
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Pairwise sequence
alignment

Bioinformatics Algorithms

Outline

• DNA Sequence Comparison: First Success Stories

• Strings

• Dot Matrix Methods

• Sequence Alignment – Edit Distance

• Scoring functions and matrices

• Global-, local-, repeat- and overlap alignment of two
sequences using dynamic programming

Bioinformatics Algorithms

DNA Sequence Comparison: First

Success Story

• Finding sequence similarities with genes of known function is a

common approach to infer a newly sequenced gene’s function

• In 1984 Russell Doolittle and colleagues found similarities between

cancer-causing gene and normal growth factor (PDGF) gene

Bioinformatics Algorithms

Cystic Fibrosis

• Cystic fibrosis (CF) is a chronic and frequently fatal genetic

disease of the body's mucus glands (abnormally high level of

mucus in glands). CF primarily affects the respiratory systems in

children.

• Mucus is a slimy material that coats many epithelial surfaces and

is secreted into fluids such as saliva

• In early 1980s biologists hypothesized that CF is an autosomal

recessive disorder caused by mutations in a gene that remained

unknown till 1989

Shorter byway

Bioinformatics Algorithms

Finding Similarities between the Cystic

Fibrosis Gene and ATP binding proteins

• ATP binding proteins are present on cell membrane and act as

transport channel

• In 1989 biologists found similarity between the cystic fibrosis gene

and ATP binding proteins

• A plausible function for cystic fibrosis gene, given the fact that CF

involves sweet secretion with abnormally high sodium level

Bioinformatics Algorithms

Cystic Fibrosis: Mutation Analysis

If a high % of cystic fibrosis (CF) patients have a certain mutation in the

gene and the normal patients don’t, then that could be an indicator of a

mutation that is related to CF

A certain mutation was found in 70% of CF patients, convincing

evidence that it is a predominant genetic diagnostics marker for CF

Bioinformatics Algorithms

Cystic Fibrosis and CFTR Gene

CFTR = Cystic Fibrosis

Transmembrane

conductance Regulator

Shorter byway

Bioinformatics Algorithms

Cystic Fibrosis and the CFTR Protein
• CFTR (Cystic Fibrosis

Transmembrane

conductance Regulator)

protein is acting in the

cell membrane of

epithelial cells that

secrete mucus

• These cells line the

airways of the nose,

lungs, the stomach wall,

etc.

Bioinformatics Algorithms

Mechanism of Cystic Fibrosis

• The CFTR protein (1480 amino acids) regulates a chloride ion

channel

• Adjusts the “wateriness” of fluids secreted by the cell

• Those with cystic fibrosis are missing one single amino acid in their

CFTR

• Mucus ends up being too thick, affecting many organs

Bioinformatics Algorithms

Bring in the Bioinformaticians

• Gene similarities between two genes with known and unknown

function alert biologists to some possibilities

• Computing a similarity score between two genes tells how likely it is

that they have similar functions

Bioinformatics Algorithms

Strings

• Definition: An alphabet S is a finite nonempty set. The elements of

an alphabet are called symbols or letters. A string S over an

alphabet S is a (finite) concatenation of symbols from S. The length

of a string S is the number of symbols in S, denoted by |S|. The set

of strings of length n over S is denoted by Sn.

• For DNA-sequences S = { A,G,C,T }.

• Known notions: a concatenation, substring, prefix, suffix

• Let S be an alphabet and let S = s1 ... sn with si  S. For all i, j  {1,

... , n}, i < j, we denote the substring si ... sj by S[i, j].

Bioinformatics Algorithms

Dot matrix sequence comparison

• An (n×m) matrix relating two sequences of length n and m

respectively is produced: by placing a dot at each cell for which the

corresponding symbols match. Here is an example for the two

sequences IMISSMISSISSIPPI and MYMISSISAHIPPIE:

Bioinformatics Algorithms

Dot plot

• Definition: Let S = s1s2 ... sn and T = t1...tm be two strings of length n

and m respectively. Let M be an n × m matrix. Then M is a dot plot if

for i, j, 1 i  n, 1  j  m : M[i, j] = 1 for si = tj and M[i, j] = 0 else.

• Note: The longest common substring within the two strings S and T

is then the longest matrix subdiagonal containing only 1’s. However,

rather than drawing the letter 1 we draw a dot, and instead of a 0 we

leave the cell blank. Some of the properties of a dot plot are

• the visualization is easy to understand

• it is easy to find common substrings, they appear as contiguous dots
along a diagonal

• it is easy to find reversed substrings (see assignment)

• it is easy to discover displacements

• it is easy to find repeats

Bioinformatics Algorithms

Dot matrix

• Example: DNA sequences which encode the Bacteriophage lambda

and Bacteriophage P22 repressor proteins:

Bioinformatics Algorithms

A window size and a stringency

• Real dot plots of biological sequences will contain a lot of dots,

many of which are considered as noise.

