
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Sequence comparison by

compression

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motivation

• similarity as a marker for homology. And homology is used to infer
function.

• Sometimes, we are only interested in a numerical distance between
two sequences. For example, to infer a phylogeny.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Text- vs DNA compression

• compress, gzip or zip – routinely used to compress text files.
They can be applied also to a text file containing DNA.

• E.g., a text file F containing chromosome 19 of human in fasta
format – |F |= 61 MB, but |compress(F)|= 8.5 MB.

• 8 bits are used for each character. However, DNA consists of only 4
different bases – 2 bits per base are enough: A = 00, C = 01, G =
10, and T = 11.

• Applying a standard compression algorithm to a file containing DNA
encoded using two bits per base will usually not be able to
compress the file further.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The repetitive nature of DNA

• Take advantage of the repetitive nature of DNA!!

• LINEs (Long Interspersed Nuclear Elements), SINEs.

• UCSC Genome Browser: http://genome.ucsc.edu

http://genome.ucsc.edu/

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA compression

• DNA sequences are very compressible, especially for higher
eukaryotes: they contain many repeats of different size, with
different numbers of instances and different amounts of identity.

• A first idea: While processing the DNA string from left to right,
detect exact repeats and/or palindromes (reverse-complemented
repeats) that possess previous instances in the already processed
text and encode them by the length and position of an earlier
occurrence. For stretches of sequence for which no significant
repeat is found, use two-bit encoding. (The program Biocompress is
based on this idea.)

• Data structure for fast access to sequence patterns already encountered.

• Sliding window along unprocessed sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA compression

• A first idea: While processing the DNA string from left to right,
detect exact repeats and/or palindromes (reverse-complemented
repeats) that possess previous instances in the already processed
text and encode them by the length and position of an earlier
occurrence. For stretches of sequence for which no significant
repeat is found, use two-bit encoding. (The program Biocompress is
based on this idea.)

• Data structure for fast access to sequence patterns already encountered.

• Sliding window along unprocessed sequence.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

DNA compression

• A second idea: Build a suffix tree for the whole sequence and use

it to detect maximal repeats of some fixed minimum size. Then code

all repeats as above and use two-bit encoding for bases not

contained inside repeats. (The program Cfact is based on this idea.)

• Both of these algorithms are lossless, meaning that the original

sequences can be precisely reconstructed from their encodings. An

number of lossy algorithms exist, which we will not discuss here.

• In the following we will discuss the GenCompress algorithm due to

Xin Chen, Sam Kwong and Ming Li.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit operations

• The main idea of GenCompress is to use inexact matching,
followed by edit operations. In other words, instances of inexact
repeats are encoded by a reference to an earlier instance of the
repeat, followed by some edit operations that modify the earlier
instance to obtain the current instance.

• Three standard edit operations:

1. Replace: (R, i, char) replace the character at position i by
 character char.

2. Insert: (I, i, char) insert character char at position i.

3. Delete: (D, i) delete the character at position i.

Positions numbered from 0.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit operations

• different edit operation sequences:

• (a) CCCCRCCCCC or (b) CCCCDCICCCC
 gaccgtcatt gaccgt catt

 gaccttcatt gacc ttcatt

• infinite number of ways to convert one string into another.

• Given two strings q and p. An edit transcript (q, p) is a list of edit
operations that transforms q into p.

• E.g., in case (a) the edit transcript is:

 (gaccgtcatt,gaccttcatt) = (R, 4,t),

• whereas in case (b) it is:

 (gaccgtcatt,gaccttcatt) = (D, 4), (I, 5, t).

 (positions start at 0 and are given relative to current state of the
string, as obtained by application of all preceding edit operations.)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Encoding DNA

1. Using the two-bit encoding method, gaccttcatt can be

encoded in 20 bits:

 10 00 01 01 11 11 01 00 11 11

 g a c c t t c a t t

 The following three methods encode gaccttcatt relative to

gaccgtcatt:

2. In the exact matching method we use a pair of numbers

(repeat − position, repeat − length) to represent an exact repeat. We
can encode gaccttcatt as (0, 4), t, (5, 5), relative to
gaccgtcatt. Let 4 bits encode an integer, 2 bits encode a base

and one bit to indicate whether the next part is a pair (indicating
a repeat) or a base. We obtain an encoding in 21 bits:

0 0000 0100 1 11 0 0101 0101

 0 4 t 5 5

a 00

c 01

g 10

t 11

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Encoding DNA

3. In the approximate matching method we can encode

gaccttcatt as (0, 10), (R, 4, t) relative to gaccgtcatt. Let us

encode R by 00, I by 01, D by 11 and use a single bit to indicate

whether the next part is a pair or a triplet. We obtain an encoding
in 18 bits:

 0 0000 1010 1 00 0100 11

4. For approximate matching, we could also use the edit
sequence (D, 4), (I, 4, t), for example, yielding the relative

encoding

 (0, 10), (D, 4), (I, 4, t),

 which uses 25 bits:

0 0000 1010 1 11 0100 1 01 0100 11.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

GenCompress

• a one-pass algorithm based on approximate matching

• For a given input string w, assume that a part v has already been

compressed and the remaining part is u, with w = vu. The algorithm

finds an “optimal prefix” p of u that approximately matches some

substring q of v such that p can be encoded economically. After

outputting the encoding of p, remove the prefix p from u and

append it to v. If no optimal prefix is found, output the next base

and then move it from u to v. Repeat until u = .

p

q

w

 v u

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The condition C

• How do we find an “optimal prefix” p? The following condition will

be used to limit the search.

• Given two numbers k and b. Let p be a prefix of the unprocessed

part u and q a substring of the processed part v. If |q| > k, then any

transcript (q, p) is said to satisfy the condition C = (k, b) for

compression, if its number of edit operations is  b.

• Experimental studies indicate that C = (k, b) = (12, 3) gives good

results.

• In other words, when attempting to determine the optimal prefix for

compression, we will only consider repeats of length  k that require

at most b edit operations.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The compression gain function
(the number of saved bits)
 • We define a compression gain function G to determine whether a

particular approximate repeat q, p and edit transcript  are
beneficial for the encoding:

• G(q, p, ) = max { 2|p| – |(i, |q|)| – w · |(q, p)| – c, 0 }

• where

• p is a prefix of the unprocessed part u,

• q is a substring of the processed part v of length |q| that starts at
position i,

• 2|p| is the number of bits that the two-bit encoding would use,

• |(i, |q|)| is the encoding size of (i, |q|),

• w is the cost of encoding an edit operation,

• |(q, p)| is the number of edit operations in (q, p),

• and c is the overhead proportional to the size of control bits.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The GenCompress algorithm

Input: A DNA sequence w, parameter C = (k, b)

Output: A lossless compressed encoding of w

Initialization: u = w and v = 

while u  do

Search for an optimal prefix p of u

if an optimal prefix p with repeat q in v is found then

Encode the repeat representation (i, |q|), where i is

the position of q in v, together with the shortest edit

transcript (q, p). Output the code.

else Set p equal to the first character of u,

encode and output it.

Remove the prefix p from u and append it to v

end

The empty

word

p

q

w

v u

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Implementing the optimal prefix search

• search for the optimal prefix – too slow

• Lemma: An optimal prefix p always ends right before a mismatch.

• Lemma: Let (q, p) be an optimal edit sequence from q to p. If qi is

copied onto pj in, then  restricted to (q0:i , p0:j) is an optimal

transcript from q0:i = q0 q1 . . . qi to p0:j = p0 p1 . . . , pj .

• simplified as follows:

• to find an approximate match for p in v, we look for an exact match of the

first l bases in p, where l is a fixed small number

• an integer is stored at each position i of v that is determined by the the word

of length l starting at i.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Implementing the optimal prefix search

1. Let w = vu where v has already been compressed.

2. Find all occurrences u0:l in v, for some small l. For each such

occurrence, try to extend it, allowing mismatches, limited by the

above observations and condition C. Return the prefix p with the

largest compression gain value G.

p

q

w

v u

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Performance of GenCompress

• any nucleotide can be encoded canonically using 2 bits, we define
the compression ratio of a compression algorithm as

 |I| is the number of bases in the input DNA sequence

 |O| is the length (number of bits) of the output sequence

• Alternatively, if our DNA string is already encoded canonically, we
can define the compression ratio of a compression algorithm as

 |I| is the number of bits in the canonical encoding of the input DNA
sequence and |O| is the length (number of bits) of the output
sequence.

I

O
-

2
1

I

O
-1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Performance of GenCompress

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Till now

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Next – recent approaches,

conditional compression

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches
Encoding of non-repeat regions

• Order-2 arithmetic encoding–the adaptive probability of a symbol

is computed from the context (the last 2 symbols) after which it

appears –3 symbols code one amino-acid???

