A = (X’,Y’ ) of X and Y of length lA, the value 

of A is defined as 
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String similarity – example 

• For S = {A,B,L,−} consider the following similarity score matrix S: 

 

 

 

• matches of symbols are rewarded, mismatches and gaps 

penalized. 

 

X= B  L  A  -  B  L  A 

Y= A  L  A  B  B  L  - 

  1 +1 +3 -3 +2 +1 -2 = 3 
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String similarity – example 

• The similarity of two sequences X and Y is the value of any 

alignment A of X and Y that maximizes the alignment value. Such 

an alignment is called optimal. 

Example 1: 

• Alignment between very similar human alpha- and beta globins: 

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL 

          G+ +VK+HGKKV  A+++++AH+D++ +++++LS+LH  KL 

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL 

• there are many positions at which the two corresponding residues 

are identical. Many others are functionally conserved, e.g. the D-E 

pairs, both negatively charged amino acids – marked by + sign. 
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String similarity – example 

Example 2: 

• Plausible alignment to leg haemoglobin from yellow lupin: 
HBA_HUMAN  GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL 

           ++ ++++H+ KV   + +A  ++          +L+ L+++H+ K 

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG 

 

 

• also a biologically meaningful alignment, as it is known that the 

two proteins are evolutionarily related, have the same 3D structure 

and both have the same function. However, there are many fewer 

identities and gaps have been introduced in the sequences. 
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Simple Scoring 

• When  

• mismatches are penalized by –μ,  

• indels are penalized by –σ, and  

• matches are rewarded with +1,  

 the resulting score is: 

 

        #matches – μ(#mismatches) – σ(#indels) 
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Find the best alignment between two strings under a given scoring 
schema 

 

Input : Strings x and y and a scoring schema 

Output : Alignment of maximum score 

 

↑→ = - σ  

       = 1 if match 

       = -µ if mismatch 

 

 

                         

F(i,j )  =  max  

                                                

The Global Alignment Problem 

µ : mismatch penalty 

σ : indel penalty 

 

F(i – 1,j – 1) +1   if xi = yj 

F(i – 1,j – 1) – µ  if xi ≠ yj 

F(i – 1,j ) – σ 

F( i,j – 1 ) – σ 
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Scoring Matrices  

• In general, for DNA we consider a (4+1) x (4+1) scoring matrix s  

• In the case of an amino acid sequence alignment, the scoring matrix 

would be a (20+1)x(20+1) size.  The addition of 1 is to include the 

score for comparison of a gap character “-” 

• This will simplify the algorithm as follows: 

 

    F(i,j )   =  max   

                           

F(i – 1,j – 1) +s(xi, yj) 

F(i – 1,j ) +s(xi,‘-’) 

F( i,j – 1 ) +s(‘-’, yj) 
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General scoring model 

 
• Computation of an alignment critically depend on the choice of 

parameters. Generally no existing scoring model can be applied to 

all situations. 

• When evolutionary relationships between the sequences are 

reconstructed –  scoring matrices based on mutation rates are 

usually applied – computed from sequences with high percent 

identity. 

• When protein domains are compared – then the scoring 

matrices should be based on composition of domains and 

their substitution frequency – computed from sequences with 

high conservation. 
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Percent Sequence Identity 

• The extent to which two nucleotide or amino acid sequences are 

invariant 

A C  C  T G  A  G  –  A G  
A C  G  T G  –  G  C  A G 

70% identical 

mismatch 
indel 
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Conservation 

• Amino acid changes that tend to preserve the physico-chemical 

properties of the original residue 

• Polar to polar 

• aspartate  glutamate 

• Nonpolar to nonpolar 

• alanine  valine 

• Similarly behaving residues 

• leucine to isoleucine 
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 A   K   R   A   N   R 
 K   A   A   A   N   K 
(-1) + (-1) + (-2) +   5  +   7  +   3  =  11 

Scoring Matrix: Example 

A R N K 

A 5 -2 -1 -1 

R - 7 -1 3 

N - - 7 0 

K - - - 6 

• Notice that although R and K 

are different amino acids, they 

have a positive score. 

