
JEŠTĚ K FUNKCÍM...

NPRG030 Programování I, 2025/26 [13] 1 / 35 22.12.2025 12:11:58

Funkce je objekt
...takže se dá dosadit do proměnné

tisk = print
tisk(f"{2}*{5}={2*5}")

...nebo předat jako parametr
def tabulka(f, jmeno, od, do):
 print(f"Tabulka hodnot funkce {jmeno} pro hodnoty {od}..{do}")
 print("---------------")
 for x in range(od,do+1):
 print(f"{x:3d}: {f(x):5.2f}")
 print("---------------")

import math
tabulka(math.sin, "sin", 0,10)
tabulka(math.cos, "cos", 0,10)
tabulka(math.sqrt, "sqrt", 0,10)

NPRG030 Programování I, 2025/26 [13] 2 / 35 22.12.2025 12:11:58

Funkce CHYBA

Funkce je objekt
...nebo dosadit do seznamu
for funkce, jmeno in [(math.sin,"sin"), (math.cos,"cos"),

(math.sqrt,"odmocnina")]:
 tabulka(funkce, jmeno, 0,10)

...nebo do slovníku

slovnik = {"sin":math.sin, "cos":math.cos, "odmocnina":math.sqrt}

jmeno = input()
tabulka(slovnik[jmeno], jmeno, 0,10)

NPRG030 Programování I, 2025/26 [13] 3 / 35 22.12.2025 12:11:58

Lambda funkce
lambda calculus, Alonzo Church, 1930

je to jediný výraz
nemůžou obsahovat příkazy*)

známy též jako: anonymní funkce nebo lambda-výrazy

tabulka(lambda x: 1/x, "prevracena hodnota", 1,10)
tabulka(lambda x: x*x, "ctverec", 1,10)

pricti1 = lambda x:x+1
print(pricti1(27))

*) lambda x: len([a:=1, b:=2, c:=3, d:=a+b+c, print(a,b,c,d)])

https://peps.python.org/pep-0572/

NPRG030 Programování I, 2025/26 [13] 4 / 35 22.12.2025 12:11:58

https://peps.python.org/pep-0572/

Lambda funkce [2]

použití: funkce vyžadované jako parametr:

lidi = [['Bořík','Weber'],['Anna','Zelená'],
 ['Cyril','Sláma'],['David','Hroch']]

sorted(lidi)
sorted(lidi, key = lambda x: x[1]+x[0])

NPRG030 Programování I, 2025/26 [13] 5 / 35 22.12.2025 12:11:58

Closure
uvnitř funkce můžeme definovat jinou funkci...

def f(x):

 def g():
 return 7

 return x+g()

...ta (vnitřní) funkce (g) není zvenku viditelná...

NPRG030 Programování I, 2025/26 [13] 6 / 35 22.12.2025 12:11:58

Closure
...ale můžeme ji dosadit do globální proměnné nebo vrátit!

def f(x):
 def g():
 return 7
 global funkce_g
 funkce_g = g # varianta A)
 return g # varianta B)

f(5)
print(funkce_g()) # varianta A)
print(f(1)()) # varianta B)

NPRG030 Programování I, 2025/26 [13] 7 / 35 22.12.2025 12:11:58

Closure
Problém: Ta vnitřní funkce vidí

proměnné a parametry té vnější funkce.
Uvidí na ně, i když ta vnější funkce už skončila?

def Pricti(kolik):
 def g(x):
 return x+kolik
 return g

pricti_1 = Pricti(1)
pricti_5 = Pricti(5)

print(pricti_1(10))
print(pricti_5(10))

NPRG030 Programování I, 2025/26 [13] 8 / 35 22.12.2025 12:11:58

Closure
Proč:
 možnost uchovávat hodnoty mezi voláními
(příklad)

 callback-funkce

NPRG030 Programování I, 2025/26 [13] 9 / 35 22.12.2025 12:11:58

NPRG030 Programování I, 2025/26 [13] 10 / 35 22.12.2025 12:11:58

Dekorátor (funkce)
= funkce, která obaluje volání funkce vlastním kódem:

NPRG030 Programování I, 2025/26 [13] 11 / 35 22.12.2025 12:11:58

def dekorator(funkce):
 def wrapper():
 print("Pred zavolanim")
 funkce()
 print("Po zavolani")
 return wrapper

#@dekorator # moznost B)
def ahoj():
 print("Ahoj!")

