NPRG031 Programovani 2

RNDr. Tomas Holan, Ph.D.
Mala Strana, 4.patro, dvere 404

http://ksvi.mff.cuni.cz/~holan/

Tomas .Holan@mff.cuni.cz

NPRGO31 Programovani 2 [1] 1/ 46 6. 2. 2026 11:18:10

http://ksvi.mff.cuni.cz/~holan/

NPRG031 Programovani 2

e zkouska, pisemna a Ustni cast

e podminky zdpoctu urcuje cvicici, ale obecné
e aktivni Ucast
e domaci Ukoly
e zdpoctovy test

e zdpoCtovy program

e zvlastni cviéeni - Martin Mares

NPRGO31 Programovani 2 [1] 2/ 46 6. 2. 2026 11:18:10

O ¢em to bude

e novy jazyk
e ale programovadni neni jen jazyk a algoritmy

Nové problémy:
- jak zvlddat vétsi program

- jak spolupracovat na tvorbé programu

- SWING https://www.zentao.pm/agile-knowledge-share/tree-
swing-project-management -cartoon-97.mhiml

- na vétsinu otdzek neexistuje JEDNA SPRAVNA odpovéd’

NPRGO31 Programovani 2 [1] 3/46 6. 2. 2026 11:18:10

https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml
https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml

S tim souvisi

dekompozice = rozklad na funkce / objekty / moduly
proc: abychom mohli program meénit

(protoZe zména poZadavki, protoZe jsme rozhodli chybné, protoze..)

s co nejmensim dopadem na cely program
nésfr'oje nékteré nastroje jsou software, nékteré jen pravidla/konvence/rady
pro
- sprdavu poZadavku
- sprdvu ukold
- spravu chyb
- spravu versi
- testovani
- dokumentaci (wiki, generovana dokumentace)
- premysleni (obrdzky, myslenkové mapy, UML)

NPRGO31 Programovani 2 [1] 4/ 46 6. 2. 2026 11:18:10

S tim souvisi

omezeni/zvyklosti
- coding conventions
- PY: mezery nebo tabuldtory, kolik mezer, kde

- mala/velka pismena
- .{" na zacatek nebo na konec radky

- linting
- code smells
- metriky kodu
pouzivani knihoven
- vybér KTERE knihovny / vybér KTERA VERZE
- a i na to jsou ndstroje (zndme z PY - PIP)

metodiky vyvoje programu

NPRGO31 Programovani 2 [1] 5/ 46 6. 2. 2026 11:18:10

K tém knihovnam...
SBOM (Software Bill of Materials)

https://bidenwhitehouse.archives.gov/briefing-room/presidential -actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

(j) the term “"Software Bill of Materials” or "SBOM" means a formal record containing the details
and supply chain relationships of various components used in building software. Software developers
and vendors often create products by assembling existing open source and commercial software
components. The SBOM enumerates these components in a product. It is analogous to a list of
ingredients on food packaging. An SBOM is useful to those who develop or manufacture software,
those who select or purchase software, and those who operate software. Developers often use
available open source and third-party software components to create a product; an SBOM allows the
builder to make sure those components are up to date and to respond quickly to new vulnerabilities.

EU CRA (EU Cyber Resilience Act)

https://anchore.com/sbom/eu-cra/

The European Union's Cyber Resilience Act (CRA) mandates that manufacturers of products with
software components create and maintain a software bill of materials (SBOM). This SBOM must be
in a commonly used, machine-readable format and include, at a minimum, the top-level dependencies
of the product.

NPRGO31 Programovani 2 [1] 6/ 46 6. 2. 2026 11:18:10

https://anchore.com/sbom/eu-cra/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

NPRGO31 Programovani 2 [1] 7/ 46 6. 2. 2026 11:18:10

Jazyk C#

. CH#
- Java 1995, bytecode
. CH 2002, NET
. standardy ECMA a ISO/IEC

https://learn.microsoft.com/en-us/dotnet/csharp/specification/overview

- Anders Hejlsberg

* Visual Studio
* Visual Studio Code

NPRGO31 Programovani 2 [1] 8 /46 6. 2. 2026 11:18:10

https://learn.microsoft.com/en-us/dotnet/csharp/specification/overview

NPRGO31 Programovani 2 [1] 9 /46 6. 2. 2026 11:18:10

Prechod od Pythonu k jazyku C#

Pouzivani mezer a rddkovani
- mezery, tabelatory, konce rddek nemaji zadny vyznam
- doporucend a prostredim podporovana indentace

Proménna

- predstavuje misto v paméti, ma svuj typ
(a musime ho dodrzovat)

- musi se pred pouzitim deklarovat

...takZe prekladaé¢ muze nékteré nase chyby najit za nas.