• Why? They are both positively 

charged amino acids will not 

greatly change function of 

protein. 
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General scoring model 

 
 

a1 … ak ‘-’ 

a1 

 

ak 

‘-’ 

Substitution 

matrix Gap 

penalties 

Scoring 

matrix 



Bioinformatics Algorithms 

Scoring matrices 

• DNA substitution matrices 

• DNA is less conserved than protein sequences 

• Less effective to compare coding regions at nucleotide level 

• Amino acid substitution matrices 

• PAM 

• BLOSUM 
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Substitution matrices 

 

 • To be able to score an alignment, we need to determine score 

terms for each aligned residue pair. 

• Definition 

• Definition: A substitution matrix S over an alphabet S = {a1,  , ak} 

has k×k  entries, where each entry (i, j) assigns a score for a 

substitution of the letter ai by the letter aj in an alignment. 
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Substitution matrices 

 

 • Basic idea: Follow scheme of statistical hypothesis testing. 

 

 

• Frequencies of the letters f(a) as well as substitution frequencies 

f(a, b) stem from a representative data set. 
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Null hypothesis / Random model 

 

 • Given a pair of aligned sequences (without gaps), the null 

hypothesis states that the two sequences are unrelated (not 

homologous). The alignment is then random with a probability 

described by the model R. The unrelated or random model R 

assumes that in each aligned pairs of residues the two residues 

occur independently of each other. Then the probability of the two 

sequences is: 
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Match model 

 

 

 

• In the match model M, describing the alternative hypothesis, 

aligned pairs of residues occur with a joint probability pab, which is 

the probability that a and b have each evolved from some 

unknown original residue c as their common ancestor. Thus, the 

probability for the whole alignment is: 
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Odds ratio  
(pomer šancí) 

 

 

 

• The ratio of the two gives a measure of the relative likelihood that 

the sequences are related (model M) as opposed to being 

unrelated (model R). This ratio is called odds ratio: 

 

 

 

 

 

 

But this is not additive scoring! 
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Log-odds ratio  
 

 

 

• To obtain an additive scoring scheme, we take the logarithm (base 

2 is usually chosen) to get the log-odds ratio: 

 

 

 

 

 

 where 

 

 

 

• For amino-acid alignments, commonly used matrices are  
• the PAM and  

• BLOSUM matrices. 
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PAM matrices 

Definition (PAM) 

Definition [Dayhoff et. al.]: One Point Accepted Mutation (1 PAM) is 

defined as an expected number of substitutions per site of 0.01. A 

1 PAM substitution matrix is thus derived from any evolutionary 

model by setting the row sum of off-diagonal terms to 0.01 and 

adjusting the diagonal terms to keep the row sum equal to 1. 

• After 100 PAMs of evolution, not every residue will have 

changed 

• some residues may have mutated several times 

• some residues may have returned to their original state 

• some residues may not changed at all 
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Jukes-Cantor Model (for DNA) 

• The basic assumption is equality of substitution frequency for any 

nucleotide at any site. Thus, changing a nucleotide to each of the 

three remaining nucleotides has probability  per time unit. The rate 

of nucleotide substitution per site per time unit is then r = 3. 

• PAM 1 matrix under a Jukes-Cantor model of sequence evolution is  
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Jukes-Cantor Model 

 

 

 

• We scale matrix entries such that the expected number of 

substitutions per site is 0.01 = 3 and obtain a probability matrix: 
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From probability into scoring matrix 

• A scoring matrix is then obtained by computing the log-odds ratios: 

 

 

 with pA = pC = pG = pT = 0.25 and joint probabilities as given by the 

PAM probability matrix. This leads to the following substitution score 

matrix: 
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PAMX 

• PAMx = PAM1
x 

• PAM250 = PAM1
250 

• PAM250 is a widely used scoring matrix for amino acids: 

          

         Ala  Arg  Asn  Asp  Cys  Gln  Glu  Gly  His  Ile  Leu  Lys ... 

          A    R    N    D    C    Q    E    G    H    I    L    K  ... 

Ala A    13    6    9    9    5    8    9   12    6    8    6    7  ... 

Arg R     3   17    4    3    2    5    3    2    6    3    2    9 

Asn N     4    4    6    7    2    5    6    4    6    3    2    5 

Asp D     5    4    8   11    1    7   10    5    6    3    2    5 

Cys C     2    1    1    1   52    1    1    2    2    2    1    1 

Gln Q     3    5    5    6    1   10    7    3    7    2    3    5 

... 