• To reduce the noise, a window size w and a stringency s are used

and a dot is only drawn at point (x, y) if in the next w positions at

least s characters are equal. For the example above:

w = 1, s = 1 w = 11, s = 7 w = 23, s = 15

Bioinformatics Algorithms

Dot matrix repeat detection

• Dot matrix analysis of human LDL receptor against itself (protein

sequence):

w = 1, s = 1 w =?, s =?

Exercise: Determine which w and s are best to use in this case, and interpret the

result.

http://en.wikipedia.org/wiki/LDL_receptor

Bioinformatics Algorithms

Sequence alignment

• Procedure of comparing sequences by searching for a series of

individual characters or character patterns that are in the same order

in both sequences.

• two (pair-wise alignment) or

• more (multiple alignment)

• Two sequences are aligned by writing them in two rows. Identical or

similar characters are placed in the same column, whereas non-

identical characters are either placed in the same column as a

mismatch or are opposite a gap in the other sequence.

Two strings:  Alignment:

IMISSMISSISSIPPI I-MISSMISSISIPPI-

 ¦¦||||¦||¦¦¦||||¦

MYMISSISAHIPPIE MYMISS-ISAH-IPPIE

Bioinformatics Algorithms

String alignment

• Given two strings X and Y . An alignment A of X and Y is obtained

by inserting dashes (‘-’) so that both resulting strings X’ and Y’ of

equal length can be written one above the other in such a way that

each character in the one string is opposite to a unique character in

the other string.

• Usually, we require that no two dashes are aligned in this way.

• Example:

X = Y E - S T E R D A Y

Y = - E A S T E R S - -

• We need a scoring system.

Bioinformatics Algorithms

Distance

• Definition: A set X of elements x, y, ...  X is called a metric

space if for each pair x, y  X there exists a real number d(x, y)

with:

1. d(x, y)  0, d(x, y) = 0  x = y

2. d(x, y) = d(y, x)

3. d(x, y)  d(x, z) + d(z, y) z  X

 d(x, y) is called the distance of x and y.

Bioinformatics Algorithms

Minkowski metric

• Definition: Let x = (x1, ... , xn) and y = (y1, ... , yn) be two elements of

an n-dimensional space X. Then

• is called the Minkowski distance with parameter p.

• Note: For p = 1 the distance is also called the Manhattan (or city-

block) distance, for p = 2 we have the well-known Euklidean

distance.

 
pn

i

p

iiM yxyxd

1

1

, 







 



Bioinformatics Algorithms

Hamming metric

• Definition: Let x = (x1, ... , xn) and y = (y1, ... , yn) be two strings of

length n over an alphabet S. Then

 dH(X, Y) = |{ i | i  {1, ..., n}, xi  yi}|

 is called the Hamming distance.

• Example:

 The Hamming distance of the two sequences

X = A T A T A T A T

Y = T A T A T A T A

 is equal to dH(X, Y) = __.

Bioinformatics Algorithms

Levenshtein or edit distance

• number of editing operations needed to transform one string into the

other

• Definition: The Levenshtein distance or edit distance dL between

two strings X and Y is the minimum number of edit operations of

type

 {Replacement, Insertion, or Deletion }

that one needs to transform string X into string Y :

dL(X, Y) = min{R(X, Y) + I(X, Y) + D(X, Y)}.

• the two strings need not be of equal length

• Using M for match, an edit transcript is a string over the alphabet

{I,D,R,M} that describes a transformation of X to Y.

Bioinformatics Algorithms

Edit distance

• Example:

 Given two strings

X= YESTERDAY

Y= EASTERS

 The edit distance is equal to 5, which can be easily seen from the
minimum edit transcript: = D M I M M M M R D D

 X = Y E S T E R D A Y

 Y = E A S T E R S

• As we see from this example, edit transcripts and alignments are
mathematically equivalent ways of describing a relationship between
two strings.

• However, an edit transcript implies a set of putative mutational
events, whereas an alignment presents a static picture of the
relationship.

Bioinformatics Algorithms

Calculation of edit distance

• Given two strings X = x1...xn and Y = y1...ym . We want to compute

the edit distance DL(X, Y) between X and Y .

• Let D(i, j) denote the edit distance of the two prefixes x1...xi and

y1...yj .

• Clearly, it is DL(X, Y) = D(n,m), and we want to obtain D(n,m) by

computing D(i, j) for all i, j with 0  i  n and 0  j  m.

• This is the standard dynamic programming approach

• the recurrence relation,

• the tabular computation, and

• the traceback.

Bioinformatics Algorithms

Dynamic programming for computing
edit distance
• the recurrence relation: D(i, j – 1) + 1

 D(i,j) = min D(i – 1, j) + 1

 D(i – 1, j – 1) + t(i, j)

where 0 if xi = yj ,

 1 else.

Base conditions:

• We set D(i, 0) = i for all 0  i  n. This corresponds to an alignment in

which the first i characters of X are aligned to the left of the first

character of Y .