NPRGO31 Programovani 2 [1] 10/ 46 6. 2. 2026 11:18:10

Identifikatory
- case-sensitivni
- moznost pouzivat diakritiku a ndrodni abecedy
(ale nemusime délat vsechno, co neni zakazano:
AT () ;)
- klicova slova malymi pismeny
- konvence (zvyklosti):
- proménné malymi pismeny, konstanty velkymi pismeny
- jména prostord*), trid, metod a vlastnosti,
verejne cleny
-> _PascalskaNotace”
napF'. Math, DivideByZeroException, Main, WritelLine
- soukromé metody zacinaji malym pismenem
-> ,velbloudiNotace"

NPRGO31 Programovani 2 [1] 11/ 46 6. 2. 2026 11:18:10

Struktura programu
Cely program se sklada ze trid,
vSe se deklaruje a pouziva uvnitr trid
(proménné, konstanty, funkce, ..).

Polozky deklarované ve tridé:
e datové slozky tridy = Clenské proménné
e metody = Clenské funkce

Prozatim: cely program je tvoren jedinou statickou™)
metodou (jeji obsah tedy odpovida celému programu)

Nékdy pristé: jak jinak to miZe vypadat se tridami

Proménné

NPRGO31 Programovani 2 [1] 12 / 46 6. 2. 2026 11:18:10

- zapis deklarace proménné
- syntaxe: int alfa;
- umisténi deklarace:
BUD ¢lenskd proménnd tidy (tzn. datové slozka objektu)
NEBO lokadlni kdekoliv ve funkci, ale nesmi zakryt jinou
stejnojmennou deklaraci uvedenou v téze funkci
(pozor na kolizel!)
- lokalni platnost deklarace v bloku, kde je uvedena
- moznost inicializace v ramci deklarace: int alfa = 15;
- v programu nelze pouzit nedefinovanou hodnotu proménné
(kontrola pri prekladu) A
- hodnotové a referencni typy
- vSechno*) je objekt (instance néjaké tridy)

NPRGO31 Programovani 2 [1] 13/ 46 6. 2. 2026 11:18:10

Konstanty
- syntaxe stejnd jako inicializované promeénne,

specifikator const:
const int ALFA = 15;

- Ciselné konstanty podobné jako v Pythonu (r'uzne 'rypy)
- konstanty typu char (znak) v apostrofech:
typu string v uvozovkach: "aaa"

p
-
v

NPRGO31 Programovani 2 [1] 14 / 46 6. 2. 2026 11:18:10

Typy

Hodnotové
celé ¢éislo
int System.Int32 32 bitu
dalsi typy: byte, sbyte, short, ushort, uint, long, ulong

desetinné ¢islo

double System.Double 64 bitu
dalsi typy: float, decimal
logicka hodnota

bool
znak

char System.Char 16 bitd Unicode
vyctovy typ

enum
struktura

struct

NPRGO31 Programovani 2 [1] 15/ 46 6. 2. 2026 11:18:10

Referencni
pole
[] System.Array

znakovy retézec
string System.String

objekt urc¢ité tridy
class
(standardni tridy, napf¥. Arraylist,
StringBuilder, List<>)

Hlavni rozdil mezi kategoriemi typ:
Dosazuje se hodnota nebo reference.

NPRGO31 Programovani 2 [1] 16 / 46 6. 2. 2026 11:18:10

Aritmetické vyrazy
- obvyklé symboly operaci i priority stejné jako v Pythonu
+ -*/
- POZOR: symbol / predstavuje desetinné i celoCiselné
déleni
(zvoli se podle typu argumentld) = zdroj chyb!
- znak % pro modulo (zbytek po celoCiselném délenti)

- klicova slova checked, unchecked - urceni,

zda se ma kontrolovat aritmetické preteceni

v celocCiselné aritmetice
- pouziti jako checked (vyraz) nebo checked{blok}
- standardni matematické funkce

= statické*) metody tridy Math

NPRGO31 Programovani 2 [1] 17 / 46 6. 2. 2026 11:18:10

Strednik

- ukoncuje kazdy prikaz

(musi byt i za poslednim prikazem blokul)
- nesmi byt za blokem ani za hlavickou funkce
- oddéluje sekce v hlavicce for-cyklu

