
NPRG031 Programování 2

RNDr. Tomáš Holan, Ph.D.

Malá Strana, 4.patro, dveře 404

http://ksvi.mff.cuni.cz/~holan/

Tomas.Holan@mff.cuni.cz

NPRG031 Programování 2 [1] 1 / 46 6. 2. 2026 11:18:10

http://ksvi.mff.cuni.cz/~holan/

NPRG031 Programování 2
 zkouška, písemná a ústní část

 podmínky zápočtu určuje cvičící, ale obecně

 aktivní účast

 domácí úkoly

 zápočtový test

 zápočtový program

 zvláštní cvičení – Martin Mareš

NPRG031 Programování 2 [1] 2 / 46 6. 2. 2026 11:18:10

O čem to bude
 nový jazyk
 ale programování není jen jazyk a algoritmy

Nové problémy:
- jak zvládat větší program
- jak spolupracovat na tvorbě programu
- SWING https://www.zentao.pm/agile-knowledge-share/tree-
swing-project-management-cartoon-97.mhtml
- na většinu otázek neexistuje JEDNA SPRÁVNÁ odpověď

NPRG031 Programování 2 [1] 3 / 46 6. 2. 2026 11:18:10

https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml
https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml

S tím souvisí
dekompozice = rozklad na funkce / objekty / moduly
 proč: abychom mohli program měnit

 (protože změna požadavků, protože jsme rozhodli chybně, protože…)

 s co nejmenším dopadem na celý program
nástroje některé nástroje jsou software, některé jen pravidla/konvence/rady

pro
 - správu požadavků
 - správu úkolů
 - správu chyb
 - správu versí
 - testování
 - dokumentaci (wiki, generovaná dokumentace)
 - přemýšlení (obrázky, myšlenkové mapy, UML)

NPRG031 Programování 2 [1] 4 / 46 6. 2. 2026 11:18:10

S tím souvisí
omezení/zvyklosti
 - coding conventions
 - PY: mezery nebo tabulátory, kolik mezer, kde
 - malá/velká písmena
 - „{“ na začátek nebo na konec řádky
 - linting
 - code smells
 - metriky kódu
používání knihoven
 - výběr KTERÉ knihovny / výběr KTERÁ VERZE
 - a i na to jsou nástroje (známe z PY - PIP)
metodiky vývoje programu

NPRG031 Programování 2 [1] 5 / 46 6. 2. 2026 11:18:10

K těm knihovnám…
SBOM (Software Bill of Materials)
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
(j) the term “Software Bill of Materials” or “SBOM” means a formal record containing the details
and supply chain relationships of various components used in building software. Software developers
and vendors often create products by assembling existing open source and commercial software
components. The SBOM enumerates these components in a product. It is analogous to a list of
ingredients on food packaging. An SBOM is useful to those who develop or manufacture software,
those who select or purchase software, and those who operate software. Developers often use
available open source and third-party software components to create a product; an SBOM allows the
builder to make sure those components are up to date and to respond quickly to new vulnerabilities.

EU CRA (EU Cyber Resilience Act)
https://anchore.com/sbom/eu-cra/
The European Union’s Cyber Resilience Act (CRA) mandates that manufacturers of products with
software components create and maintain a software bill of materials (SBOM). This SBOM must be
in a commonly used, machine-readable format and include, at a minimum, the top-level dependencies
of the product.

NPRG031 Programování 2 [1] 6 / 46 6. 2. 2026 11:18:10

https://anchore.com/sbom/eu-cra/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

NPRG031 Programování 2 [1] 7 / 46 6. 2. 2026 11:18:10

Jazyk C#

 C#
◦ Java 1995, bytecode
◦ C# 2002, .NET
◦ standardy ECMA a ISO/IEC

https://learn.microsoft.com/en-us/dotnet/csharp/specification/overview

◦ Anders Hejlsberg

◦

* Visual Studio
* Visual Studio Code

NPRG031 Programování 2 [1] 8 / 46 6. 2. 2026 11:18:10

https://learn.microsoft.com/en-us/dotnet/csharp/specification/overview

NPRG031 Programování 2 [1] 9 / 46 6. 2. 2026 11:18:10

Přechod od Pythonu k jazyku C#
Používání mezer a řádkování
- mezery, tabelátory, konce řádek nemají žádný význam
- doporučená a prostředím podporovaná indentace

Proměnná
- představuje místo v paměti, má svůj typ

(a musíme ho dodržovat)
- musí se před použitím deklarovat

...takže překladač může některé naše chyby najít za nás.