#ahoj = dekorator(ahoj) # moznost A)

Dekorátor (funkce)
Co když ta původní funkce má parametry?
= přijímat je (v jakémkoliv počtu)
 a předávat je té volané funkci:

NPRG030 Programování I, 2025/26 [13] 12 / 35 22.12.2025 12:11:58

def dekorator(funkce):
 def wrapper(*args, **kwargs):
 print(f"Pred zavolanim {args=} {kwargs=}")
 funkce(*args, **kwargs)
 print("Po zavolani")
 return wrapper

@dekorator
def tisk(a,b,c):
 print(f"{a=} {b=} {c=}")

Dekorátor (funkce)
https://peps.python.org/pep-0318

NPRG030 Programování I, 2025/26 [13] 13 / 35 22.12.2025 12:11:58

https://peps.python.org/pep-0318/

Callable
= cokoliv, za co lze napsat (…)
vestavěné funkce a třídy, def-funkce, lambda-funkce,
konstruktory, metody instance/tříd/statické...

Callable instance
= cokoliv, co obsahuje metodu .__call__(…)

NPRG030 Programování I, 2025/26 [13] 14 / 35 22.12.2025 12:11:58

Generátor
Fukce, která „postupně vrací výsledek“.

Například kdybychom chtěli zpracovat veliký soubor:
(zdroj: https://realpython.com/introduction-to-python-generators/)

radky = PrectiSoubor("...")
for r in radky:
 print(r) # ZpracujRadek(r)

V čem je problém?

NPRG030 Programování I, 2025/26 [13] 15 / 35 22.12.2025 12:11:58

https://realpython.com/introduction-to-python-generators/

Generátor
Obyčejná funkce:

def PrectiSoubor(jmeno):
 f = open(jmeno,'r')
 s = f.read().split('\n')
 f.close()
 return s

Generátor:
def PrectiSoubor(jmeno):
 for s in open(jmeno,'r'):
 yield s[:-1]

NPRG030 Programování I, 2025/26 [13] 16 / 35 22.12.2025 12:11:58

Generátor
Jak to funguje:
 volání funkce vrátí objekt třídy generator
 ten má metodu __next__(),
která na každé zavolání vrátí další hodnotu

(dá se volat via next(g))

 stav funkce se uloží, včetně jejích proměnných,
ukazatele instrukcí, zásobníku a obsluhy výjimek

 ...takže při dalším zavolání metody __next__()
může být funkce obnovená

NPRG030 Programování I, 2025/26 [13] 17 / 35 22.12.2025 12:11:58

Generátor

def gen():
 for i in range(10):
 yield i

it = gen()
print(it, type(it))
while True:
 # print(it.__next__())
 print(next(it))

NPRG030 Programování I, 2025/26 [13] 18 / 35 22.12.2025 12:11:58

Generátor
Jak ukončit generátor: metoda .close()

def vsechna_cisla():
 i = 0
 while True:
 yield i
 i += 1

vc = vsechna_cisla()
for i in vc:
 print(i)
 if i==17:
 vc.close()

NPRG030 Programování I, 2025/26 [13] 19 / 35 22.12.2025 12:11:58

Generator expression
Způsob, jak rychle vyrobit generátor:

radky = (line for line in open("..."))

a potom:

while True:
 print(next(radky))

nebo:
for r in radky:
 print(r)

NPRG030 Programování I, 2025/26 [13] 20 / 35 22.12.2025 12:11:58

Jak funguje for-cyklus
Pro daný objekt (iterable) vyrobí iterátor.

it1 = iter("abcd")
it2 = iter([1,2,3,4])

print(it1)
<str_iterator object at 0x0000025D14662380>

print(it2)
<list_iterator object at 0x0000025D14662320>

print(next(it1))
'a'

print(next(it1))
'b'

...a pak na něj volá funkci next().

NPRG030 Programování I, 2025/26 [13] 21 / 35 22.12.2025 12:11:58

Generátor vs. Iterátor
Iterátor:
objekt, který
 má metodu __next__(...)
 má metodu __iter__(...), která vrací self

Generátor:
 je to iterátor (každý generátor je také iterátor)
 vytvoří se funkcí obsahující příkaz yield…
 ...nebo generátorovým výrazem (generator expression)

NPRG030 Programování I, 2025/26 [13] 22 / 35 22.12.2025 12:11:58

CONTEXT MANAGER

NPRG030 Programování I, 2025/26 [13] 23 / 35 22.12.2025 12:11:58

Obvyklý problém programování...
...správa externích zdrojů: databáze, soubory…

Dvě možnosti řešení:

1) try .. finally

2) with

NPRG030 Programování I, 2025/26 [13] 24 / 35 22.12.2025 12:11:58

Příkaz with obj
obj je objekt implementující „Context management protocol“

with open("260106.py",'r') as f:
 for c in f:
 print(c, end='')

Context management protocol:

Metoda .__enter__() se zavolá na začátku with-bloku.