Carka
- oddéluje deklarace vice proménnych téhoz typu

- oddéluje parametry v deklaraci funkce i pri volani funkce
- oddéluje indexy u vicerozmérného pole

NPRGO31 Programovani 2 [1] 18 / 46 6. 2. 2026 11:18:10

Komentare

- jednorddkové // xxx do konce radku
- viceradkove /* xxx */
- dokumentacéni ///

Blok (slozeny prikaz)
- skupina prikazu, kterou chceme spojit,

treba vnitrek cyklu nebo vétev podminéného prikazu
- zavorky { } namisto odsazeni v Pythonu

Dosazovaci prikaz
- syntaxe: proménnd = vyraz napr. i = 2*i + 10;

NPRGO31 Programovani 2 [1] 19/ 46 6. 2. 2026 11:18:10

Prikaz modifikace hodnoty

i++; ++1;
i--; —--1;
i += 10;
i -= 10;
i *= 10;
i /= 10;
i %= 10;

NPRGO31 Programovani 2 [1] 20/ 46 6. 2. 2026 11:18:10

Podminény prikaz g

-
- podminka = vyraz typu bool v zavorkach
if (a ==5) b =17;
if (a==5) b= 17;
else b =18;

- relacni operdtory: == = < > <=
- logické spojky

&& and (zkrdcené vyhodnocovani)

| | or (zkrdcené vyhodnocovani)

& and (dplné vyhodnocovanti)

| or (Uplné vyhodnocovanti)

' not

A xor

NPRGO31 Programovani 2 [1] 21/ 46

6.2.2026 11:18:10

For-cyklus
- syntaxe:
for (inicializace; podminka pokracovani; prikaz iterace)
prikaz téla // jeden prikaz!

for (int 1i=0; i<N; i++) a[i] = 3*i+l;
- néktera sekce muze byt prazdna (tfeba i vSechny)

(pokud je v nékteré sekci vic prikazi, oddéluji se Edrkou)

NPRGO31 Programovani 2 [1] 22 / 46 6. 2. 2026 11:18:10

Cykly while a do-while
- cyklus while stejny jako while-cyklus v Pythonu
(podminka je cela v zavorce)

while (podminka) prikaz;

- cyklus do-while md podminku na konci,
tzn. dokud podminka plati, cyklus se provadi

do prikaz while (podminka) ;

- vice prikazd v téle cyklu musi byt uzavireno v bloku { }

NPRGO31 Programovani 2 [1] 23/ 46 6. 2. 2026 11:18:10

Ukonceni cyklu
- prikazy

break;

continue;

- stejny vyznam jako v Pythonu

NPRGO31 Programovani 2 [1] 24 / 46 6. 2. 2026 11:18:10

Prikaz switch

- vicendsobné rozvétveni
- varianta se muZe rozhodovat podle vyrazu
celoCiselného, znaku nebo také stringu
- sekce case, za kazdym case jedina konstanta, ale pro
vice case muZe byt spoleény blok prikazi
- posledni sekce miZe byt default:
- je povinnost ukonCit kazdou sekci case...
(i sekci defaulft, a#
nebot’ ta nemusi byt uvedena posledni)
...prikazem
break, prip. return nebo goto

NPRGO31 Programovani 2 [1] 25 / 46 6. 2. 2026 11:18:10

int 3, 1. = ...;
switch (1)

{
case 1:
i++; break;
case 2:
case 3:
1--, break;
default:
i=20; j=7, break;
}

(pozor: v C, C++, Java, PHP... se miZe propadat mezi
sekcemi = zdroj chyb, v C# opraveny)

A ="

e

NPRGO31 Programovani 2 [1] 26 / 46 6. 2. 2026 11:18:10

Funkce

- musi patrit néjaké tridé nebo objektu (pozdéji)
- kdyz nevraci vysledek
-> funkce typu void |
- v deklaraci i pri voldni vzdy piSseme (), >
i kdyZz nema zadné parametry

*)
|ze tam ale deklarovat lokalni proménné
(ve tridé lze deklarovat jinou tridu

ta miZe mit své metody)

*)V CH#7 uz lze... -

NPRGO31 Programovani 2 [1] 27 / 46 6. 2. 2026 11:18:10

Funkce. ..
- mohou vracet i slozitéjsi*) typy
- return <hodnota>;
— definovdni navratové hodnoty a ukonceni funkce
v pripadé funkci typu void pouze return;
- predavani parametrd:
hodnotou (= vychozi zpusob) |
odkazem - specifikdtor ref v hlaviéce i pFi voldni *) ¥
vystupni parametr)
- specifikator out v hlavicce i pri volani -
(out je také odkazem, nemd ale vstupni hodnotu)