Trp W     0    2    0    0    0    0    0    0    1    0    1    0 

Tyr Y     1    1    2    1    3    1    1    1    3    2    2    1 

Val V     7    4    4    4    4    4    4    4    5    4   15   10 
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PAM120 

Each cell represents the 

score given to a residue 

paired with another 

residue (row  column). 

The values are given in 

half-bits. The colored 

shading indicates 

different physicochemical 

properties of the residues. 

Small and polar 

Small and non polar 

Polar or acidic 

Basic 

Large and hydrophobic 

Aromatic 
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BLOCKS and BLOSUM matrices 

 
• The BLOSUM matrices were derived from the database BLOCKS 

[1]. Blocks are multiply aligned ungapped segments corresponding 

to the most highly conserved regions of proteins. 

• [1] Henikoff, S and Henikoff, JG (1992) Amino acid substitution 

matrices from protein blocks. Proc Natl Acad Sci U S A. 

89(22):10915-9. BLOCKS database server: http://blocks.fhcrc.org/ 

• For the scoring matrices of the BLOSUM (=BLOcks SUbstitution 

Matrix) family all blocks of the database are evaluated columnwise. 

For each possible pair of amino acids the frequency f (ai , aj ) of 

common pairs (ai , aj ) in all columns is determined. 



Bioinformatics Algorithms 

BLOCKS and BLOSUM matrices 
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BLOCKS and BLOSUM matrices 

 
• Altogether there are       possible pairs that we can draw from this 

alignment. We now assume that the observed frequencies are 

equal to the frequencies in the population. Then  
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BLOCKS and BLOSUM matrices 
Example 

 Seq 1   A 

Seq 2   A 

Seq 3   A 

Seq 4   A 

Seq 5   A 

Seq 6   A 

Seq 7   A 

Seq 8   A 

Seq 9   A 

Seq 10 C 

 

Altogether there are 45 possible pairs that 

we can draw from this alignment, of which 

36 are AA and 9 are AC pairs. We now 

assume that the observed frequencies are 

equal to the frequencies in the population. 

Then pAA = 36/45 and pCA = 9/45, pA = 9/10 

and pC = 1/10. 
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BLOCKS and BLOSUM matrices 
Example 

 • Different levels of the BLOSUM matrix can be created by 

differentially weighting the degree of similarity between sequences. 

For example, a BLOSUM62 matrix is calculated from protein blocks 

such that if two sequences are more than 62% identical, then the 

contribution of these sequences is weighted to sum to one. 

• In this way the contributions of multiple entries of closely related 

sequences is reduced.  

• Standard values are BLOSUM50 up to BLOSUM80, with the 

commonly used BLOSUM62 matrix. Note that lower BLOSUMx 

values correspond to longer evolutionary time, and are applicable 

for more distantly related sequences. 
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BLOSUM62 

• BLOSUM62 is scaled so that its values are in half-bits, i.e. the log-

odds were multiplied by 2 / log2 2 and then rounded to the nearest 

integer value. E.g. 

       A 

A    4 

R   -1 

 

    pa pb pab pab/ pa pb 2log2(pab/ pa pb) 

A-

A 

0.074 0.074 0.0215 3.926  3.946 

A-

R 

0.074 0.052 0.0023 0.598 -1.485 
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BLOSUM62 
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BLOSUM62 
Each cell represents the 

score given to a residue 

paired with another 

residue (row  column). 

The values are given in 

half-bits. The colored 

shading indicates 

different physicochemical 

properties of the residues. 

Small and polar 

Small and non polar 

Polar or acidic 

Basic 

Large and hydrophobic 

Aromatic 
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Alignment algorithms 

 
• Given a scoring scheme, we need to have an algorithm that 

computes the highest-scoring alignment of two sequences.  

• As for the edit distance-based alignments we will discuss alignment 

algorithms based on dynamic programming. They are guaranteed 

to find the optimal scoring alignment.  

• Note of caution: Optimal Pairwise alignment algorithms are of 

complexity O(n · m) – can be too slow and heuristics (such as 

BLAST, FASTA, MUMMER etc.) are then used that usually perform 

very well, but will miss the best alignment for some sequence pairs. 