• We set D(0, j) = j for all 1  j  m. This corresponds to an alignment in

which the first j characters of Y occur to the left of the first character of

X.

t(i, j) =

Bioinformatics Algorithms

Dynamic programming for computing
edit distance
• The recursion is computed in tabular form:

   

   

 mnDnx

jiDjiDix

jiDjiDix

x

mjj

yyyy

n

i

i

mjj

,

,1,

,11,11

1

1100

0

1

1

11























Bioinformatics Algorithms

Dynamic programming for computing
edit distance – traceback
 • While computing the values D(i, j) one also saves (in an

independent matrix) which of the three terms in the recurrence

relation was minimal and used for D(i, j). Then from the final D(n,m)

the edit transcript (and therefore the alignment) can be achieved by

backtracking or traceback of the entries in the second matrix.

Bioinformatics Algorithms

Weighted edit distance

• We can generalize the edit distance by

• weighting each of the edit operations I, D and R by a number

 The operation weighted edit distance between two sequences X and Y

is the minimum sum of weights of any edit transcript from X to Y .

• making the score of an edit operation depend on the two characters involved

 This gives rise to the alphabet weighted edit distance.

• Definition: Let S be a finite alphabet and d a metric on S. Let S denote

the gap symbol. Then for two strings X and Y of length n and m

respectively

DL(i, j):=min {DL(i, j −1) +d(, yj), DL(i −1, j) + d(xi, ), DL(i −1, j −1) + d(xi, yj)},

 and DL(n,m) is the alphabet weighted Levenshtein distance of X and Y .

Bioinformatics Algorithms

Global distance alignment

 • When comparing two biological sequences, we want to determine

whether and how they diverged from a common ancestor by a

process of mutation and selection.

• basic mutational processes are substitutions, insertions and

deletions. The latter two give rise to gaps.

• The total score assigned to an alignment is the sum of terms for

each aligned pair of residues, plus terms for each gap.

• We assume: mutations at different sites occur independently of

each other.

• This is often reasonable for DNA and proteins, but not for

structural RNA, where base pairing introduces very important

long-range dependences.

Bioinformatics Algorithms

Global distance alignment

 • Let X = x1...xn and Y = y1...ym be two sequences over an alphabet

S. Let A be a global alignment of length lA of X and Y . Let  be the

gap symbol. Let X’ = x’1...x’lA and Y’ = y’1...y’lA denote the two

strings obtained after inserting dashes (for the gap symbol ). Let

d(a, b), a, b  S {} be a distance on the alphabet. This

represents the cost of a mutation of a into b or the cost of inserting

or deleting a letter. Then define

• The alignment for which the total score is minimal is called

optimal.

   







 



A

i

iiA yxdYXD
l

1

','min,

Bioinformatics Algorithms

String distance → string similarity

• We have seen how to express string relatedness using the

Levenshtein or edit distance. In biology, we are usually interested

in similarity rather than distance, as we will see further below.

• A similarity score matrix S : S {} × S {}  R assigns a

similarity score to each pair of characters

• For a given alignment A = (X’,Y’) of X and Y of length lA, the value

of A is defined as

 



A

i

ii yxs
l

1

','

Bioinformatics Algorithms

String similarity – example

• For S = {A,B,L,−} consider the following similarity score matrix S:

• matches of symbols are rewarded, mismatches and gaps

penalized.

X= B L A - B L A

Y= A L A B B L -

 1 +1 +3 -3 +2 +1 -2 = 3

Bioinformatics Algorithms

String similarity – example

• The similarity of two sequences X and Y is the value of any

alignment A of X and Y that maximizes the alignment value. Such

an alignment is called optimal.

Example 1:

• Alignment between very similar human alpha- and beta globins:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

 G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

• there are many positions at which the two corresponding residues

are identical. Many others are functionally conserved, e.g. the D-E

pairs, both negatively charged amino acids – marked by + sign.

Bioinformatics Algorithms

String similarity – example

Example 2:

• Plausible alignment to leg haemoglobin from yellow lupin:
HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL

 ++ ++++H+ KV + +A ++ +L+ L+++H+ K

LGB2_LUPLU NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG

• also a biologically meaningful alignment, as it is known that the

two proteins are evolutionarily related, have the same 3D structure

and both have the same function. However, there are many fewer

identities and gaps have been introduced in the sequences.

Bioinformatics Algorithms

Simple Scoring

• When

• mismatches are penalized by –μ,

• indels are penalized by –σ, and

• matches are rewarded with +1,

 the resulting score is:

 #matches – μ(#mismatches) – σ(#indels)

Bioinformatics Algorithms

Find the best alignment between two strings under a given scoring
schema

Input : Strings x and y and a scoring schema

Output : Alignment of maximum score

↑→ = - σ

 = 1 if match

 = -µ if mismatch

F(i,j) = max

The Global Alignment Problem

µ : mismatch penalty

σ : indel penalty

F(i – 1,j – 1) +1 if xi = yj

F(i – 1,j – 1) – µ if xi ≠ yj

F(i – 1,j) – σ

F(i,j – 1) – σ

Bioinformatics Algorithms

Scoring Matrices

• In general, for DNA we consider a (4+1) x (4+1) scoring matrix s

• In the case of an amino acid sequence alignment, the scoring matrix

would be a (20+1)x(20+1) size. The addition of 1 is to include the

score for comparison of a gap character “-”

• This will simplify the algorithm as follows:

 F(i,j) = max

F(i – 1,j – 1) +s(xi, yj)

F(i – 1,j) +s(xi,‘-’)

F(i,j – 1) +s(‘-’, yj)

Bioinformatics Algorithms

General scoring model

• Computation of an alignment critically depend on the choice of

parameters. Generally no existing scoring model can be applied to

all situations.

