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Comparing genome

What is a genome? The complete inventory of all heritable nucleic
acids that determines the genetic identity of an organism is called
genome.

Viral genomes — DNA and RNA viruses.
Bacteria — Circular DNA.
Eukaryotes — distributed over linear DNA pieces (chromosomes).
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Types of comparison

Within-genome comparisons focus on the genome of a single
species.

Variations on base composition

k-tuple frequency

gene density

numbers and kinds of transposable elements
numbers and kinds of segmental duplications.

Between-genome comparisons employ closely related species for
identifying

conserved genes

gene structure and organization

control elements

More distantly related species are used for phylogenetic profiling.
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Compositional measures

k -tuple compositions of genomes are not uniformly distributed along
the genome.

Take k = 1 as an example: In the human genome, gene-rich regions
typically have a higher %G+C content than gene-poor regions.

A statistics for prokaryotic genomes is the GC skew:

g
o

where w Is a sequence window.
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\Properties of the Yersinia pestis(mor)
genome .
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Codon usage

Tyr
tRNA |
C= e O
/ LP\P
U ¢ A anticodon AUG
5" A G U codon UAC mRNASJ
2nd base in codon
Phe | Ser Tyr Cys U
U Phe | Ser Tyr Cys C w
5 Leu | Ser | STOP |[STOP | A o
'g Leu | Ser | STOP| Tmp G 4
o Leu | Pro His Arg U o
£ C Leu | Pro His Arg C 5
a Leu | Pro Gln Arg A 0
s Leu | Pre | GIn | ag | G 2
= lle Thr Asn Ser ] g
- A lle Thr Asn Ser C
lle Thr | Lys Arg A
Met | Thr Lys Arg G
Val Ala | Asp Gly U
G val Ala | Asp Gly C
Val Ala Glu Gly A
Val Ma | Glu Gly G
The Genetic Code

www.bioalgorithms.info

0.4 DZP op clade
o m |
o E ; |
0.3 - IVa
NB
| SR>S<SS ¢ O Vb
oV
0.2 - .
+
O +4+ 0 = O
0.1 - o +ogm m &
O 4+ n
- + n
0 T T T T T T T T T T T
0 01 02 03 04 05 06 07

average GC3s

Differences among species in selection on codon usage.
Average of positive ARSCU values (differences in codon
usage for highly and lowly expressed genes) per
species indicate that 6 species have particularly strong
selection on codon bias, spanning low, medium, and
high GC-content genomes. Symbols indicate different
clades within the nematode phylogeny.
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Gene content

Prerequisite: Gene annotation (usually via HMMs; will be later).
Total no. of predicted genes
No. of genes duplicated
Total no. of distinct families

Octomilka,
Hadatko Octova
Kvasnice (dIhé muska

na
vyrobu

1mm)

drozofila

Prva

sekveno peciva O
Op % O
o
H. influenzae S. cerevisiae C. elegans D me?am}gasrer
Total no. of predicted genes 1709 6241 18424 13601
MNo. of genes f.::IU|::1|iu:atea.::!1 284 1858 8971 5536

Total no. of distinct families® 1425 4383 9453 B065
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Gene content

Number of genes

% of coding

Gene size (average bp)
Exon size (average bp)
Exons/gene (average)

Coding or non-coding sequence (RNA versus protein coding genes).

Arabovka Thalova,
husenicek rolni
O

OO

S. cerevisiae  C. elegans D melanogaster A thaliana  H. sapiens
No. of genes 5,500 18,400 13,600 26,400 25,000
% Coding 70 27 20 26.3 1.2
Gene size (average bp) 1450 2700 3250 1970 27,000
Exon size (average bp) 1450 240 425 164 145
Exons/gene (average) 1 6 4 5.2 9.5
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Clustering Gene Content

Vectors of the same length could be clustered.

