JESTE K FUNKCIM. ..

NPRGO30 Programovani I, 2025/26 [13] 1/ 35 22.12.2025 12:11:58

Funkce je objekt

...takze se da dosadit do proménné
~ Funkce CHYBA

tisk = print
tisk(f"{2}*{5}={2*5}")

...nebo predat jako parametr

def tabulka(f, jmeno, od, do):
print(f"Tabulka hodnot funkce {jmeno} pro hodnoty {od}..{do}")
print("--------------- "y
for x in range(od,do+1):
print(f"{x:3d}: {f(x):5.2f}")
print("--------------- "y

import math

tabulka(math.sin, "sin", 0,10)
tabulka(math.cos, "cos", 0,10)
tabulka(math.sqrt, "sqrt", 0,10)

NPRGO30 Programovani I, 2025/26 [13] 2/ 35 22.12.2025 12:11:58

Funkce je objekt

...nebo dosadit do seznamu

for funkce, jmeno in [(math.sin,"sin"), (math.cos,"cos"),
(math.sgrt,"odmocnina")]:
tabulka(funkce, jmeno, 0,10)

...nebo do slovniku
slovnik = {"sin":math.sin, "cos":math.cos, "odmocnina":math.sqgrt}

jmeno = input()
tabulka(slovnik[jmeno], jmeno, 0,10)

NPRGO30 Programovani I, 2025/26 [13] 3/35 22.12.2025 12:11:58

Lambda funkce
lambda calculus, Alonzo Church, 1930

je to jediny vyraz
nemizou obsahovat prikazy”

zndmy téz jako: anonymni funkce nebo lambda-vyrazy

tabulka(lambda x: 1/x, "prevracena hodnota", 1,10)
tabulka(lambda x: x*x, "ctverec", 1,10)

prictil = lambda x:x+1

print(prictil(27))

*) lambda x: len([a:=1, b:=2, c:=3, d:=a+b+c, print(a,b,c,d)])
https://peps.python.org/pep-0572/

NPRGO30 Programovani I, 2025/26 [13] 4/ 35 22.12.2025 12:11:58

https://peps.python.org/pep-0572/

Lambda funkce [2]

pouziti: funkce vyzadované jako parametr:

lidi = [['Borik', '"Weber'],['Anna’', 'Zelena’'],
['Cyril','Slama’'],['David', 'Hroch']]

sorted(lidi)
sorted(lidi, key = lambda x: x[1]+x[0])

NPRGO30 Programovani I, 2025/26 [13] 5/ 35 22.12.2025 12:11:58

Closure
uvnitf funkce miZeme definovat jinou funkci...

def f(x):

def g():
return 7

return x+g()

...ta (vnitrni) funkce (g) neni zvenku viditelna. ..

NPRGO30 Programovani I, 2025/26 [13] 6/ 35 22.12.2025 12:11:58

Closure
...ale muZeme ji dosadit do globdlni proménné nebo vratit!

def f(x):
def g():
return 7
global funkce g
funkce g = g # varianta A)

return g # varianta B)
f(5)
print(funkce g()) # varianta A)
print(f(1)()) # varianta B)

NPRGO30 Programovani I, 2025/26 [13] 7/ 35 22.12.2025 12:11:58

Closure
Problem: Ta vnitrni funkce vidi

proménné a parametry té vnéjsi funkce.
Uvidi na né, i kdyz ta vnéjsi funkce uz skoncila?

def Pricti(kolik):
def g(x):
return x+kolik
return g

pricti 1 = Pricti(1)
pricti 5 = Pricti(5)

print(pricti_1(10))
print(pricti 5(10))

NPRGO30 Programovani I, 2025/26 [13] 8/ 35

22.12.2025 12:11:58

Closure
Proc:
e moznost uchovavat hodnoty mezi volanimi
(priklad)
e callback-funkce

NPRGO30 Programovani I, 2025/26 [13] 9/35 22.12.2025 12:11:58

NPRGO30 Programovani I, 2025/26 [13] 10/ 35 22.12.2025 12:11:58

Dekorator (funkce)

= funkce, ktera obaluje volani funkce vlastnim kodem:

dekorator(funkce):

wrapper():
print("Pred zavolanim")
funkce()
print("Po zavolani")
wrapper
#@dekorator # moznost B)
ahoj():

print("Ahoj!")