*) V C#7 uz lze vracet "tuple" >

NPRGO31 Programovani 2 [1] 28 / 46 6. 2. 2026 11:18:10

Vychozi metoda Main()

- pIni funkci hlavniho programu

(urCuje zacdtek a konec vypoctu)
- je to staticka®*) metoda néjaké tridy

(nic ., mimo tridy" neexistuje),

¢asto se pro ni vytvdri samostatna trida
- obvykle jedina v aplikaci

— je tak jednoznacné*) urceno, kde ma zacit vypocet
- *) muzZe jich byt i vice, pak se ale musi uréit,

kterd funkce Main() (ze které tridy)

se ma pouzit pri spusténi programu

- syntaxe: static void Main(string[] args)

NPRGO31 Programovani 2 [1] 29 / 46 6. 2. 2026 11:18:10

Standardni vstup a vystup

Console.Read() ;
vraci int = jeden znak ze vstupu (jeho kod)

Console.ReadLine () ;
vraci string = jeden radek ze vstupu

Console.Write (vyraz) ;
vypiSe hodnotu zadaného vyrazu

Console.Writeline (vyraz) ;
vypiSe hodnotu zadaného vyrazu a odradkuje

NPRGO31 Programovani 2 [1] 30/ 46

6.2.2026 11:18:10

Formdtovany vystup

Console.Writeline(string) .

Console.WriteLine (
"x0={0} x1={1} x2={2} ...a to je vse",
x0, x1, x2
) ;
do stringu se dosadi hodnoty vyraziu po radé na mista
vyznaCend pomoci {0}, {1}, {2}, atd., pripadné i s
pozadovanym formatovanim {0 :N}

Console.WriteLine($"a={a} b={b} a*b={a*b}");

NPRGO31 Programovani 2 [1] 31/ 46 6. 2. 2026 11:18:10

using System;
using System.Collections.Generic;
using System.Text;

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{
XXXXXXXXXXXXXXXXXKXXX

}
}

NPRGO31 Programovani 2 [1] 32/ 46 6. 2. 2026 11:18:10

Priklad: Eukleidiv algoritmus

static void Main(string[] args)
{
Console.WritelLine (

"Zade]j dvé kladna cela ¢éisla:");
int a = int.Parse (Console.ReadLine()) ;
int b = int.Parse (Console.ReadlLine()) ;
while (a '= b)

{
if (a > b) a -= b;
else b -= a;
}
Console.WritelLine (

"Nejv. spol. délitel: {0}", a);

Console.ReadLine () ;

NPRGO31 Programovani 2 [1] 33/ 46 6. 2. 2026 11:18:10

Priklady:
Prvociselny rozklad
Hornerovo schéma - vstup Cisla po znacich

NPRGO31 Programovani 2 [1] 34/ 46 6. 2. 2026 11:18:10

static void Main(string[] args)

{

int v;
int c;
c = Console.Read() ;
// preskocit ne-cislice:
while ((¢ < '0'") || (¢ > '9"))
{
c = Console.Read() ;
}
// nacitat cislice:
v = 0;
while ((c >= '0') && (c <= '9'"))
{
v=1l0 * v + (¢ - '0'");
c = Console.Read() ;
}
Console.Writeline (V) ;
Console.ReadLine () ;

NPRGO31 Programovani 2 [1] 35/ 46

6.2.2026 11:18:10

Dynamicky alokované proménné
- vytvareji se pomoci zdpisu
new + konstruktor*) vytvafeného objektu
- new je funkce, vraci vytvorenou instanci
(ve skutecnosti ukazatel na ni)
- v odkazech se nepiSou ~ jako se piSou v Pascalu nebo v C
- string, pole, tridy = referencni typy
- konstanta null (jako None v Pythonu)
- automaticka sprava pameéti
nedostupné objekty jsou automaticky uvolnény z pameéti
(ne nutné dplné okamzité, ale az to bude potreba)

NPRGO31 Programovani 2 [1] 36 / 46 6. 2. 2026 11:18:10

Priklad

prvni = null;
// to je korektni zrusSeni celého spojového seznamu

class Uzel

{
public int info;
public Uzel dalsi;

}

class Program

{

static void Main(string[] args)

{

Uzel prvni = new Uzel()
prvni.info = 123;
prvni.dalsi = null;

//
}

NPRGO31 Programovani 2 [1] 37/ 46 6. 2. 2026 11:18:10

Pole

- deklarace: int[] aaa;