NPRG031 Programování 2 [1] 10 / 46 6. 2. 2026 11:18:10

Identifikátory
- case-sensitivní
- možnost používat diakritiku a národní abecedy
 (ale nemusíme dělat všechno, co není zakázáno:
 給我發郵件();)
- klíčová slova malými písmeny
- konvence (zvyklosti):

- proměnné malými písmeny, konstanty velkými písmeny
- jména prostorů*), tříd, metod a vlastností,

 veřejné členy
 -> „PascalskáNotace”
 např. Math, DivideByZeroException, Main, WriteLine
 - soukromé metody začínají malým písmenem
 -> „velbloudíNotace“

NPRG031 Programování 2 [1] 11 / 46 6. 2. 2026 11:18:10

Struktura programu
Celý program se skládá ze tříd,

vše se deklaruje a používá uvnitř tříd
(proměnné, konstanty, funkce, …).

Položky deklarované ve třídě:
 datové složky třídy = členské proměnné
 metody = členské funkce

Prozatím: celý program je tvořen jedinou statickou*)
metodou (její obsah tedy odpovídá celému programu)

Někdy příště: jak jinak to může vypadat se třídami
Proměnné

NPRG031 Programování 2 [1] 12 / 46 6. 2. 2026 11:18:10

- zápis deklarace proměnné
– syntaxe: int alfa;

- umístění deklarace:
BUĎ členská proměnná třídy (tzn. datová složka objektu)
NEBO lokální kdekoliv ve funkci, ale nesmí zakrýt jinou
stejnojmennou deklaraci uvedenou v téže funkci
(pozor na kolize!)
- lokální platnost deklarace v bloku, kde je uvedena
- možnost inicializace v rámci deklarace: int alfa = 15;
- v programu nelze použít nedefinovanou hodnotu proměnné

(kontrola při překladu)
- hodnotové a referenční typy
- všechno*) je objekt (instance nějaké třídy)

NPRG031 Programování 2 [1] 13 / 46 6. 2. 2026 11:18:10

Konstanty
- syntaxe stejná jako inicializované proměnné,
 specifikátor const:

const int ALFA = 15;
- číselné konstanty podobné jako v Pythonu (různé typy)
- konstanty typu char (znak) v apostrofech: 'a',
 typu string v uvozovkách: "aaa"

NPRG031 Programování 2 [1] 14 / 46 6. 2. 2026 11:18:10

Typy
Hodnotové
celé číslo

int System.Int32 32 bitů
další typy: byte, sbyte, short, ushort, uint, long, ulong

desetinné číslo

double System.Double 64 bitů
další typy: float, decimal
logická hodnota

bool
znak

char System.Char 16 bitů Unicode
výčtový typ

enum
struktura

struct

NPRG031 Programování 2 [1] 15 / 46 6. 2. 2026 11:18:10

Referenční
pole

[] System.Array

znakový řetězec
string System.String

objekt určité třídy
class

(standardní třídy, např. ArrayList,
StringBuilder, List<>)

Hlavní rozdíl mezi kategoriemi typů:
Dosazuje se hodnota nebo reference.

NPRG031 Programování 2 [1] 16 / 46 6. 2. 2026 11:18:10

Aritmetické výrazy
- obvyklé symboly operací i priority stejné jako v Pythonu

+ - * /
- POZOR: symbol / představuje desetinné i celočíselné
dělení
 (zvolí se podle typu argumentů) = zdroj chyb!
- znak % pro modulo (zbytek po celočíselném dělení)

- klíčová slova checked, unchecked – určení,
zda se má kontrolovat aritmetické přetečení
v celočíselné aritmetice

- použití jako checked(výraz) nebo checked{blok}
- standardní matematické funkce
 = statické*) metody třídy Math

NPRG031 Programování 2 [1] 17 / 46 6. 2. 2026 11:18:10

Středník
- ukončuje každý příkaz
 (musí být i za posledním příkazem bloku!)
- nesmí být za blokem ani za hlavičkou funkce
- odděluje sekce v hlavičce for-cyklu

Čárka
- odděluje deklarace více proměnných téhož typu
- odděluje parametry v deklaraci funkce i při volání funkce
- odděluje indexy u vícerozměrného pole