• Context tree weighting coding (CTW)–a tree containing all

processed substrings of length k is built dynamically and each path

(string) in the tree is weighted by its probability – these probabilities

are used in an arithmetic encoder

Arithmetic

encoder

CTW model

estimator

encoded data input

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches
Encoding of numbers
• Fibonacci encoding

• any positive integer can be uniquely expressed as the sum of

distinct Fibonacci numbers so, that no two consecutive

Fibonacci numbers are used

• by adding a 1 after the bit corresponding to the largest

Fibonacci number used in the sum the representation becomes

self-delimited

1, 2, 3, 5, 8, 13, 21, …

1 2 3 4 8 18

Fibonacci 11 011 0011 1011 000011 0001011

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches
Encoding of numbers
• k- Shifted Fibonacci encoding

• usually there are many small numbers and few large numbers to encode

• n  {1,…,2k – 1} – normal binary encoding

• n 2k – as 0k followed by Fibonacci encoding of n – (2k – 1)

1, 2, 3, 5, 8, 13, 21, …

1 2 3 4 8 18

Fibonacci 11 011 0011 1011 000011 0001011

1-shifted Fib. 1 011 0011 00011 001011 01010011

3-shifted Fib. 001 010 011 100 00011 000001011

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches

• DNAPack
• uses dynamic programming for selection of segments (copied, reversed

and/or modified)

• O(n3) still too slow, hence heuristics used

• XM

• use of both statistical properties and repetition within sequences

• a panel of experts is maintained to estimate the probability distribution of

the next symbol

• expert probabilities are combined to obtain the final distribution, which is

the used in arithmetic encoding

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches

• DNAZip

• DNA sequence compression using a reference genome

Reference genome

Current genome

SNP - single nucleotide polymorphism

List of places where similar genomes differ

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Recent approaches

• DNAZip

• DNA sequence compression using a reference genome

• James Watson genome => 4101 kB

• „Human genomes as email attachments“

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Conditional compression

• Given sequence z, compress a sequence w relative to z

• Let Compress(w | z) denote the length of the compression of w,
given z. Similarly, let Compress(w) = Compress(w | ), where 
denotes the empty word. [Compress is not the unix compression
program compress.]

• In general, Compress(w | z)Compress(z | w).

• For example, the Biocompress-2 program produces:

• CompressRatio (brucella | rochalima) = 55.95%, and

• CompressRatio (rochalima | brucella) = 34.56%.

• If z = w, then Compress(w | z) is very small.

• If z and w are completely independent, then

 Compress(w | z) ≈ Compress(w)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Evolutionary distance

• How to define evolutionary distance between strings based on

conditional compression?

• E.g.

 is used in literature, but it has no good reason.

• We need a symmetric measure!

• we can use Kolmogorov complexity

 
   

2

||
,

wzCompresszwCompress
zwD




An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Kolmogorov complexity

• Let K(w | z) denote the Kolmogorov complexity of string w, given z.

Informally, this is the length of the shortest program that outputs w

given z. Similarly, set

 K(w) = K(w | ).

• The following result is due to Kolmogorov and Levin:

• Theorem: Within an additive logarithmic factor,

K(w | z)  K(z) = K(z | w) + K(w).

• This implies

K(w)  K(w | z) = K(z)  K(z | w).

• Normalizing by the sequence length we obtain the following
symmetric map – “relatedness”:

)(

)()(

)(

)()(
),(

wzK

z | w - KzK

wzK

w | z - KwK
 zwR 

What is the range

of R(w,z)?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• A distance between two sequences w and z :

• Unfortunately, K(w) and K(w | z) are not computable!

• Approximation:

• K(w) := Compress(w) := | GenCompress(w) |

• K(w | z) := Compress(w | z) := Compress(zw) − Compress(z) =

 | GenCompress(zw) | − | GenCompress(z) |

•

A symmetric measure of similarity

)(

)()(

)(

)()(
),(

wzK

z | w - KzK

wzK

w | z - KwK
 zwR 

),(1),(zwRzwD 

  

 
)(

)()(

)(

)()(
),(

wzCompress

zwCompressz Compress wCompress

wzCompress

zCompresszwCompress - wCompress
 zwR








An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Application to genomic sequences

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Application to genomic sequences

H. butylicus

A. urina

H. glauca

R. globiformis

L. sp. nakagiri

U. crescens

H. gomorrense