#ahoj = dekorator(ahoj) # moznost A)

NPRGO30 Programovani I, 2025/26 [13] 11/ 35 22.12.2025 12:11:58

Dekorator (funkce)

Co kdyz ta puvodni funkce ma parametry?
= prijimat je (v jakémkoliv poctu)
a predavat je té volané funkci:

—_—_———— e e —

| dekorator(funkce):

i wrapper(*args, **kwargs):

| print(f"Pred zavolanim {args=} {kwargs=}")
i funkce(*args, **kwargs)

i print("Po zavolani")

i wrapper

| tisk(a,b,c):
 print(f"{a=} {b=} {c=}")

NPRGO30 Programovani I, 2025/26 [13] 12/ 35 22.12.2025 12:11:58

Dekorator (funkce)
https://peps.python.org/pep-0318

NPRGO30 Programovani I, 2025/26 [13] 13/ 35 22.12.2025 12:11:58

https://peps.python.org/pep-0318/

Callable

= cokoliv, za co lze napsat (...)
vestavéné funkce a tridy, def-funkce, lambda-funkce,
konstruktory, metody instance/trid/statickeé...

Callable instance

= cokoliv, co obsahuje metodu ._ call_ (..)

NPRGO30 Programovani I, 2025/26 [13] 14 / 35 22.12.2025 12:11:58

Generator
Fukce, ktera ,postupné vraci vysledek".

Napriklad kdybychom chtéli zpracovat veliky soubor:

(zdr'oj: https://realpython.com/introduction-to-python-generators/)

radky = PrectiSoubor("...")
for r in radky:
print(r) # ZpracujRadek(r)

V ¢em je problém?

NPRGO30 Programovani I, 2025/26 [13] 15/ 35 22.12.2025 12:11:58

https://realpython.com/introduction-to-python-generators/

Generator

Obycejna funkce:
def PrectiSoubor(jmeno):
f = open(jmeno, 'r')
s = f.read().split('\n")
f.close()
return s

Generator:
def PrectiSoubor(jmeno):

for s in open(jmeno,'r'):

yield s[:-1]

NPRGO30 Programovani I, 2025/26 [13] 16 / 35

22.12.2025 12:11:58

Generator
Jak to funguje:
e volani funkce vradti objekt tridy generator
« ten ma metodu __next__ (),
kterd na kazdé zavolani vrati dalsi hodnotu
(da se volat via next(g))
e stav funkce se ulozi, véetné jejich proménnych,
ukazatele instrukci, zasobniku a obsluhy vyjimek
o ...takZe pri dalSim zavoldni metody _ next_ ()
mlZe byt funkce obnovena

NPRGO30 Programovani I, 2025/26 [13] 17 / 35 22.12.2025 12:11:58

Generator

def gen():
for i in range(10):
yield i

it = gen()

print(it, type(it))

while True:
print(it. next_ ())
print(next(it))

NPRGO30 Programovani I, 2025/26 [13] 18 / 35 22.12.2025 12:11:58

Generator

Jak ukoncit generdtor: metoda .close()

def vsechna cisla():

1 =0

while True:
yield i
i+=1

vc = vsechna cisla()
for i in vc:
print(i)
if i==17:
vc.close()

NPRGO30 Programovani I, 2025/26 [13] 19 / 35

22.12.2025 12:11:58

Generator expression
Zpusob, jak rychle vyrobit generator:

radky = (line for line in open("..

a potom:

while True:
print(next(radky))

nebo:
for r in radky:
print(r)

NPRGO30 Programovani I, 2025/26 [13] 20 / 35

"))

22.12.2025 12:11:58

Jak funguje for-cyklus
Pro dany objekt (iterable) vyrobi iterdtor.

itl = iter("abcd")
it2 = iter([1,2,3,4])

print(itl)
<str_iterator object at 0x0000025D14662380>
print(it2)
<list _iterator object at 0x0000025D14662320>
print(next(itl))
g
print(next(itl))
b
...a pak na néj vola funkci next().

NPRGO30 Programovani I, 2025/26 [13] 21 / 35 22.12.2025 12:11:58

Generator vs. Iterator

Iteradtor:
objekt, ktery

e ma metodu _ next_ (...)

e ma metodu __iter_ (...), ktera vraci self
Generator:

e je to iterdtor (kazdy generdtor je také iterator)

e vytvori se funkci obsahujici prikaz yield..

e ...nebo generdtorovym vyrazem (generator expression)

NPRGO30 Programovani I, 2025/26 [13] 22 / 35 22.12.2025 12:11:58

CONTEXT MANAGER

NPRGO30 Programovani I, 2025/26 [13] 23 / 35 22.12.2025 12:11:58

Obvykly problém programovani. ..

...sprava externich zdroju: databdze, soubory...
Dvé moznosti resSeni:

1) try .. finally
2) with

NPRGO30 Programovani I, 2025/26 [13] 24 / 35 22.12.2025 12:11:58

Prikaz with obj

obj je objekt implementujici ,Context management protocol”

with open("260106.py", 'r') as f:
for ¢ in f:
print(¢, end="")

Context management protocol:
Metoda . _enter__ () se zavola na zac¢atku with-bloku.