Metoda .__exit__() se zavolá při opuštění with-bloku
a to i když blok opouštíme výjimkou!

=> U souboru ve with se takhle vždycky zavolá .close().

NPRG030 Programování I, 2025/26 [13] 25 / 35 22.12.2025 12:11:58

Více context managerů
with open("260106.py",'r') as f,\ # pokračovat
 open("kopie.txt",'w') as g:
 g.write(f.read())

Díky with se na konci oba soubory zavřou.

NPRG030 Programování I, 2025/26 [13] 26 / 35 22.12.2025 12:11:58

Vlastní context manager
class MujCM:
 def __enter__(self):
 print("Začátek")
 return "Hello, World!"
 def __exit__(self, exc_type, exc_value, exc_tb):
 print("Konec")
 print(exc_type, exc_value, exc_tb, sep="\n")

with MujCM():
 print("...prikaz")
with MujCM():
 i = 1/0

NPRG030 Programování I, 2025/26 [13] 27 / 35 22.12.2025 12:11:58

Vlastní context manager – výjimky
 def __exit__(self, exc_type, exc_value, exc_tb):
 print("Konec")
 if isinstance(exc_value, ZeroDivisionError):
 # Handle IndexError here...
 print(f"Vyjimka: {exc_type}")
 print(f"Zprava: {exc_value}")
 return True

Když vrátí True, tak skryje výjimku
a program pokračuje za with-blokem.

NPRG030 Programování I, 2025/26 [13] 28 / 35 22.12.2025 12:11:58

NPRG030 Programování I, 2025/26 [13] 29 / 35 22.12.2025 12:11:58

Jaký by měl být zdrojový kód 1.

Podle autorů Pythonu (PEP8):
 https://peps.python.org/pep-0008/
 odsazování
 lámání řádek
 mezery
 pojmenovávání (funkcí, proměnných, tříd, KONSTANT)
 doporučení

 Also, beware of writing
if x

when you really mean
if x is not None

NPRG030 Programování I, 2025/26 [13] 30 / 35 22.12.2025 12:11:58

https://peps.python.org/pep-0008/

Jaký by měl být zdrojový kód 2.

Podle odborníků na sw inženýrství:
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/
labs/coding/
 dekompozice (struktury, bloky)
 používání konstant
 DRY (Do not repeat (copy-paste) yourself)
 omezené používání globálních proměnných
 zapouzdření, interface

https://d3s.mff.cuni.cz/f/teaching/nprg043/01-intro.html

NPRG030 Programování I, 2025/26 [13] 31 / 35 22.12.2025 12:11:58

https://d3s.mff.cuni.cz/f/teaching/nprg043/01-intro.html
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/labs/coding/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/labs/coding/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/

Jaký by měl být zdrojový kód 3.

Podle mě:
 pozor na triky/finty/překvapení/úžasné_nápady
 kopírování je častý zdroj chyb (DRY)
 program píšete pro lidi, ne pro počítač => čitelně!
 čitelnost je důležitější než pravidla*)

 ...ALE v jednom týmu musíte psát stejným způsobem

*)

 NEBO

NPRG030 Programování I, 2025/26 [13] 32 / 35 22.12.2025 12:11:58

Jaký by měl být zdrojový kód 4.

Podle PEP 20 – The Zen of Python
https://peps.python.org/pep-0020/
 Beautiful is better than ugly.
 Explicit is better than implicit.
 Simple is better than complex.
 Complex is better than complicated.
 Flat is better than nested.
 …

>>> import this

NPRG030 Programování I, 2025/26 [13] 33 / 35 22.12.2025 12:11:58

https://peps.python.org/pep-0020/

NPRG030 Programování I, 2025/26 [13] 34 / 35 22.12.2025 12:11:58

Positional-Only Parameters

https://peps.python.org/pep-0570/

NPRG030 Programování I, 2025/26 [13] 35 / 35 22.12.2025 12:11:58

https://peps.python.org/pep-0570/