• When evolutionary relationships between the sequences are

reconstructed – scoring matrices based on mutation rates are

usually applied – computed from sequences with high percent

identity.

• When protein domains are compared – then the scoring

matrices should be based on composition of domains and

their substitution frequency – computed from sequences with

high conservation.

Bioinformatics Algorithms

Percent Sequence Identity

• The extent to which two nucleotide or amino acid sequences are

invariant

A C C T G A G – A G
A C G T G – G C A G

70% identical

mismatch
indel

Bioinformatics Algorithms

Conservation

• Amino acid changes that tend to preserve the physico-chemical

properties of the original residue

• Polar to polar

• aspartate  glutamate

• Nonpolar to nonpolar

• alanine  valine

• Similarly behaving residues

• leucine to isoleucine

Bioinformatics Algorithms

 A K R A N R
 K A A A N K
(-1) + (-1) + (-2) + 5 + 7 + 3 = 11

Scoring Matrix: Example

A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R and K

are different amino acids, they

have a positive score.

• Why? They are both positively

charged amino acids will not

greatly change function of

protein.

Bioinformatics Algorithms

General scoring model

a1 … ak ‘-’

a1



ak

‘-’

Substitution

matrix Gap

penalties

Scoring

matrix

Bioinformatics Algorithms

Scoring matrices

• DNA substitution matrices

• DNA is less conserved than protein sequences

• Less effective to compare coding regions at nucleotide level

• Amino acid substitution matrices

• PAM

• BLOSUM

Bioinformatics Algorithms

Substitution matrices

 • To be able to score an alignment, we need to determine score

terms for each aligned residue pair.

• Definition

• Definition: A substitution matrix S over an alphabet S = {a1,  , ak}

has k×k entries, where each entry (i, j) assigns a score for a

substitution of the letter ai by the letter aj in an alignment.

Bioinformatics Algorithms

Substitution matrices

 • Basic idea: Follow scheme of statistical hypothesis testing.

• Frequencies of the letters f(a) as well as substitution frequencies

f(a, b) stem from a representative data set.

 
)()(

,

bfaf

baf

b

a
f












Bioinformatics Algorithms

Null hypothesis / Random model

 • Given a pair of aligned sequences (without gaps), the null

hypothesis states that the two sequences are unrelated (not

homologous). The alignment is then random with a probability

described by the model R. The unrelated or random model R

assumes that in each aligned pairs of residues the two residues

occur independently of each other. Then the probability of the two

sequences is:

  

i

y

i

x ii
ppRYPRXPRYXP)|()|(|,

Bioinformatics Algorithms

Match model

• In the match model M, describing the alternative hypothesis,

aligned pairs of residues occur with a joint probability pab, which is

the probability that a and b have each evolved from some

unknown original residue c as their common ancestor. Thus, the

probability for the whole alignment is:

  
i

yx ii
pMYXP |,

Bioinformatics Algorithms

Odds ratio
(pomer šancí)

• The ratio of the two gives a measure of the relative likelihood that

the sequences are related (model M) as opposed to being

unrelated (model R). This ratio is called odds ratio:

But this is not additive scoring!

 
  






i yx

yx

i

y

i

x

i

yx

ii

ii

ii

ii

pp

p

pp

p

RYXP

MYXP

|,

|,

Bioinformatics Algorithms

Log-odds ratio

• To obtain an additive scoring scheme, we take the logarithm (base

2 is usually chosen) to get the log-odds ratio:

 where

• For amino-acid alignments, commonly used matrices are
• the PAM and

• BLOSUM matrices.

 
 

  























i

ii

i yx

yx
yxs

pp

p

RYXP

MYXP

ii

ii ,log
|,

|,
log

  









ba

ab

pp

p
bas log,

Bioinformatics Algorithms

PAM matrices

Definition (PAM)

Definition [Dayhoff et. al.]: One Point Accepted Mutation (1 PAM) is

defined as an expected number of substitutions per site of 0.01. A

1 PAM substitution matrix is thus derived from any evolutionary

model by setting the row sum of off-diagonal terms to 0.01 and

adjusting the diagonal terms to keep the row sum equal to 1.

• After 100 PAMs of evolution, not every residue will have

changed

• some residues may have mutated several times

• some residues may have returned to their original state

• some residues may not changed at all

Bioinformatics Algorithms

Jukes-Cantor Model (for DNA)

• The basic assumption is equality of substitution frequency for any

nucleotide at any site. Thus, changing a nucleotide to each of the

three remaining nucleotides has probability  per time unit. The rate

of nucleotide substitution per site per time unit is then r = 3.