• Depending on the input data, there are a number of different 

variants of alignment that are considered, among them  

• global alignment,  

• local alignment and  

• overlap alignment. 
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Global alignment: Needleman-Wunsch 

algorithm 

 

 

• Saul Needleman and Christian Wunsch (1970), improved by Peter 

Sellers (1974). 

• Idea: Build up an optimal alignment using previous solutions for 

optimal alignments of smaller substrings. 

• Given two sequences X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym). 

We will compute a matrix 

   F : {1, 2, . . . , n} × {1, 2, . . . ,m}  R 

• in which F(i, j ) equals the best score of the alignment of the two 

prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , yj ). 

• This will be done recursively by setting F(0, 0) = 0 and then 

computing F(i, j ) from F(i − 1, j − 1), F(i − 1, j ) and F(i, j − 1): 
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Global alignment: Needleman-Wunsch 

algorithm 
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The recursion 
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• We set  

• F( i, 0 ) =  − id   for i=0,…,n 

• F( 0, j ) =  − jd   for j=0,…,m 

• The final score will be in F(n, m)  
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Needleman-Wunsch algorithm 

 

 

Input: two sequences X and Y 

Output: optimal alignment and score  

For i := 1, 2, . . . , n do  F(i, 0) := −i · d  

For j := 1, 2, . . . , m do  F(0, j) := −j · d  

For i = 1, 2, . . . , n do: 

 For j = 1, 2, . . . , m do: 
  

     Set  

 
     Set backtrace T(i, j) to the maximizing pair (i’, j’) 

The score is  := F(n, m) 

(i, j) := (n, n) 

repeat 

 if T(i, j) = (i − 1, j − 1) print  

 else if T(i, j) = (i − 1, j ) print          

 else print 

 (i, j) := T(i, j) 

until (i, j) = (0, 0). 
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Complexity of Needleman-Wunsch 

• Space (n+1)(m+1) 

• Time  

• O(nm) for filling the matrix 

• O(m+n) for backtrace 

• If we need the score only then the space complexity can be 

reduced – how much? 

 



Bioinformatics Algorithms 

• Global alignment for similar (related) sequences only – whole sequences 

should be similar, e.g. homologous genes from related species 

• In some cases the score between substrings could be larger than the score 

of the alignment between whole sequences – e.g. two proteins with 

common domain, two genes in chromosomes of different species 

                  TCCCAGTTATGTCAGGGGACACGAGCATGCAGAGAC 

AATTGCCGCCGTCGTTTTCAGCAGTTATGTCAGATC 

• Let  be a score function for an alignment. A local alignment of two strings 

X and Y is a global alignment of some substrings X’ (of X) and Y’ (of Y). An 

alignment A of substrings X’ and Y’ is an optimal local alignment of X and Y 

with respect to  if  

   (A) = max A’=(X’,Y’)  { (X’,Y’) | X’ is a substring of X, Y’ is a sub-string of Y } 

Local alignment: Smith-Waterman 

algorithm 
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• Let X = AAAAACTCTCTCT and Y = GCGCGCGCAAAAA.  

• Let s(a, a) = +1, s(a, b) = -1 and s(a,-) = s(-, a) = -2 be a scoring 

function.  

• The optimal local alignment 

          AAAAA(CTCTCTCT) 
          ||||| 
(GCGCGCGC)AAAAA 

 in this case has a score 5  

• The optimal global alignment 

AAAAACTCTCTCT 
     | | 
GCGCGCGCAAAAA 

 has score -11. 

Local alignment – example 



Bioinformatics Algorithms 

Local Alignment: Example 

Global alignment 

Local alignment 

Compute a “mini” Global 

Alignment to get Local 
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• Smith, T. and Waterman, M. Identification of common molecular 

subsequences. J. Mol. Biol. 147:195-197, 1981  

• local alignment algorithm is a modification of the global alignment 

algorithm – set the value of F(i, j ) to zero, if all attainable values at 

position (i, j ) are negative: 

 

Local alignment: Smith-Waterman 

algorithm 
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• Base conditions: 

• F(i, 0 ) =  0   for i=0,…,n 

• F(0, j ) =  0   for j=0,…,m 

• Traceback: 

• Instead of starting the traceback at (n,m), we start it at the cell with the 

highest score: argmax F(i, j ). The traceback ends upon arrival at a cell 

with score 0, which corresponds to the start of the alignment. 