NPRG031 Programování 2 [1] 18 / 46 6. 2. 2026 11:18:10

Komentáře
- jednořádkové // xxx do konce řádku
- víceřádkové /* xxx */
- dokumentační ///

Blok (složený příkaz)
- skupina příkazů, kterou chceme spojit,
 třeba vnitřek cyklu nebo větev podmíněného příkazu
- závorky { } namísto odsazení v Pythonu

Dosazovací příkaz
- syntaxe: proměnná = výraz např. i = 2*i + 10;

NPRG031 Programování 2 [1] 19 / 46 6. 2. 2026 11:18:10

Příkaz modifikace hodnoty

i++; ++i;
i--; --i;

i += 10;
i -= 10;
i *= 10;
i /= 10;
i %= 10;

NPRG031 Programování 2 [1] 20 / 46 6. 2. 2026 11:18:10

Podmíněný příkaz
- podmínka = výraz typu bool v závorkách
if (a == 5) b = 17;
if (a == 5) b = 17;
 else b = 18;
- relační operátory: == != < > <= >=
- logické spojky

&& and (zkrácené vyhodnocování)
|| or (zkrácené vyhodnocování)
& and (úplné vyhodnocování)
| or (úplné vyhodnocování)
! not
^ xor

NPRG031 Programování 2 [1] 21 / 46 6. 2. 2026 11:18:10

For-cyklus
- syntaxe:

for (inicializace; podmínka pokračování; příkaz iterace)
příkaz těla // jeden příkaz!

for (int i=0; i<N; i++) a[i] = 3*i+1;

- některá sekce může být prázdná (třeba i všechny)

 (pokud je v některé sekci víc příkazů, oddělují se čárkou)

NPRG031 Programování 2 [1] 22 / 46 6. 2. 2026 11:18:10

Cykly while a do-while
- cyklus while stejný jako while-cyklus v Pythonu
 (podmínka je celá v závorce)

while (podmínka) příkaz;

- cyklus do-while má podmínku na konci,
 tzn. dokud podmínka platí, cyklus se provádí

do příkaz while (podmínka);

- více příkazů v těle cyklu musí být uzavřeno v bloku { }

NPRG031 Programování 2 [1] 23 / 46 6. 2. 2026 11:18:10

Ukončení cyklu
- příkazy

break;

continue;

- stejný význam jako v Pythonu

NPRG031 Programování 2 [1] 24 / 46 6. 2. 2026 11:18:10

Příkaz switch
- vícenásobné rozvětvení
- varianta se může rozhodovat podle výrazu
 celočíselného, znaku nebo také stringu
- sekce case, za každým case jediná konstanta, ale pro

více case může být společný blok příkazů
- poslední sekce může být default:
- je povinnost ukončit každou sekci case...
 (i sekci default,
 neboť ta nemusí být uvedena poslední)
 ...příkazem

break, příp. return nebo goto

NPRG031 Programování 2 [1] 25 / 46 6. 2. 2026 11:18:10

int j, i = ...;
 switch (i)
 {
 case 1:
 i++; break;
 case 2:
 case 3:
 i--; break;
 default:
 i=20; j=7; break;
 }

(pozor: v C, C++, Java, PHP... se může propadat mezi
sekcemi = zdroj chyb, v C# opravený)

NPRG031 Programování 2 [1] 26 / 46 6. 2. 2026 11:18:10

Funkce
- musí patřit nějaké třídě nebo objektu (později)
- když nevrací výsledek

-> funkce typu void
- v deklaraci i při volání vždy píšeme (),

i když nemá žádné parametry
- ve funkci nelze lokálně definovat*) jinou funkci,

strukturu nebo třídu, *)
lze tam ale deklarovat lokální proměnné

(ve třídě lze deklarovat jinou třídu
ta může mít své metody)

*) V C#7 už lze...

