Graph Theory in High School Education

Week of Doctoral Students 3. 6. 2011

Daniel Lessner – lessner@ksvi.mff.cuni.cz Department of Software and Computer Science Education MFF UK, Prague

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

Computer science

- How do we process information?
 - Obtain, create, transform, transmit, store...
 - Describe, measure, secure...
- How can a machine do it instead?
 - How can we describe what to do?
 - How can we compare algorithms?
 - Are there limitations?
- What is information?

Aim of our research

What about teaching computer science on high schools?

Computer science: situation

- CS has no direct support in curricula
- However, with a closer look...
 - Basic algorithmics
 - Key competences
 - Possible extensions
- Enough abroad experience available
 - Content
 - Methods
 - (Organisation)

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

A specific example

Graph theory:

A visual approach to relations between objects. (with some serious Maths behind)

Topics to study

Terms:

- Graph, vertice, edge, orientation, degree, score...
- Cycle, path, colors, components, ...
- Complete g., tree, ...
- Representation, both ways
- Processing
 - Traversing, searching
 - Topological sorting
- Applications

Introduction

- Aim of our research
- Previous results
- Reminder of graph theory

Graph theory on high schools

- Why?
- Example: Topological sorting
- Education targets
- Further topics
- Summary

Graph theory: situation

- Not a part of high school education
 - Historical reasons?
 - Though used intuitively (chemistry, spatial objects, mind mapping...)
 - No idea of a unifying theory
- Breeze of change
 - Fraus text-books by prof. Hejný

Why should we teach graphs?

- Wide practical use
- New structure to work with (reasoning, algorithms)
 - Seemingly: different way of thinking (numbers and operations gone, logic stays)
 - Intuitive?
- Easy basics, though enough advanced material
 - Planarity
 - Isomorphism
- Insight into an algorithm causes more efficient future approaches

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

Topological sorting

- What?
- Why?
- How?

Input:

(2, 11), (9, 8), (11, 5), (9,11), (8, 3), (10, 3), (11, 7), (10, 11)

Output (e. g.):

3, 7, 5, 11, 2, 8, 10, 9

Topological sorting: solution

- Brute force
- Find independent tasks...
 - How exactly?
 - How to get prepared for it?
- Depth first search

Topological sorting: solution

- 2: 1, 3: 0, 5: 0, 7: 0, 8: 2, 9: 2, 10: 2, 11: 2
 - Choose 3
- 2: 1, 3: 0, 5: 0, 7: 0, 8: 1, 9: 2, 10: 1, 11: 2
 - Choose 7
- 2: 1, 3: 0, 5: 0, 7: 0, 8: 0, 9: 2, 10: 1, 11: 1
 - Choose 5
- (...)

Output: 3, 7, 5, 11, 2, 8, 10, 9

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

Teaching graphs: Targets

- Recognize appropriate situations to apply graphs
 - Read relations
 - Denote relations
 - Further processing
- Use terminology correctly
- Use the advantage of drawing, rely on reasoning
- Traverse systematically (e. g. searching)

TS: Ideas to experience

- Graphs are not maps only
- Many ways to achieve the same goal
 - Both the algorithm and its subject.
 - Different efficiency.
- Work in phases
 - Preprocess data
- Greedy approach (no turning back) may work well
 - Least wrong move?
 - Rather guarantee of correnctness
 - That is decomposition!

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics
- Summary

Further topics

- Planning, scheduling, project management
 - Network diagrammes
 - PERT, Critical Path Method
 - Hierarchical tasks, WBS
- Lattice and Hasse diagrams
 - Riddles

Advanced use

Introduction

- Aim of our research
- Previous results
- Reminder of graph theory
- Graph theory on high schools
 - Why?
 - Example: Topological sorting
 - Education targets
 - Further topics

Summary

Graphs on HS: Summary

- Widely used, yet not taught explicitly
- Provide a tool to work with relations
- Basics are easy to master
- Topological sorting:
 - Understandable
 - Powerful in applications
 - Opens for advanced topics (and applications)

Thank you for your attention.