• Requirement: For this algorithm to work, we require that the 

expected score for a random match is negative, i.e. that  

     

 where pa and pb are the probabilities for seeing the symbol a or b 

respectively, at any given position. Otherwise, matrix entries will 

tend to be positive, producing long matches between random 

sequences. 

Local alignment: Smith-Waterman 

algorithm 
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Affine Gap Penalties 

• In nature, a series of k indels often come as a single event rather 

than a series of k single nucleotide events: 

Normal scoring would 

give the same score for 

both alignments 
This is more 

likely. 

This is less likely. 

ATA__GC 

ATATTGC 

ATAG_GC 

AT_GTGC 
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Gap penalties 

• Gaps are undesirable and thus penalized. The standard cost 

associated with a gap of length g is given either by a linear score  

 

 or an affine score 
    

 where d is the gap open penalty and e is the gap extension penalty. 

• Usually, e < d, with the result that less isolated gaps are produced, 

as shown in the following comparison: 
 Linear gap penalty:  GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL 

        GSAQVKGHGKK--------VA--D----A-SALSDLHAHKL 

 Affine gap penalty:  GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL 

    GSAQVKGHGKKVADA---------------SALSDLHAHKL 

  gdg 

    ,1 egdg 
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Affine-gap algorithm 

• Instead of using one matrix F(i, j ) to represent the best score 

attainable up to xi and yj , we will now use three matrices M, Ix and 

Iy: 

• M(i, j ) is the best score up to (i, j ), given that xi is aligned to yj , 

• Ix(i, j ) is the best score up to (i, j ), given that xi is aligned to a gap, and 

• Iy(i, j ) is the best score up to (i, j ), given that yj is aligned to a gap. 

• Initialization: 

M(0, 0) = 0,   Ix(0, 0) = Iy(0, 0) = − 

Ix(0, j ) = −d − (j − 1) e,   M(0, j ) = Iy(0, j ) = − ,   for i = 1, … , m, and 

Iy(i, 0) = −d − (i − 1) e,    M(i, 0 ) = Ix(i, 0 ) = − ,   for j = 1, …, n. 

• We make the assumption that a gap in one sequence is not 

immediately followed by a gap in the other. This is true for the 

optimal path, if −d − e is less than the lowest mismatch score. 
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Affine-gap algorithm 

• M(i, j ) is the best score up to (i, j ), given that xi is aligned to yj , 

• Ix(i, j ) is the best score up to (i, j ), given that yj is aligned to a gap in X, and 

• Iy(i, j ) is the best score up to (i, j ), given that xi is aligned to a gap in Y. 

 

• Recursion: 
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Affine-gap algorithm 
Example 
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Simplification of the affine-gap 

algorithm 
• Use only 2 matrices 

• M (corresponding to alignment) and  

• I corresponding to indel 

• Recursion: 

 

 

 

 

 

 

• Gives the same result if the lowest mismatch score is > −2e. 
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Simplification of the affine-gap 

algorithm 
• Even if the lowest mismatch score is ≤ −2e then the difference in 

score and alignment will be insignificant (in a poorly matched 

gapped region): 
• Assume that the original algorithm (using M, Ix and Iy) produces the 

following optimal alignment: 

xxxx---axxxxxxxx 
yyyyyyyb----yyyy 

• If s(a, b) < −2e, then the modified algorithm (using M and I) will 

produce the following higher scoring alignment, adding a gap before a 

and one after b: 

xxxx----axxxxxxxx 
yyyyyyyb-----yyyy 
 

• However, situations in which       is directly followed by       (or vice-

versa) are uninteresting and so the original algorithm rules them out. 
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Alignment in linear space 
(for global alignment) 

 0  m/2      m 

0 

 

 

r

  
 

    n 

• Computing the best score in linear space – easy. 

• Problem: we must replace the trace-back matrix 

• Idea: Divide et impera! 

• For the best score F(n,m) compute through which row r of the middle column 

m/2 the optimal trace passed. 