• PAM 1 matrix under a Jukes-Cantor model of sequence evolution is



































31

31

31

31

Bioinformatics Algorithms

Jukes-Cantor Model

• We scale matrix entries such that the expected number of

substitutions per site is 0.01 = 3 and obtain a probability matrix:



































31

31

31

31



















99.0003.0003.0003.0

003.099.0003.0003.0

003.0003.099.0003.0

003.0003.0003.099.0

Bioinformatics Algorithms

From probability into scoring matrix

• A scoring matrix is then obtained by computing the log-odds ratios:

 with pA = pC = pG = pT = 0.25 and joint probabilities as given by the

PAM probability matrix. This leads to the following substitution score

matrix:



























398438438438

438398438438

438438398438

438438438398

  









ba

ab

pp

p
bas log,

   
    3808.425.0/003.0log, for

9855.325.0/99.0log, for

2

2





basba

basba

Bioinformatics Algorithms

PAMX

• PAMx = PAM1
x

• PAM250 = PAM1
250

• PAM250 is a widely used scoring matrix for amino acids:

 Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys ...

 A R N D C Q E G H I L K ...

Ala A 13 6 9 9 5 8 9 12 6 8 6 7 ...

Arg R 3 17 4 3 2 5 3 2 6 3 2 9

Asn N 4 4 6 7 2 5 6 4 6 3 2 5

Asp D 5 4 8 11 1 7 10 5 6 3 2 5

Cys C 2 1 1 1 52 1 1 2 2 2 1 1

Gln Q 3 5 5 6 1 10 7 3 7 2 3 5

...

Trp W 0 2 0 0 0 0 0 0 1 0 1 0

Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1

Val V 7 4 4 4 4 4 4 4 5 4 15 10

Bioinformatics Algorithms

PAM120

Each cell represents the

score given to a residue

paired with another

residue (row  column).

The values are given in

half-bits. The colored

shading indicates

different physicochemical

properties of the residues.

Small and polar

Small and non polar

Polar or acidic

Basic

Large and hydrophobic

Aromatic

Bioinformatics Algorithms

BLOCKS and BLOSUM matrices

• The BLOSUM matrices were derived from the database BLOCKS

[1]. Blocks are multiply aligned ungapped segments corresponding

to the most highly conserved regions of proteins.

• [1] Henikoff, S and Henikoff, JG (1992) Amino acid substitution

matrices from protein blocks. Proc Natl Acad Sci U S A.

89(22):10915-9. BLOCKS database server: http://blocks.fhcrc.org/

• For the scoring matrices of the BLOSUM (=BLOcks SUbstitution

Matrix) family all blocks of the database are evaluated columnwise.

For each possible pair of amino acids the frequency f (ai , aj) of

common pairs (ai , aj) in all columns is determined.

Bioinformatics Algorithms

BLOCKS and BLOSUM matrices

Bioinformatics Algorithms

BLOCKS and BLOSUM matrices

• Altogether there are possible pairs that we can draw from this

alignment. We now assume that the observed frequencies are

equal to the frequencies in the population. Then










2

n











2

n

observed
pab

Bioinformatics Algorithms

BLOCKS and BLOSUM matrices
Example

 Seq 1 A

Seq 2 A

Seq 3 A

Seq 4 A

Seq 5 A

Seq 6 A

Seq 7 A

Seq 8 A

Seq 9 A

Seq 10 C

Altogether there are 45 possible pairs that

we can draw from this alignment, of which

36 are AA and 9 are AC pairs. We now

assume that the observed frequencies are

equal to the frequencies in the population.

Then pAA = 36/45 and pCA = 9/45, pA = 9/10

and pC = 1/10.

Bioinformatics Algorithms

BLOCKS and BLOSUM matrices
Example

 • Different levels of the BLOSUM matrix can be created by

differentially weighting the degree of similarity between sequences.

For example, a BLOSUM62 matrix is calculated from protein blocks

such that if two sequences are more than 62% identical, then the

contribution of these sequences is weighted to sum to one.

• In this way the contributions of multiple entries of closely related

sequences is reduced.

• Standard values are BLOSUM50 up to BLOSUM80, with the

commonly used BLOSUM62 matrix. Note that lower BLOSUMx

values correspond to longer evolutionary time, and are applicable

for more distantly related sequences.

Bioinformatics Algorithms

BLOSUM62

• BLOSUM62 is scaled so that its values are in half-bits, i.e. the log-

odds were multiplied by 2 / log2 2 and then rounded to the nearest

integer value. E.g.

 A

A 4

R -1

 pa pb pab pab/ pa pb 2log2(pab/ pa pb)

A-

A

0.074 0.074 0.0215 3.926 3.946

A-

R

0.074 0.052 0.0023 0.598 -1.485

Bioinformatics Algorithms

BLOSUM62

Bioinformatics Algorithms

BLOSUM62
Each cell represents the

score given to a residue

paired with another

residue (row  column).

The values are given in

half-bits. The colored

shading indicates

different physicochemical

properties of the residues.