Based on a 77 xn distance matrix, a hierarchical clustering can be
performed. This method builds the hierarchy from the individual

elements by progressively merging “closest” clusters. Distance
between clusters A, 5 can be computed in various ways:

complete linkage clustering: max {d(x,y)|xcA y B}
single linkage clustering: min {d(x,y) | xcAycB}
average linkage clustering:

card (A) card(B) 2, 2 dx.y)

xeA yeB
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\ Turnip vs. Cabbage: Look and Taste
Different

- Although cabbages and turnips share a recent common ancestor,
they look and taste different

Kapusta
(SK),
zeli (CZ
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Turnip vs Cabbage: Almost Identical
MtDNA gene sequences

In 1980s Jeffrey Palmer studied evolution of plant organelles by
comparing mitochondrial genomes of the cabbage and turnip

99% similarity between genes

These surprisingly identical gene sequences differed in gene
order

This study helped pave the way to analyzing genome
rearrangements in molecular evolution
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\Turnip vs Cabbage: Different mtDNA
Gene Order

- Gene order comparison:

B L
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\Turnip vs Cabbage: Different mtDNA
Gene Order

- Gene order comparison:

D,
¢
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\Turnip vs Cabbage: Different mtDNA
Gene Order

- Gene order comparison:
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\Turnip vs Cabbage: Different mtDNA
Gene Order

- Gene order comparison:

D G
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\Turnip vs Cabbage: Different mtDNA
Gene Order

- Gene order comparison:

B 4
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\Turnip vs Cabbage: Different mtDNA
Gene Order

Gene order comparison:

Before

After

B L

<

Y .

- Evolution is manifested as the divergence in gene order
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\Transforming Cabbage into Turnip

B. oleracea
(cabbage)

B. campestris
(turnip)
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1 g 1 g 1 g |
-5 -3 2

Q=2

[ 1 »le B | »le —la B |

1 g 1 g L 1
-5 -3 -2

Q=2

[ 1 »le —la —la —la B |

1 g L 1 L 1
-5 -3 -2

\ *
[ 1 N | N | N | N | N |
1 g | g | g | g | g |
2 4 5
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Genome rearrangements

Mouse (X chrom.)
- ———-—-— ——a———

Unknown ancestor /
~ 75 million years agO\

— (- > ——— > —
Human (X chrom.)

What are the similarity blocks and how to find them?

What is the architecture of the ancestral genome?

What is the evolutionary scenario for transforming one genome into the
other?
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History of Chromosome X

(XBMAIXIX (XI0X)
«qqmmmm )

(O 4 O 0

(O CRTX IR0 X D)

(LU IXTR0 XD
QUMD IDD
(CIXTTE] TX TSR XD

PRDIRRODDODDIRDRD (“»NDNDGDD(]W)

Human Mouse Rat

Rat Consortium, Nature, 2004
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Reversals
1
P
1, 2, 3,

Blocks represent conserved genes.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals
1 K

1,2,3,-8,-7,-6,-5,-4,9, 10

Blocks represent conserved genes.

In the course of evolution or in a clinical context, blocks 1,...,10
could be misread as 1, 2, 3, .9, 10.
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\Reversals and Breakpoints

1,2,3,-8,-/,-6,-5-4,9,10

The reversion introduced two breakpoints Q&
(disruptions in order).
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\ Reversals: Example

5" ATGCCTGTACTA 3’
3’ TACGGACATGAT 5’

Break ~
and l
Invert 5" ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’
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\Types of Rearrangements

Reversal
123456 P 12-5-4-36
Translocation
123 - 126
45 6 4 53
Fusion
1234 Emp
123456
5 6 <
Fission - .

—__Stiepenie >
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‘Comparative Genomic Architectures:
Mouse vs Human Genome

Humans and mice have similar
genomes, but their genes are
ordered differently
~245 rearrangements
Reversals
Fusions
Fissions
Translocation

Human chromosomes
&

@
T : B -
e R




An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s Syndrome: Mouse
Provides Insight into Human Genetic
Disorder

Waardenburg’s syndrome is characterized by pigmentary dysphasia

Gene implicated in the disease was linked to human chromosome 2
but it was not clear where exactly it is located on chromosome 2
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Waardenburg’s syndrome and splotch
mice

A breed of mice (with splotch gene) had similar symptoms caused
by the same type of gene as in humans

Scientists succeeded in identifying location of gene responsible for
disorder in mice

Finding the gene in mice gives clues to where the same gene is
located in humans
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\Comparative Genomic Architecture of
Human and Mouse Genomes

To locate where

corresponding gene is in
humans, we have to
analyze the relative
architecture of human
and mouse genomes