• Then recursively compute optimal trace from (0,0) to (r, m/2 ) and from 

(r, m/2 ) to (n,m).  
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Alignment in linear space 
(for global alignment) 

• Time complexity: 
• We first look at           cells, then at             cells, then at              cells 

etc. Further 

 

 

 this algorithm is only twice as slow as the quadratic-space one! 

 

• Space complexity: O(n) 
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Can we do better? 

• All considered variants till now have time complexity O(mn) and space 

complexity O(mn). 

• For simplicity, we consider DNA sequences, assume n = m and use a linear 

gap score d. 

• Idea: Instead of computing the whole matrix F, use only a band of cells 

along the main diagonal: 

 

 

 

 

 

 

• Let 2k denote the height of the band. Obviously, the time complexity of the 

banded algorithm will be O(kn). 

• Questions: Will this algorithm produce an optimal global alignment? What 

should k be set to? 

 

k 

k 
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KBand algorithm 

• Input: two sequences X and Y of equal length n, integer k 

• Output: the best score a of global alignment at most k diagonals away 

from the main diagonal 

• Computation:  

Set F(i, 0) := -i · d for all i = 0, 1, 2, . . . , k. 

Set F(0, j) := -j · d for all j = 1, 2, . . . , k. 

for i = 1 to n do 

for h = -k to k do 

j := i + h 

if 1  j   n then 

 F(i, j) := F(i - 1, j - 1) + s(xi, yj) 

 if insideBand(i - 1, j, k) then 

     F(i, j) := max{F(i, j), F(i - 1, j) - d}  

 if insideBand(i, j - 1, k) then 

     F(i, j) := max{F(i, j), F(i, j - 1) - d}  

return F(n, n) 

To test whether (i, j ) is inside the 

band, we use: 

insideBand(i, j, k) := (−k  i − j  k). 
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KBand algorithm 

• Given two sequences X and Y of the same length n. Let M be the 

maximal match score (for two symbols) and d the gap penalty. 

 

• Question: Let k be the best score obtained using the KBand 

algorithm for a given k. When is k equal to the optimal global 

alignment score ? 

 

• Lemma: If k  M(n – k – 1) – 2(k + 1)d, then k =  . 

 

• Proof: If there exists an optimal alignment with score  that does 

not leave the band, then clearly k =  . Else, all optimal alignments 

leave the band somewhere. This requires insertion of at least k+1 

gaps in each sequence, and allows only at most n – k – 1 matches, 

giving the desired bound.  
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KBand algorithm 

The following algorithm computes an optimal alignment by repeated 

application of the KBand algorithm, with larger and larger k: 

 

Input: two sequences X and Y of the same length n 

Output: an optimal global alignment of X and Y 

Computation:  

k := 1 

repeat 

Compute k using KBand 

if k  M(n − k − 1) − 2(k + 1)d   then 

return k  
k := 2k 

end 
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KBand algorithm – time complexity 

The algorithm terminates when: 

 

 

 

 

 

 

 

At this point, the total complexity is: 

    n + 2n + 4n + . . . + kn  2kn. 

 

 So far, this doesn’t look better than nn. To bound the total 

complexity, we need a bound on k. When the algorithm stops for k, 

we must have: 
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KBand algorithm – time complexity 

 

 

There are two cases: 

 If k/2 =k= , then  

 

 

Otherwise, k/2 < k= . Then any optimal alignment must have 

more than k/2 spaces, and thus 

 

 
 

As M+2d is a constant, it follows that k is bounded by O(), with  

 =Mn – , and thus the total bound is O( n).  

In consequence, the more similar the sequences, the faster the KBand 

algorithm will run! 
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Using KBand algorithm 
finding high identity alignments 

• We can use the KBand algorithm as a fast method for finding high-

identity alignments: 
• If we know that the two input sequences are highly similar and we 

have a bound b on the number of gaps that will occur in the best 

alignment, then the KBand algorithm with k = b will compute an 

• optimal alignment. 

 

• For example, in forensics, one must sometimes determine whether 

a sample of human mtDNA obtained from a victim matches a 

sample obtained from a relative (or from a hair brush etc). If two 

such sequences differ by more than a couple of base-pairs or gaps, 

then they are not considered a match. 
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Alignments 