Metoda ._ exit_ () se zavola pri opusténi with-bloku
a to i kdyz blok opoustime vyjimkoul

=> U souboru ve with se takhle vzdycky zavola .close().

NPRGO30 Programovani I, 2025/26 [13] 25/ 35 22.12.2025 12:11:58

Vice context manageri

with open("260106.py", 'r') as f,\ # pokracovat
open("kopie.txt",'w') as g:
g.write(f.read())

Diky with se na konci oba soubory zavrou.

NPRGO30 Programovani I, 2025/26 [13] 26 / 35 22.12.2025 12:11:58

Vlastni context manager

class MujCM:
def __enter_ (self):
print("Zacatek")
return "Hello, World!"
def exit (self, exc_type, exc_value, exc_tb):
print("Konec")
print(exc type, exc value, exc tb, sep="\n")

with Mujcm():
print("...prikaz")
with Mujcm():
i=1/0

NPRGO30 Programovani I, 2025/26 [13] 27 / 35 22.12.2025 12:11:58

Vlastni context manager - vyjimky

def exit (self, exc_type, exc_value, exc_tb):
print("Konec")
if isinstance(exc value, ZeroDivisionError):
Handle IndexError here...
print(f"Vyjimka: {exc_type}")
print(f"Zprava: {exc_value}")
return True

Kdyz vrati True, tak skryje vyjimku
a program pokracuje za with-blokem.

NPRGO30 Programovani I, 2025/26 [13] 28 / 35 22.12.2025 12:11:58

NPRGO30 Programovani I, 2025/26 [13] 29 / 35 22.12.2025 12:11:58

Jaky by mél byt zdrojovy kod 1.
Podle autoru Pythonu (PEP8):

https://peps.python.org/pep-0008/

e odsazovani

e lamani radek

e mezery

e pojmenovavani (funkci, proménnych, trid, KONSTANT)
e doporuceni

Also, beware of writing
if x

when you really mean
if x 1s not None

NPRGO30 Programovani I, 2025/26 [13] 30/ 35 22.12.2025 12:11:58

https://peps.python.org/pep-0008/

Jaky by mél byt zdrojovy kod 2.

Podle odbornikiu na sw inzenyrstvi:

https://www.ksi.mff.cuni.cz/teaching/nswil70-web/pages/
labs/coding/

e dekompozice (struktury, bloky)

e pouzivani konstant

e DRY (Do not repeat (copy-paste) yourself)

e omezené pouzivani globdlnich proménnych

e zapouzdreni, interface

https://d3s.mff.cuni.cz/f/teaching/nprg043/01 -intro.html

NPRGO30 Programovani I, 2025/26 [13] 31/ 35 22.12.2025 12:11:58

https://d3s.mff.cuni.cz/f/teaching/nprg043/01-intro.html
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/labs/coding/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/labs/coding/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/pages/

Jaky by mél byt zdrojovy kod 3.

Podle me:

e pozor na triky/finty/prekvapeni/dzasné_ndpady
e kopirovani je ¢asty zdroj chyb (DRY)
e program piSete pro lidi, ne pro pocitac => Citelnél
o éitelnost je dileZitéj$i nez pravidla™
..ALE v jednom tymu musite psa1' sTeJnym zpusobem

*)

|1[print ("Hello, World!")

NPRG030 Programovani I, 2025/26 [13]

NEBO

owvwo-oaoUkWhRE

I_I.

32/ 35

/usr/bln/env python3

MATN = " maln
MZE'.SSAGE= Hello Woxrld!'"

def main() :
print (MESSAGE)

if name == MATIN:
main ()

22.12.2025 12:11:58

Jaky by mél byt zdrojovy kod 4.
Podle PEP 20 - The Zen of Python

https://peps.python.org/pep-0020/
e Beautiful is better than ugly.
e Explicit is better than implicit.
e Simple is better than complex.
e Complex is better than complicated.
e Flat is better than nested.

>>> import this

NPRGO30 Programovani I, 2025/26 [13] 33/ 35 22.12.2025 12:11:58

https://peps.python.org/pep-0020/

NPRGO30 Programovani I, 2025/26 [13] 34/ 35 22.12.2025 12:11:58

Positional-Only Parameters

https://peps.python.org/pep-0570/

A function definition may look like:

def f(posl, pos2, /, pos or kwd, *, kwdl, kwd2):

Positional or keyword |
- Keyword only
-- Positional only

NPRGO30 Programovani I, 2025/26 [13] 35/ 35 22.12.2025 12:11:58

https://peps.python.org/pep-0570/