Mouse

7 8 9 W0n

(b) Arrangement of human and mouse synteny blocks

12 13 1415 16 17 1819 X

1 2 J 4 S5 6

2 J B 5 6 7 8

9 10 11 12 13 14 15 16 171819202122 X
Human
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Reversals and Gene Orders

Gene order is represented by a permutation z:

T = 72'1 72'/_1 72'/'72'/'_|_1 72:]_172:'] 72:,_'_1 72'/7

pd,)) l

72-1... 72'/'_1 72']'72']'_1 7Z'J'+17Z'/'7Z'j+1 72-/7

Reversal p (/, j) reverses (flips) the elements from / to j in =
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\ Reversals: Example

r=12345678

p(3,5) l
12543678
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\ Reversals: Example

r=12345678

p(3,5) l
12543678
p(5,6) l

12546378
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Reversal Distance Problem

Goal: Given two permutations, find the shortest series of reversals
that transforms one into another

Input: Permutations 7 and o

Output: A series of reversals p 4, ..., p, transforming = into o, such
that ¢ is minimum

t - reversal distance between rand o
d (r, o) - smallest possible value of ¢, given r and ¢
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Sorting By Reversals Problem

Goal: Given a permutation, find a shortest series of reversals that
transforms it into the identity permutation (12 ... n )

Input: permutation =

Output: a series of reversals p ,, ..., p, transforming = into the
identity permutation such that ¢ is minimum

t=d(x) - reversal distance of =
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Sorting By Reversals: Example

t=d(r) - reversal distance of =

Example :

T =3421567109 8
4321567109 8
4321567 8910
1234567 8910

Sod(x)=3

Question: how to find d(r)



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals:
A Greedy Algorithm

If sorting permutation 7= 1 2 3 6 4 5, the first three elements are
already in order so it does not make any sense to break them.

The length of the already sorted prefix of = is denoted prefix ()
prefix (r) = 3

This results in an idea for a greedy algorithm: increase prefix () at
every step

123645 — 123465123456

Number of steps to sort permutation of length n is at most (n — 1)
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Analyzing SimpleReversalSort

SimpleReversalSort does not guarantee the smallest number of
reversals and takes 5 stepson 7=612345:

Step1:162345 Stepl: 543216
Step2:126345 Step2: 123456
Step3:123645
Step4:123465
Step5:123456

SimpleReversalSort optimal solution — 2 steps
5 steps
So, SimpleReversalSort(z) is not optimal
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Approximation Algorithms

Optimal algorithms are unknown for many problems;
approximation algorithms are used.

These algorithms find approximate solutions rather than optimal
solutions.

The approximation ratio of an algorithm A on input = is:
A(rz) /] OPT(r)
where
A () - solution produced by algorithm A
OPT( ) - optimal solution of the problem
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\Approximation Ratio/Performance
Guarantee

Approximation ratio (performance guarantee) of algorithm A: max
approximation ratio of all inputs of size n

For algorithm A that minimizes objective function (minimization
algorithm):
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Approximation Ratio/Performance
Guarantee

Approximation ratio (performance guarantee) of algorithm A: max
approximation ratio of all inputs of size n

For algorithm A that minimizes objective function (minimization
algorithm):
For maximization algorithm:
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Approximation Ratio/Performance
Guarantee

Approximation ratio (performance guarantee) of algorithm A: max
approximation ratio of all inputs of size n

For algorithm A that minimizes objective function (minimization
algorithm):
For maximization algorithm:

For A = SimpleReversalSort()
max, , - , SimpleReversalSort(z) / OPT (n) > (n—1)/ 2
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Adjacency & Breakpoints

T= T T y.. . Ty 1 7T,

* An adjacency — a pair of adjacent elements 7, and r;, , that are
consecutive ma=mxl

* A breakpoint — a pair of adjacent elements that are not consecutive

t=562134 » Extendnwithn y,=0andn, =7
adjacencies
0 5l6 2l1 3l4 /
! ! o

breakpoints
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\Reversal Distance and Breakpoints

T

Each reversal eliminates at most 2 breakpoints.