- referencni typ, je nutné vytvorit pomoci new:
int[] aaa = new int[10];

- kazdé pole je instanci tridy odvozené*) z abstraktni
statické tridy System.Array
- indexovdni vzdy od 0

- moznost inicializace:
int[] aaa = new int[3] { 2, 6, 8 };
int[] aaa = { 2, 6, 8 };

- poéet prvki: aaa.Length
- vzdy se provadéji kontroly preteceni mezi i
pri indexovdni aaal[i]

NPRGO31 Programovani 2 [1] 38/ 46 6. 2. 2026 11:18:10

POZOR |

static void Main(string[] args)

{

int[] aaa = { 2, 6, 8 };
int[] bbb;

bbb = aaa; // POZOR!'!
aaal[0] = 27;

Console.WriteLine (bbb[0]) ;

dosazuje se ukazatel !

NPRGO31 Programovani 2 [1] 39/ 46

6.2.2026 11:18:10

Pole...

- pripravené metody, napr. CopyTo, Sort, Reverse,
BinarySearch, Array.Reverse (aaa);

- vicerozmeérné pole
obdélnikové [,] a nepravidelné [][]
Nepravidelné dvourozmérné pole je ve skutecnosti pole poli
(tzn. pole ukazatelt na radky,
coz jsou pole jednorozmérnd),
- kazdy rddek je treba zvlast’' vytvorit pomoci new
- radky mohou mit riznou délku

int[][] aaa = new int[3]][];
aaa[0] = new int[4];
aaal[l] new int[6];
aaa[2] = new int[2];

NPRGO31 Programovani 2 [1] 40/ 46 6. 2. 2026 11:18:10

Priklad: Tridéni Cisel v poli - primy vybér

static void Main(string[] args)

{

NPRGO31 Programovani 2 [1] 41/ 46 6. 2. 2026 11:18:10

Console.Write ("Pocet c¢isel: ") ;

int pocet = int.Parse(Console.ReadLine()) ;
int[] a;

a = new int[pocet];

int 1 = 0;
while (i1 < a.Length)

a[i++] = int.Parse(Console.ReadLine()) ;
i=20;

while (i1 < a.Length)
{
int k
int j

i;
i+l;

while (j < a.Length)

{
if (a[j] < a[k]) k = 3;
Jj++;
}
if (k '= 1)
{
int x = a[i];
a[i] = a[k];
alk] = x;
}
i++;
}
i=20;

while (i1 < a.Length)
Console.Write (" {0}", a[i++]);

Console.WriteLine () ;

NPRGO31 Programovani 2 [1] 42 / 46 6. 2. 2026 11:18:10

Znakovy retézec

- deklarace: string sss;

- typ string - referencni typ, alias pro tridu
System.String

- vytvoreni instance: string sss = "abcdefg";

- nulou—ukonéené retézce, nemaji omezenou délku

- indexovani znaku od 0

- délka = sss.Length

- obsah nelze ménit (na to je trida StringBuilder)

- vSechny objekty maji konverzni metodu ToString(),
pro struktury a objekty je vhodné predefinovat ji
(jinak se vypisuje jenom jejich jméno)

NPRGO31 Programovani 2 [1] 43/ 46 6. 2. 2026 11:18:10

Struktura - struct

- ,zjednodusend trida™
- je to hodnotovy typ
(na rozdil od instance tridy se nemusi alokovat)
- muZe mit i konstruktor
(ma i implicitni bezparametricky konstruktor)
- néktera omezeni oproti tridam (naprf. nemuze dédit)

NPRGO31 Programovani 2 [1] 44 / 46 6. 2. 2026 11:18:10

struct Bod

{
public int x, y;
public Bod(int x,
{
this.x = x;
this.y = y;
}
}

NPRGO31 Programovani 2 [1] 45 / 46

int y)

6.2.2026 11:18:10

Tuple - n-tice

. System.Tuple

. class
. 1..7 prvku

- new Tuple<string, int, int, int, int, int, int>(
"New York"™, 7891957, 7781984,
7894862, 7071639, 7322564, 8008278);

NEBO
Tuple.Create("New York", 7891957, 7781984, 7894862, 7071639,

7322564, 8008278);
. slozky Iteml, Item2.. (od jednicCky!)

. System.ValueTuple

. struct
- (double, int) t = (4.5, 3);
(double a, int b) t = (a: 4.5, b: 3);
. slozky Iteml, Item2.. nebo podle pojmenovani

NPRGO31 Programovani 2 [1] 46 / 46 6. 2. 2026 11:18:10