NPRG031 Programování 2 [1] 27 / 46 6. 2. 2026 11:18:10

Funkce...
- mohou vracet i složitější*) typy
- return <hodnota>;

 → definování návratové hodnoty a ukončení funkce
v případě funkcí typu void pouze return;
- předávání parametrů:
hodnotou (= výchozí způsob)
odkazem – specifikátor ref v hlavičce i při volání *)
výstupní parametr

– specifikátor out v hlavičce i při volání
(out je také odkazem, nemá ale vstupní hodnotu)

*) V C#7 už lze vracet "tuple"

NPRG031 Programování 2 [1] 28 / 46 6. 2. 2026 11:18:10

Výchozí metoda Main()
- plní funkci hlavního programu

(určuje začátek a konec výpočtu)
- je to statická*) metoda nějaké třídy

(nic „mimo třídy“ neexistuje),
často se pro ni vytváří samostatná třída

- obvykle jediná v aplikaci
 je tak jednoznačně*→) určeno, kde má začít výpočet

- *) může jich být i více, pak se ale musí určit,
 která funkce Main() (ze které třídy)
 se má použít při spuštění programu

- syntaxe: static void Main(string[] args)

NPRG031 Programování 2 [1] 29 / 46 6. 2. 2026 11:18:10

Standardní vstup a výstup

Console.Read();
vrací int = jeden znak ze vstupu (jeho kód)

Console.ReadLine();
vrací string = jeden řádek ze vstupu

Console.Write(výraz);
vypíše hodnotu zadaného výrazu

Console.WriteLine(výraz);
vypíše hodnotu zadaného výrazu a odřádkuje

NPRG031 Programování 2 [1] 30 / 46 6. 2. 2026 11:18:10

Formátovaný výstup

Console.WriteLine(string);

Console.WriteLine(
 "x0={0} x1={1} x2={2} ...a to je vše",
 x0, x1, x2
);
do stringu se dosadí hodnoty výrazů po řadě na místa

vyznačená pomocí {0}, {1}, {2}, atd., případně i s
požadovaným formátováním {0:N}

Console.WriteLine($"a={a} b={b} a*b={a*b}");

NPRG031 Programování 2 [1] 31 / 46 6. 2. 2026 11:18:10

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {

XXXXXXXXXXXXXXXXXXXX
 }
 }
}

NPRG031 Programování 2 [1] 32 / 46 6. 2. 2026 11:18:10

Příklad: Eukleidův algoritmus

static void Main(string[] args)
 {
 Console.WriteLine(

"Zadej dvě kladná celá čísla:");
 int a = int.Parse(Console.ReadLine());
 int b = int.Parse(Console.ReadLine());
 while (a != b)
 {
 if (a > b) a -= b;
 else b -= a;
 }
 Console.WriteLine(

"Nejv. spol. dělitel: {0}", a);
 Console.ReadLine();
 }

NPRG031 Programování 2 [1] 33 / 46 6. 2. 2026 11:18:10

Příklady:
Prvočíselný rozklad
Hornerovo schéma – vstup čísla po znacích

NPRG031 Programování 2 [1] 34 / 46 6. 2. 2026 11:18:10

static void Main(string[] args)
 {
 int v;
 int c;
 c = Console.Read();
 // preskocit ne-cislice:
 while ((c < '0') || (c > '9'))
 {
 c = Console.Read();
 }
 // nacitat cislice:
 v = 0;
 while ((c >= '0') && (c <= '9'))
 {
 v = 10 * v + (c - '0');
 c = Console.Read();
 }
 Console.WriteLine(v);
 Console.ReadLine();
 }

NPRG031 Programování 2 [1] 35 / 46 6. 2. 2026 11:18:10

Dynamicky alokované proměnné
- vytvářejí se pomocí zápisu

new + konstruktor*) vytvářeného objektu
- new je funkce, vrací vytvořenou instanci

(ve skutečnosti ukazatel na ni)
- v odkazech se nepíšou ^ jako se píšou v Pascalu nebo v C
- string, pole, třídy = referenční typy
- konstanta null (jako None v Pythonu)
- automatická správa paměti

nedostupné objekty jsou automaticky uvolněny z paměti
(ne nutně úplně okamžitě, ale až to bude potřeba)

NPRG031 Programování 2 [1] 36 / 46 6. 2. 2026 11:18:10

Příklad
prvni = null;
 // to je korektní zrušení celého spojového seznamu

 class Uzel
 {
 public int info;
 public Uzel dalsi;
 }

 class Program
 {
 static void Main(string[] args)
 {
 Uzel prvni = new Uzel();
 prvni.info = 123;
 prvni.dalsi = null;
 // ...
 }
 }

NPRG031 Programování 2 [1] 37 / 46 6. 2. 2026 11:18:10

Pole
- deklarace: int[] aaa;
- referenční typ, je nutné vytvořit pomocí new:

int[] aaa = new int[10];
- každé pole je instancí třídy odvozené*) z abstraktní

statické třídy System.Array
- indexování vždy od 0
- možnost inicializace:

int[] aaa = new int[3] { 2, 6, 8 };
int[] aaa = { 2, 6, 8 };

- počet prvků: aaa.Length
 vždy se provádějí kontroly přetečení mezí
 při indexování aaa[i]

NPRG031 Programování 2 [1] 38 / 46 6. 2. 2026 11:18:10

POZOR !

 static void Main(string[] args)
 {
 int[] aaa = { 2, 6, 8 };
 int[] bbb;
 bbb = aaa; // POZOR!!
 aaa[0] = 27;

 Console.WriteLine(bbb[0]);
 }

dosazuje se ukazatel !!

NPRG031 Programování 2 [1] 39 / 46 6. 2. 2026 11:18:10

Pole...
- připravené metody, např. CopyTo, Sort, Reverse,

BinarySearch, Array.Reverse(aaa);
- vícerozměrné pole

obdélníkové [,] a nepravidelné [][]
Nepravidelné dvourozměrné pole je ve skutečnosti pole polí
(tzn. pole ukazatelů na řádky,
 což jsou pole jednorozměrná),
- každý řádek je třeba zvlášť vytvořit pomocí new
- řádky mohou mít různou délku

 int[][] aaa = new int[3][];
 aaa[0] = new int[4];
 aaa[1] = new int[6];
 aaa[2] = new int[2];

NPRG031 Programování 2 [1] 40 / 46 6. 2. 2026 11:18:10

Příklad: Třídění čísel v poli - přímý výběr

static void Main(string[] args)
 {
 Console.Write("Počet čísel: ");
 int pocet = int.Parse(Console.ReadLine());
 int[] a;
 a = new int[pocet];
 int i = 0;
 while (i < a.Length)
 a[i++] = int.Parse(Console.ReadLine());
 i = 0;

 while (i < a.Length)
 {
 int k = i;
 int j = i+1;

NPRG031 Programování 2 [1] 41 / 46 6. 2. 2026 11:18:10

 while (j < a.Length)
 {
 if (a[j] < a[k]) k = j;
 j++;
 }
 if (k != i)
 {
 int x = a[i];
 a[i] = a[k];
 a[k] = x;
 }
 i++;
 }

 i = 0;
 while (i < a.Length)
 Console.Write(" {0}", a[i++]);
 Console.WriteLine();
 }

NPRG031 Programování 2 [1] 42 / 46 6. 2. 2026 11:18:10

Znakový řetězec
- deklarace: string sss;
- typ string – referenční typ, alias pro třídu
System.String
- vytvoření instance: string sss = "abcdefg";
- nulou ukončené řetězce, nemají omezenou délku
- indexování znaků od 0
- délka = sss.Length
- obsah nelze měnit (na to je třída StringBuilder)
- všechny objekty mají konverzní metodu ToString(),

pro struktury a objekty je vhodné předefinovat ji
(jinak se vypisuje jenom jejich jméno)

NPRG031 Programování 2 [1] 43 / 46 6. 2. 2026 11:18:10

Struktura – struct
- „zjednodušená třída“
- je to hodnotový typ

(na rozdíl od instance třídy se nemusí alokovat)
- může mít i konstruktor
 (má i implicitní bezparametrický konstruktor)
- některá omezení oproti třídám (např. nemůže dědit)

NPRG031 Programování 2 [1] 44 / 46 6. 2. 2026 11:18:10

struct Bod
{

 public int x, y;
 public Bod(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

}

NPRG031 Programování 2 [1] 45 / 46 6. 2. 2026 11:18:10

Tuple – n-tice

 System.Tuple
◦ class
◦ 1..7 prvků
◦ new Tuple<string, int, int, int, int, int, int>(
 "New York", 7891957, 7781984,
 7894862, 7071639, 7322564, 8008278);
 NEBO
Tuple.Create("New York", 7891957, 7781984, 7894862, 7071639,
7322564, 8008278);

◦ složky Item1, Item2… (od jedničky!)
◦ a

 System.ValueTuple
◦ struct
◦ (double, int) t = (4.5, 3);
(double a, int b) t = (a: 4.5, b: 3);

◦ složky Item1, Item2… nebo podle pojmenování

NPRG031 Programování 2 [1] 46 / 46 6. 2. 2026 11:18:10