231465
012 3l1lale 517
013 2lal6 517
0123 4l6sl7

01234567

b(z)=5
b(z)=4
b(z)=2
b(z)=0
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\Reversal Distance and Breakpoints

T

Each reversal eliminates at most 2 breakpoints.
This implies:

reversal distance = #breakpoints /2
231465
0l2 3l1l4l6 517
013 2l4l6 517
0123416517

01234567

b(z)=5
b(z)=4
b(z)=2
b(z)=0
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Sorting By Reversals: A Better Greedy
Algorithm

BreakPointReversalSort( )
while 6(7z) > 0
Among all possible reversals, choose reversal p
minimizing b (7o p)
n& mop(l])
output

return

Problem: how good it approximates d(»)
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\ Strips

o

Strip: an interval between two consecutive breakpoints in a
permutation klesajuci pas

Decreasing strip: strip of elements in decreasing order (e.g. 6 5

and 3 2). rastlci _pas
Increasing strip: strip of elements in increasing order (e.g. 7 8)

01943782561

— > ——> —>

A single-element strip can be declared either increasing or decreasing.
We will choose to declare them as decreasing with exception of the
strips with 0 and n+1
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Reducing the Number of Breakpoints

Theorem 1:

If permutation 7 contains at least one decreasing strip, then there
exists a reversal p which decreases the number of breakpoints

(i.e. b(zo p) <b(x)).
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Things To Consider

Forr =14657832
0 1/4 6 5|7 8I3 219 b(z)=5

Choose decreasing strip with the smallest element k in 7
(k =2 in this case)
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Things To Consider (contd)

Forr =14657832
0 1/4 6 5|7 8I3 219 b(z)=5

Choose decreasing strip with the smallest element k in 7
(k =2 in this case)
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Things To Consider (contd)

For =14657832
0 114 6 5|7 813 219 b(z)=5

Choose decreasing strip with the smallest element k in 7
(k =2 in this case)

Find k — 1 in the permutation — it is in an increasing strip!
- Where are breakpoints adjacenttok and k — 1 ?
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Things To Consider (contd)

Forr =14657832
01146 5|7 813219 b(x)=5
Choose decreasing strip with the smallest element k in 7
(k =2 in this case)
Find k — 1 in the permutation — it is in an increasing strip!
- Where are breakpoints adjacentto k and k — 1 ?
Reverse the segment between k and k — 1:

01l4)6 5(7 8|3 2|9 b(z)=5

—>

|
g. 0123|87|56]a] b(rz) =4

b
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Reducing the Number of Breakpoints
Again

If there is no decreasing strip, there may be no reversal p that
reduces the number of breakpoints (i.e. b(z- p) = b(x) for any
reversal p).

By reversing an increasing strip (# of breakpoints stay unchanged), we

will create a decreasing strip at the next step. Then the number of
breakpoints will be reduced in the next step (Theorem 1).
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Things To Consider (contd)

There are no decreasing strips in 7, for:

7=012[567|34[8 b(n)=3

p(6,7)
7=012[567|43[8 bn)=3

p (6,7) does not change the # of breakpoints

p (6,7) creates a decreasing strip thus guaranteeing that the next
step will decrease the # of breakpoints.
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ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort( )
while 6(7z) >0
iIf 7 has a decreasing strip

Among all possible reversals, choose reversal p that
minimizes b (7o p)

else
Choose a reversal p that flips an increasing strip in =
T&E o p
output
return
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ImprovedBreakpointReversalSort:
Performance Guarantee

ImprovedBreakPointReversalSort is an approximation algorithm
with a performance guarantee of at most 4

It eliminates at least one breakpoint in every two steps; at most
2b(n) steps

Approximation ratio: 2b(z) /d(x)

Optimal algorithm eliminates at most 2 breakpoints in every step:
d(z)=b(z)/2

Performance guarantee:
(2b(x) | d(z) 2 [2b(x) | (b(z) ] 2)] = 4
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\Signed Permutations

Up to this point, all permutations to sort were unsigned

But genes have directions... so we should consider signed
permutations
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Breakpoint Graph

1) Represent the elements of the permutation z=23 1465 as
vertices in a graph (ordered along a line)

1) Connect vertices in order given by 7 with black edges (black path)

1) Connect vertices in order given by 1 2 3 4 5 6 with grey edges
(grey path)

4) Superimpose black and grey paths
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Two Equivalent Representations of
the Breakpoint Graph

 Consider the following Breakpoint Graph

« If we line up the gray path (instead of black path) on a horizontal
line, then we would get the following graph

* Although they may look different, these two graphs are the same
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What is the Effect of the Reversal ?