Small and polar

Small and non polar

Polar or acidic

Basic

Large and hydrophobic

Aromatic

Bioinformatics Algorithms

Alignment algorithms

• Given a scoring scheme, we need to have an algorithm that

computes the highest-scoring alignment of two sequences.

• As for the edit distance-based alignments we will discuss alignment

algorithms based on dynamic programming. They are guaranteed

to find the optimal scoring alignment.

• Note of caution: Optimal Pairwise alignment algorithms are of

complexity O(n · m) – can be too slow and heuristics (such as

BLAST, FASTA, MUMMER etc.) are then used that usually perform

very well, but will miss the best alignment for some sequence pairs.

• Depending on the input data, there are a number of different

variants of alignment that are considered, among them

• global alignment,

• local alignment and

• overlap alignment.

Bioinformatics Algorithms

Global alignment: Needleman-Wunsch

algorithm

• Saul Needleman and Christian Wunsch (1970), improved by Peter

Sellers (1974).

• Idea: Build up an optimal alignment using previous solutions for

optimal alignments of smaller substrings.

• Given two sequences X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym).

We will compute a matrix

 F : {1, 2, . . . , n} × {1, 2, . . . ,m}  R

• in which F(i, j) equals the best score of the alignment of the two

prefixes (x1, x2, . . . , xi) and (y1, y2, . . . , yj).

• This will be done recursively by setting F(0, 0) = 0 and then

computing F(i, j) from F(i − 1, j − 1), F(i − 1, j) and F(i, j − 1):

Bioinformatics Algorithms

Global alignment: Needleman-Wunsch

algorithm

   

   

 mnFx

jiFjiFx

jiFjiFx

x

yyyy

n

i

i

mjj

,

,1,

,11,1

0

0

1

1

11















Bioinformatics Algorithms

The recursion

 

   

 

 






















 


























j

i

j

i

 G G A

 A G A
gap a to aligns 1,

 G G A

 A G A
gap a to aligns ,1

 G G A

 A G A
 to aligns ,1,1

max,

y
ydjiF

x
xdjiF

y

x
yxyxsjiF

jiF

j

i

jiji

• We set

• F(i, 0) = − id for i=0,…,n

• F(0, j) = − jd for j=0,…,m

• The final score will be in F(n, m)

Bioinformatics Algorithms

Needleman-Wunsch algorithm

Input: two sequences X and Y

Output: optimal alignment and score

For i := 1, 2, . . . , n do F(i, 0) := −i · d

For j := 1, 2, . . . , m do F(0, j) := −j · d

For i = 1, 2, . . . , n do:

 For j = 1, 2, . . . , m do:

 Set

 Set backtrace T(i, j) to the maximizing pair (i’, j’)

The score is := F(n, m)

(i, j) := (n, n)

repeat

 if T(i, j) = (i − 1, j − 1) print

 else if T(i, j) = (i − 1, j) print

 else print

 (i, j) := T(i, j)

until (i, j) = (0, 0).

 

   
 
 
















djiF

djiF

yxsjiF

jiF

ji

1,

,1

,1,1

max,















j

i

y

x













 

jy












ix

Bioinformatics Algorithms

Complexity of Needleman-Wunsch

• Space (n+1)(m+1)

• Time

• O(nm) for filling the matrix

• O(m+n) for backtrace

• If we need the score only then the space complexity can be

reduced – how much?

Bioinformatics Algorithms

• Global alignment for similar (related) sequences only – whole sequences

should be similar, e.g. homologous genes from related species

• In some cases the score between substrings could be larger than the score

of the alignment between whole sequences – e.g. two proteins with

common domain, two genes in chromosomes of different species

 TCCCAGTTATGTCAGGGGACACGAGCATGCAGAGAC

AATTGCCGCCGTCGTTTTCAGCAGTTATGTCAGATC

• Let  be a score function for an alignment. A local alignment of two strings

X and Y is a global alignment of some substrings X’ (of X) and Y’ (of Y). An

alignment A of substrings X’ and Y’ is an optimal local alignment of X and Y

with respect to  if

 (A) = max A’=(X’,Y’) { (X’,Y’) | X’ is a substring of X, Y’ is a sub-string of Y }

Local alignment: Smith-Waterman

algorithm

Bioinformatics Algorithms

• Let X = AAAAACTCTCTCT and Y = GCGCGCGCAAAAA.

• Let s(a, a) = +1, s(a, b) = -1 and s(a,-) = s(-, a) = -2 be a scoring

function.

• The optimal local alignment

 AAAAA(CTCTCTCT)
 |||||
(GCGCGCGC)AAAAA

 in this case has a score 5

• The optimal global alignment

AAAAACTCTCTCT
 | |
GCGCGCGCAAAAA

 has score -11.

Local alignment – example

Bioinformatics Algorithms

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini” Global

Alignment to get Local

Bioinformatics Algorithms

• Smith, T. and Waterman, M. Identification of common molecular

subsequences. J. Mol. Biol. 147:195-197, 1981

• local alignment algorithm is a modification of the global alignment

algorithm – set the value of F(i, j) to zero, if all attainable values at

position (i, j) are negative:

Local alignment: Smith-Waterman

algorithm

 

 

   
 

 





















gap a to aligns 1,

gap a to aligns ,1

 to aligns ,1,1

one. old the extend to

than rather one,new a start to better is it then0

score, negative a has to up alignment best the

max,

j

i

jiji

ydjiF

xdjiF

yxyxsjiF

 i, j

jiF

Bioinformatics Algorithms

• Base conditions:

• F(i, 0) = 0 for i=0,…,n

• F(0, j) = 0 for j=0,…,m

• Traceback:

• Instead of starting the traceback at (n,m), we start it at the cell with the

highest score: argmax F(i, j). The traceback ends upon arrival at a cell

with score 0, which corresponds to the start of the alignment.

• Requirement: For this algorithm to work, we require that the

expected score for a random match is negative, i.e. that

 where pa and pb are the probabilities for seeing the symbol a or b

respectively, at any given position. Otherwise, matrix entries will

tend to be positive, producing long matches between random

sequences.

Local alignment: Smith-Waterman

algorithm

 
S


ba

ba baspp
,

0,

Bioinformatics Algorithms

Affine Gap Penalties

• In nature, a series of k indels often come as a single event rather

than a series of k single nucleotide events:

Normal scoring would

give the same score for

both alignments
This is more

likely.

This is less likely.

ATA__GC

ATATTGC

ATAG_GC

AT_GTGC

Bioinformatics Algorithms

Gap penalties

• Gaps are undesirable and thus penalized. The standard cost

associated with a gap of length g is given either by a linear score

 or an affine score

 where d is the gap open penalty and e is the gap extension penalty.

• Usually, e < d, with the result that less isolated gaps are produced,

as shown in the following comparison:
 Linear gap penalty: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

 GSAQVKGHGKK--------VA--D----A-SALSDLHAHKL

 Affine gap penalty: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

 GSAQVKGHGKKVADA---------------SALSDLHAHKL

  gdg 

    ,1 egdg 

Bioinformatics Algorithms

Affine-gap algorithm

• Instead of using one matrix F(i, j) to represent the best score

attainable up to xi and yj , we will now use three matrices M, Ix and

Iy:

• M(i, j) is the best score up to (i, j), given that xi is aligned to yj ,

• Ix(i, j) is the best score up to (i, j), given that xi is aligned to a gap, and

• Iy(i, j) is the best score up to (i, j), given that yj is aligned to a gap.

• Initialization:

M(0, 0) = 0, Ix(0, 0) = Iy(0, 0) = −

Ix(0, j) = −d − (j − 1) e, M(0, j) = Iy(0, j) = − , for i = 1, … , m, and

Iy(i, 0) = −d − (i − 1) e, M(i, 0) = Ix(i, 0) = − , for j = 1, …, n.

• We make the assumption that a gap in one sequence is not

immediately followed by a gap in the other. This is true for the

optimal path, if −d − e is less than the lowest mismatch score.

Bioinformatics Algorithms

Affine-gap algorithm

• M(i, j) is the best score up to (i, j), given that xi is aligned to yj ,

• Ix(i, j) is the best score up to (i, j), given that yj is aligned to a gap in X, and

• Iy(i, j) is the best score up to (i, j), given that xi is aligned to a gap in Y.

• Recursion:

 
 
 

 
 
 

 

   
   
   


































YyxsjiI

XyxsjiI

yxsjiM

jiM

YejiI

YdjiM
jiI

XejiI

XdjiM
jiI

jiy

jix

ji

y

y

x

x

 in gap end;,1,1

 in gap end;,1,1

mismatch or match,,1,1

max,

 in gap continue;,1

 in gap begin,,1
max,

 in gap continue;1,

 in gap begin,1,
max,

Bioinformatics Algorithms

Affine-gap algorithm
Example

 
 
    1 ,1 for 1

1,

1,







edegdg

bas

aas



Bioinformatics Algorithms

Simplification of the affine-gap

algorithm
• Use only 2 matrices

• M (corresponding to alignment) and

• I corresponding to indel

• Recursion:

• Gives the same result if the lowest mismatch score is > −2e.

 

 
 
 

 

 
   

   
































YXyxsjiI

yxsjiM
jiM

XejiI

XdjiM

YejiI

YdjiM

jiI

ji

ji

 in or in gap end;,1,1

mismatch or match,,1,1
max,

 in gap continue;1,

 in gap begin,1,

 in gap continue,,1

 in gap begin,,1

max,

Bioinformatics Algorithms

Simplification of the affine-gap

algorithm
• Even if the lowest mismatch score is ≤ −2e then the difference in

score and alignment will be insignificant (in a poorly matched

gapped region):
• Assume that the original algorithm (using M, Ix and Iy) produces the

following optimal alignment:

xxxx---axxxxxxxx
yyyyyyyb----yyyy

• If s(a, b) < −2e, then the modified algorithm (using M and I) will

produce the following higher scoring alignment, adding a gap before a

and one after b:

xxxx----axxxxxxxx
yyyyyyyb-----yyyy

• However, situations in which is directly followed by (or vice-

versa) are uninteresting and so the original algorithm rules them out.








 

b 










a

Bioinformatics Algorithms

Alignment in linear space
(for global alignment)

 0 m/2 m

0

r

 n

• Computing the best score in linear space – easy.

• Problem: we must replace the trace-back matrix

• Idea: Divide et impera!

• For the best score F(n,m) compute through which row r of the middle column

m/2 the optimal trace passed.

• Then recursively compute optimal trace from (0,0) to (r, m/2) and from

(r, m/2) to (n,m).

Bioinformatics Algorithms

Alignment in linear space
(for global alignment)

• Time complexity:
• We first look at cells, then at cells, then at cells

etc. Further

 this algorithm is only twice as slow as the quadratic-space one!

• Space complexity: O(n)

mn1 mn
2

1
mn

4

1

mnmn
n

i
i

2
2

1

0




Bioinformatics Algorithms

Can we do better?

• All considered variants till now have time complexity O(mn) and space

complexity O(mn).

• For simplicity, we consider DNA sequences, assume n = m and use a linear

gap score d.

• Idea: Instead of computing the whole matrix F, use only a band of cells

along the main diagonal:

• Let 2k denote the height of the band. Obviously, the time complexity of the

banded algorithm will be O(kn).

• Questions: Will this algorithm produce an optimal global alignment? What

should k be set to?

k

k

Bioinformatics Algorithms

KBand algorithm

• Input: two sequences X and Y of equal length n, integer k

• Output: the best score a of global alignment at most k diagonals away

from the main diagonal

• Computation:

Set F(i, 0) := -i · d for all i = 0, 1, 2, . . . , k.

Set F(0, j) := -j · d for all j = 1, 2, . . . , k.

for i = 1 to n do

for h = -k to k do

j := i + h

if 1  j  n then

 F(i, j) := F(i - 1, j - 1) + s(xi, yj)

 if insideBand(i - 1, j, k) then

 F(i, j) := max{F(i, j), F(i - 1, j) - d}

 if insideBand(i, j - 1, k) then

 F(i, j) := max{F(i, j), F(i, j - 1) - d}

return F(n, n)

To test whether (i, j) is inside the

band, we use:

insideBand(i, j, k) := (−k  i − j  k).

Bioinformatics Algorithms

KBand algorithm

• Given two sequences X and Y of the same length n. Let M be the

maximal match score (for two symbols) and d the gap penalty.

• Question: Let k be the best score obtained using the KBand

algorithm for a given k. When is k equal to the optimal global

alignment score ?

• Lemma: If k  M(n – k – 1) – 2(k + 1)d, then k =  .

• Proof: If there exists an optimal alignment with score  that does

not leave the band, then clearly k =  . Else, all optimal alignments

leave the band somewhere. This requires insertion of at least k+1

gaps in each sequence, and allows only at most n – k – 1 matches,

giving the desired bound.

Bioinformatics Algorithms

KBand algorithm

The following algorithm computes an optimal alignment by repeated

application of the KBand algorithm, with larger and larger k:

Input: two sequences X and Y of the same length n

Output: an optimal global alignment of X and Y

Computation:

k := 1

repeat

Compute k using KBand

if k  M(n − k − 1) − 2(k + 1)d then

return k
k := 2k

end

Bioinformatics Algorithms

KBand algorithm – time complexity

The algorithm terminates when:

At this point, the total complexity is:

 n + 2n + 4n + . . . + kn  2kn.

 So far, this doesn’t look better than nn. To bound the total

complexity, we need a bound on k. When the algorithm stops for k,

we must have:

   
 

   

k
dM

Mn

kdMdMMn

kdMdMMn

dkknM

k

k

k

k












1
2

22

22

121









1
22

2/ 





dM

Mnk k

Bioinformatics Algorithms

KBand algorithm – time complexity

There are two cases:

 If k/2 =k= , then

Otherwise, k/2 < k= . Then any optimal alignment must have

more than k/2 spaces, and thus

As M+2d is a constant, it follows that k is bounded by O(), with

 =Mn – , and thus the total bound is O( n).

In consequence, the more similar the sequences, the faster the KBand

algorithm will run!

1
22

2/ 





dM

Mnk k














 1

2
2

dM

Mn
k


































 1

2
21

2
21

2 dM

Mn
kd

kk
nM




Bioinformatics Algorithms

Using KBand algorithm
finding high identity alignments

• We can use the KBand algorithm as a fast method for finding high-

identity alignments:
• If we know that the two input sequences are highly similar and we

have a bound b on the number of gaps that will occur in the best

alignment, then the KBand algorithm with k = b will compute an

• optimal alignment.

• For example, in forensics, one must sometimes determine whether

a sample of human mtDNA obtained from a victim matches a

sample obtained from a relative (or from a hair brush etc). If two

such sequences differ by more than a couple of base-pairs or gaps,

then they are not considered a match.

Bioinformatics Algorithms

Alignments