How does a reversal change the breakpoint graph?

* The gray paths stayed the same for both graphs
* There is a change in the graph at this point
* There is another change at this point

* The black edges are unaffected by the reversal so they remain the
same for both graphs

Before: 02 3 7

After: 023 4
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Estimating reversal distance by
Cycle Decomposition

« Areversal removes 2 edges (red) and replaces them with 2 new
edges (blue)

* A breakpoint graph can be decomposed into cycles that have
edges with alternating patterns (solid / dashed).

« What effects have reversal on these cycles ?
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Effects of Reversals

Case 1:

Both edges belong to the same cycle

« Remove the center black edges and replace them with new black
edges (there are two ways to replace them)

a) After this replacement, there now exists 2 cycles instead of 1 cycle

mmp C(70)—C(7)=1 < ‘>

N——

a4
This is called a proper reversal T 5T
since there’s a cycle increase
after the reversal,
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Effects of Reversals

Case 1:

Both edges belong to the same cycle

« Remove the center black edges and replace them with new black
edges (there are two ways to replace them)

a) After this replacement, there now exists 2 cycles instead of 1 cycle

b) Or after this replacement, there still exists 1 cycle

.’/’ RES

mmp C(7p)—C(7)=0 S

N——

Therefore, after the reversal a S
c(nmp)—c(r)=0o0rl < >< >
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Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

* Remove the center black edges and replace them with new black edges

* After the replacement, there now exists 1 cycle instead of 2 cycles
mmp C(p)-—c(n)=-1 < >< >
Therefore, for every permutation 4

7 and reversal p B
C(rmp)—c(r)<-1 < >

N——
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Reversal Distance and Maximum
Cycle Decomposition

» Since the identity permutation of size 7 contains the maximum
cycle decomposition of n+1, c(/identity) = n+1

o ¢ (/dentity ) — ¢ (n) equals the number of cycles that need to be
“added” to ¢ () while transforming 7 into the identity

« Based on the previous theorem, at best after each reversal,
the cycle decomposition could increase by one, then:
d(r)=c(idgentity) —c(x)=n+1—-c(n)

* Yet, not every reversal can increase the cycle decomposition
mmm) 7herefore, d(n)>n+1—c(n)

For most biological systems the equality holds
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The Complexity Reversal Distance

« 1997 - Alberto Caprara: Sorting by reversals is difficult. RECOMB
1997, ACM Press, 75-83.
« Computing reversal distance is NP-hard!

« Surprisingly, signed version of the problem is of polynomial
complexity
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Signed Permutation

Genes are directed fragments of DNA and we represent a
genome by a signed permutation

If genes are in the same position but there orientations
are different, they do not have the equivalent gene order

For example, these two permutations have the same
order, but each gene’s orientation is the reverse;
therefore, they are not equivalent gene sequences



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutation

The polynomial algorithm for computing signed reversal sorting
1. Basic sorting until we get a positive permutation.

2. If the permutation is not sorted then continue with hurdles
removal.
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Basic sorting

As usual, we will assume that « is framed by 0 and n + 1, and that
those extra elements are always positive:

n=0mnmn,..n,"n+1)
An oriented pair (w;, ;) /s a pair of consecutive integers, that is | m;|
= | m; | = £1, with opposite signs, i.e. m; + m; = £1.
Example
(0316 5-247)
(0316 5-247) # pair (1,-2) induces reversal
(0312-5-647)
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Basic sorting

An oriented pair (m;, 7y ) /s a pair of consecutive integers, that is | m|
- | n; | = £1, with opposite signs, i.e. m; + m; = £1.

j
Example
(03165-247)

(03165-247)# pair (1,-2) induces reversal
(0312-5-647)

In general, the reversals by an oriented pair will be:

(03165-247)>(0-5-6-1-3-247)

(031-65-247)—>(03142-567)

(03165-247)—>(0312-5-6 47)
(0-3165247)>(0-3-2-5-6-147)
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Reversal score and basic sorting

The score of an (oriented) reversal is defined as the number of
oriented pairs in the resulting permutation.

Example
(0 316 5-247)reversal p(1,4)
(0-5-6-1-3-247)score4!
Basic sorting: As long as =« has an oriented pair, choose the
oriented reversal that has maximal score.
Example
Step1: (0 3 1 6 5-2 4 7) two oriented pairs (1,-2) and (3,-2) with
score 2 and 4.
Step 2: (0-5-6-1-3-2 4 7) pairs (0,-1),(-3,4),(-5,4) and (-6,7)
Step3: (0-5-6-1 2 3 4 7) pairs (0,-1),(-1,2),(-5,4) and (-6,7)
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Basic sorting cont.

(0-5-6 1 2 3 4 7)
(0-5-4-3-2-1 6 7)
(O 1 2 3 4 5 6 7)

This elementary strategy of Basic sorting is sufficient to optimally
sort almost all permutations that arise from biological data!

Claim 1: Basic sorting applies k reversals to a permutation T,
yielding a permutations «’ such that d () = d (7)) + k

1. Basic sorting until we get a positive permutation

2. If the permutation is not sorted then continue with hurdles
removal
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Sorting positive permutations

Such permutations are called reduced if they do not contain
consecutive elements.

How to reduce a permutation?

LN

4 3617

11 12)

We suppose circular order by setting 0 to be successor of n+1

Framed interval: encompasses all integers between i and i+k
belong to the interval [i . . . i + K].

Consider permutation: (02543617). The whole permutation is a
framed interval, as well as 25436 and, by circularity, 61702.
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Tough regions: Hurdles

A hurdle in rt is a framed interval that contains no shorter framed
interval.

When a permutation has only one or two hurdles, one reversal is
sufficient to create enough oriented pairs to completely sort the
permutation with Basic sorting.

Two operations break hurdles: /urdle cutiing and hurdle merging.
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\ Breaking Hurdles

Hurdle cuffing: Reversing segment between /and /+ 1 of a hurdle:
[...07+1.../+Kk
024315->5(0-3-49-2105)

which can be sorted in 4 reversals.

Hurdle merging.: Merging the end points of two hurdles.
[...1+k...0["...["+KkK
(02543617)—>(02543-617)

which can be sorted in 5 reversals.
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Super Hurdles

A simple hurdle is a hurdle whose cutting decreases the number of
hurdles. Hurdles that are not simple are called super hurdles.

Example

(0254361 7)has two hurdles; after cutting and sorting the hurdle
25436
2-4-5 36
2-4-3 56
23456

weget(02345617)—itcollapses to (0 2 1 3) (a reduction!) and
has only one hurdle.

(02435168 79)also contains two hurdles; after cutting and
sorting the hurdle 2 4 3 5 the resulting reduced permutation has still
two hurdles (023451687 9) >quction (02 13546)
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Breaking Hurdles

Hurdles removal: If a permutation has 2k hurdles, k > 2, merge any
two non-consecutive hurdles. If a permutation has 2k + 1 hurdles,

k > 1, then if it has one simple hurdle, cut it; If it has none, merge
two non-consecutive hurdles, or consecutive ones if k = 1.

For proofs of all the algorithms and claims — see:

A very elementary presentation of the Hannenhalli-Pevzner Theory by
Anne Bergeron http://citeseer.ist.psu.edu/599900.html

Maximal exposure can be obtained from: Efficient algorithms for
multichromosomal genome rearrangements by Glen Tesler
http://math.ucsd.edu/gptesler/pub_jcss.html
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GRIMM Web Server

GRIMM web server computes
the reversal distances between
signed permutations:
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GRIMM - Genome rearrangement algorithms
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GFRIMM 1.04 by Glenn Teslar, University of California, San Diego.
Copyright @ 2001-2002, The Wniversity of Califarnia.
Contains code from GRAFPFA, ® Z000-2001, The University of Hew hMexico and The University of Texas at Austin.

MER 1.0 by Zujllaume Bourgue, University of Southern California.
Copyright @ 2001, University of Southern California.
Contains code from Bhylip 3.5, Copyright @ 1026-1905 by Joseph Felsenstein and the University of Washingtan.

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM




