
NAIL134 AI for Games
Modeling RTS Combat Scenarios

Jakub Gemrot (Tomáš Dvořák)

Faculty of Mathematics and Physics
Charles University
10.12.2024

Modelling RTS combat
States, units and moves

Problem
How to create combat AI for real-time strategy game?

• Whom to target
• where to move
• in order to minimize own losses
• while maximizing damage to the opponent?

☝ It can be surprisingly hard even if AI
• controls one unit
• and faces the opposition of N enemy units !

Mathematical Games

Games
Mathematically speaking

Informal definition
Game is any set of circumstances that has a result dependent on
the actions of two or more decision-makers (players).

Games
Mathematically speaking

Concepts of theoretical games
Players a finite set of players
Actions (Moves) available to players at certain moments of the game
Nodes (States) moments of the game where players can perform
 actions == make moves
Game Tree rooted tree, root = initial state, edges = moves
Payoffs utilities (gains / losses) of players at the game tree leaves
Information set “fog of war”, a set of nodes, which are indistinguishable for
 a given player, i.e., a given player lacks information to recognize
 what concrete game node they are in right now
Nature (Environment / Chance) a player used to model randomness

Extensive form games

Extensive form games
Describing the (Tic-tac-toe) game in its entirety

…

… … …

Image adapted from: https://en.wikipedia.org/wiki/
Game_tree#/media/File:Tic-tac-toe-game-tree.svg

…
Outcome: (1;-1)

Tic-tac-toe
game tree

Extensive form games
Describing the (Tic-tac-toe) game in its entirety

…

… … …

Node (a choice
point)

Actions (possible
moves)

…Leaf (game
ends) Outcome: (1;-1)

Payoff for
given

outcome

Tic-tac-toe
game tree

Extensive form games
Describing the (Tic-tac-toe) game in its entirety

…

… … …

…
Outcome: (-1;1)

G
am

e
tr

ee
 d

ep
th

 =
=

M
ax

 n
um

be
r o

f p
lie

s

Branching factor

A ply

…Game tree size: number of leaves == possible playouts

Game playout

Subgam
e

…

Quick recap
NIM game tree

-1

Quick recap
Minimax algorithm

1

winning
strategy for black player

(MIN)-1-1

1-11

-1

-1

11

1

-1 -1

1 -1 1 -1 -1

Quick recap
Zermelo's theorem

☝Zermelo's theorem (1913 [pdf]). For every finite
game of two players with perfect information and zero
sum, one of the players has

• a winning strategy (draw not allowed)
• or non-losing strategy (draw allowed).

Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro
Kishimoto, Martin Muller, Rob Lake, Paul Lu, Steve Sutphen,
Checkers is Solved, Science 317 (2007), 1518-1522 [doi]

https://web.archive.org/web/20131217224959if_/http://www.socio.ethz.ch/publications/spieltheorie/klassiker/Zermelo_Uber_eine_Anwendung_der_Mengenlehre_auf_die_Theorie_des_Schachspiels.pdf
https://doi.org/10.1126/science.1144079

Quick recap
Alpha-beta pruning

-7 -5

-7

-7

≤-7

7 5

5

≥5

✄

-10

-10

-10

≤-10

✄

-7

✖

Games
Mathematically speaking

Main features of games important to us
Sequential / Simultaneous
Perfect / Imperfect information

Additional types of games
Zero-sum / Non-zero sum
Cooperative / Non-cooperative
Symmetric / Asymmetric

Normal form games

Normal form games
Theoretical background

Concepts of theoretical games
Strategy a complete „algorithm“ for a player how to play the game
Strategy profile an assignment of strategies to each player
Pure strategy a strategy, where the player has exactly one action planned
 for every node where the player can make a move
Strategy set all pure strategies available to a player to choose from
Mixed strategy a probability distribution over a strategy set,
 associated with expected payoff

Also called
strategic form

games

Normal form games
Theoretical background

Normal form game definition

Players indexed 1.. n
 strategy set for a player i
u payoff function:

 i.e., for strategies chosen by players (strategy profile)
 the function returns players’ payoffs
 (+ … gains, - … losses)

Many games and even social situations falls under the notion of normal
form games!

Two player games : payoff function → matrix

𝑆𝑖
𝑆1 × … × 𝑆𝑛 → 𝑅𝑛

𝑠𝑖 ∈ 𝑆𝑖
𝑟𝑖 ∈ 𝑅

Normal form games
Theoretical background

Normal form game matrix representation
Prisoners’ dilemma

Image source: https://www.thoughtco.com/the-prisoners-dilemma-definition-1147466

https://www.thoughtco.com/the-prisoners-dilemma-definition-1147466

Nash equilibrium

Nash equilibrium
Theoretical background

Nash equilibrium is a strategy profile such that no player
can increase his own payoff by changing his strategy while
the other players keep theirs unchanged.

It represents a stable point in a game: stable in the sense
that there is no rational incentive for any player to deviate.

John Forbes Nash (1925-2015)

Nash equilibrium
Theoretical background

Nash’s Theorem

Every finite, non-cooperative game of two or more players
has a Nash equilibrium either in pure or mixed strategies.
In other words…

If the proceeding of the game is in Nash equilibrium, then
even if I know, what strategies others are playing, I cannot
do better then to stick with strategy I’m currently playing.

Normal form games
Theoretical background

Pure strategy Nash equilibrium example
Prisoners’ dilemma

Image source: https://www.thoughtco.com/the-prisoners-dilemma-definition-1147466

https://www.thoughtco.com/the-prisoners-dilemma-definition-1147466

Normal form games
Theoretical background

Mixed strategy Nash equilibrium example
Rock paper scissors

Mixed strategy Nash equilibrium
Rock paper scissors – Linear programming

Consider a probability distribution:

Expected utilities of P2 for strategies of P1:
P1 plays rock: u = r · 0 + p · 1 + s · (–1) = p – s
P1 plays paper: u = r · (–1) + p · 0 + s · 1 = s – r
P1 plays scissor : u = r · 1 + p · (–1) + s · 0 = r – p

Now P1 is trying to minimize P2 utilities, so we have
u ≤ p – s ; u ≤ s – r ; u ≤ r – p

P2 is trying to maximize the utility, which yields the result

𝑟 + 𝑝 + 𝑠 = 1

𝑟 = 𝑝 = 𝑠 =
1
3

Normal form games
Theoretical background

Battle of Sexes
Backward induction

Battle of Sexes
The Game

Normal form game
A boy and a girl are spending evening together, though they forgot, where
they agreed to meet. The boy would like to go and see a football match,
whereas the girl would like to go to the opera.

Battle of Sexes
The Game

Altered game
Suppose the girl has a chance to text the boy where is she's going.
The simultaneous game turns into sequential.

(3,2) (0,0) (0,0) (2,3)

O(pera) F(ootball)

O F O F

Girl

Boy

Battle of Sexes
The Game

Altered game
Suppose the girl has a chance to text the boy where is she going. The
simultaneous game turns into sequential.

(3,2) (0,0) (0,0) (2,3)

O(pera) F(ootball)

O F O F

Girl

Boy
1. In each subgame,
the boy (if rational)
has to adopt “copy”

strategy.

2. Knowing that and
applying backward
induction, the girl
knows what to do

3. In this case,
there is the
first mover
advantage.

Battle of Sexes
The Game

Altered game
Suppose the girl has a chance to text the boy where is she going. The
simultaneous game turns into sequential.

(3,2) (0,0) (0,0) (2,3)

O(pera) F(ootball)

O F O F

Girl

Boy 5. That’s because each
subgame can be
described using a

normal form, i.e., the
payoff matrix.

4. Finally, perfect
information simultaneous
games are (sometimes)
referred to as stacked

matrix games.

Nash equilibrium
for extensive form games

Sequential game with perfect information
How to compute Nash equilibrium?
☝Generalize minimax search ☞ backward induction:

• for each nonterminal node
• if all the children have been labeled with a payoff profile
• then label parent with a payoff profile from the child node that
• maximizes the payoff of the player making the decision at parent
• if there is a tie, then choose arbitrarily
• if we have chance nodes, then compute expected utility

☝Payoff profile labeling the initial state = payoff profile
 that would be obtained by playing Nash equilibrium strategies

Nash equilibrium
for extensive form games

Sequential game with perfect information
☞ Nash equilibrium strategies for extensive-form games can
 be computed in polynomial time using backward induction
☞ Every extensive-form game has at least one Nash
 equilibrium in pure strategies
A profile of strategies forms a subgame perfect Nash
equilibrium in a game G if it is a Nash equilibrium in every
subgame of G.
☞ Backward induction computes subgame perfect Nash
 equilibrium

Back to RTS combat! … Sort of.

Before taking on RTS, we’re going to study turn-based combat
Furtak, T., & Buro, M. On the complexity of two-player attrition games played on graphs
[doi]

https://dl.acm.org/doi/10.3233/978-1-61499-672-9-1432

Attrition games on graphs
And its intricacies

Attrition Game on Graph (AGG)
Two-player perfect information simultaneous game on a graph :

• every node belongs to a single player (either white and black here)
• each node described by

 … health
 … attack value

• graph is directed, an edge means can attack
Discrete version: series of rounds, all nodes choose their target, then
simultaneously attack, all nodes with zero or lower health are removed.
Players may have various objectives (e.g. minimize damage taken).
Continuous version: units attack constantly and are immediately
removed when their health reaches 0.

⟨h; 𝑎⟩
h
𝑎

𝑥 → 𝑦 𝑥 𝑦

Attrition games on graphs
And its intricacies

1 vs N units; minimize dmg taken
White: 1 unit ; Black: N units
White objective: minimize damage taken by its unit

Theorem
In discrete version, to minimize white’s total sustained damage it is
sufficient to order its targets by nonincreasing value of and
never change targets until they have been destroyed.

⟨h0; 𝑎0⟩ ⟨h1; 𝑎1⟩, …, ⟨h𝑛; 𝑎𝑛⟩

𝑎𝑖/⌈h𝑖/𝑎0⌉

Intuitively, white wants to neutralize a
threat with high attack value and low
health while not over overkilling it.

Proof by contradiction, order units,
try to swap two black units j, j+1

Attrition games on graphs
And its intricacies

1 vs N units; white is maximizing reward (AGG-1:N-Rew)
White: 1 unit ; Black: N units
White objective: maximize reward from neutralizing black units; each
black unit associated with reward .

Theorem
Given a discrete AGG scenario with black units with health ,
attack , and kill reward for white, and a single white unit with
health and attack , it is NP-hard for white to decide what the
reward-maximal target ordering is, in case white does not survive.

⟨h0; 𝑎0⟩ ⟨h1; 𝑎1⟩, …, ⟨h𝑛; 𝑎𝑛⟩
𝑟𝑖 ≥ 0

 𝑛 h𝑖
𝑎𝑖 𝑟𝑖 ≥ 0
h𝑜 𝑎𝑜

Attrition games on graphs
And its intricacies

1 vs N units; white is maximizing reward (AGG-1:N-Rew)
White: 1 unit ; Black: N units
White objective: maximize reward from neutralizing black units; each
black unit associated with reward .

Theorem
Given a discrete AGG scenario with black units with health ,
attack , and kill reward for white, and a single white unit with
health and attack , it is NP-hard for white to decide what the
reward-maximal target ordering is, in case white does not survive.

⟨h0; 𝑎0⟩ ⟨h1; 𝑎1⟩, …, ⟨h𝑛; 𝑎𝑛⟩
𝑟𝑖 ≥ 0

 𝑛 h𝑖
𝑎𝑖 𝑟𝑖 ≥ 0
h𝑜 𝑎𝑜

1. In SC or AoE, consider facing
multiple enemies of different kinds

including special power units.

2. We will show how to encode
the 0-1 knapsack problem as

AG-1:N-Rew.

Attrition games on graphs
And its intricacies

0-1 knapsack → AGG-1:N-Rew
For 0-1 knapsack problem instance of items and a bag
capacity , we define AGG-1:N-Rew input as follows:
White:
single unit
Black:
 units and reward
1 unit
Equivalence of instances:

• white unit is destroyed in steps
• white may eliminate black units with total health ≤
• reward for destroyed units = value of items put into the bag

𝑛 ⟨𝑤𝑖; 𝑣𝑖⟩
𝑤𝑚𝑎𝑥

⟨𝑤𝑚𝑎𝑥; 1⟩

𝑛 ⟨𝑤𝑖; 0⟩ 𝑣𝑖
⟨∞; 1⟩

𝑤𝑚𝑎𝑥
𝑤𝑚𝑎𝑥

Finally, the RTS combat!

Churchill, D., Saffidine, A., & Buro, M. Fast heuristic search for RTS game combat
scenarios [doi]

https://dl.acm.org/doi/10.5555/3014629.3014650

Modelling RTS combat
RTS Combat Game - States, units and moves

Units

We also track damage-per-frame:

• 𝑢 . 𝑑𝑝𝑓 =
𝑢 . 𝑤 . 𝑑𝑎𝑚𝑎𝑔𝑒

𝑢 . 𝑤 . 𝑐𝑜𝑜𝑙𝑑𝑜𝑤𝑛

Modelling RTS combat
RTS Combat Game - States, units and moves

Moves

States

Modelling RTS combat
RTS Combat Game - States, units and moves

Legal moves for units
Given a state and unit , its legal actions are:
 … may attack anything in range
 … may move in any direction
 … may wait
s . t < u . tm , s . t < u . ta … has no legal actions

𝑠 𝑢
𝑢 . 𝑡𝑎 ≤ 𝑠 . 𝑡 𝑢
𝑢 . 𝑡𝑚 ≤ 𝑠 . 𝑡 𝑢
𝑢 . 𝑡𝑚 ≤ 𝑠 . 𝑡 ≤ 𝑢 . 𝑡𝑎 𝑢

𝑢

Modelling RTS combat
RTS Combat Game - States, units and moves

Game terminal condition
All units of a player reach zero HP
Further assumptions
Zero-sum game (i.e., no asymmetric rewards)
Limitations wrt real RTS games
■ no special powers or spells
■ no hit point or shield regeneration
■ no travel time for projectiles
■ no unit collisions
■ no unit acceleration, deceleration or turning
■ no fog of war
=> Yet the game is harder than AGG == at least NP-hard => backward
induction is unfeasible => we need to resort to (heuristic) searches

Scripted Behaviors
The obvious heuristic

Scripted behaviors
Defining strategy through reactive behavior

Different types of scripts

Random [RND] Pick a legal move with uniform probability distribution
Attack-Closest [AC] 1. Attack closest in range if able

2. If within range & reloading, wait
3. If not in range, move to range

Attack-Weakest [AW] Dtto AC, but: 1. attacks weakest in range
Kiting [Kit] Dtto AC, but: 2. move away from closest enemy
Attack-Value [AV] Dtto AC, but: 1. attacks w/ highest
No-OverKill-Attack-Value

 [NOK-AV] Dtto AV, but: will no try to attack unit that has been
 assigned lethal damage, choose next priority target
Kiting-AV [Kit-AV] Dtto Kit, but: 1. attacks w/ highest

Scripted strategy w/ script X: assign script X to all units a player controls

𝑢 𝑢 . 𝑑𝑝𝑓/ 𝑢 . h𝑝

𝑢 𝑢 . 𝑑𝑝𝑓/ 𝑢 . h𝑝

Search approximations
Adapting alpha-beta search to simultaneous games

Using searches
As an approximation of Nash equilibrium

Quick recap
Minimax (or maximin) recursive algorithm to find the best move in sequential
 non-cooperative games
Alpha-beta pruning technique improving minimax by pruning game tree

of branches, which cannot bring better results than already
found

Move ordering heuristically ordering possible moves from (seemingly)
better to worse to improve AB pruning

Evaluation function a function evaluating a state used at depths where we stop
searching

Iterative deepening search technique where we incrementally increasing search
depths until time runs out; allows for any-time results

Transposition tables cache to maintain previously seen states that allows to
reuse results especially during iterative deepening

Durative actions
The problem of simultaneous games

In sequential games, players alternate;
in RTS combat, they might not. The
same player might decide multiple
times (easy to handle) and there are
points in time where players decide
on moves simultaneously
(troublesome).

We need to adapt standard
MINMAX (alpha-beta) algorithm for
durative actions.

Durative actions
The problem of simultaneous games

In sequential games, players alternate;
in RTS combat, they might not. The
same player might decide multiple
times (easy to handle) and there are
points in time where players decide
on moves simultaneously
(troublesome).

We need to adapt standard
MINMAX (alpha-beta) algorithm for
durative actions.

How to deal with nodes, where
players are deciding on actions
simultaneously (labeled as Nash

nodes)?

Stacked matrix games
Dealing with “simultaneous move” node

In simultaneous nodes, one may
employ normal form of description
for the node, i.e., both players decide
at once, which leads to the full
matrix of decisions and computing
their payoffs.

Such payoffs cannot be determined
immediately, and we need to
continue the search to determine
them.

Alternate Alpha-Beta (ALT)
(policy for serialization of simultaneous nodes)

Alternate Alpha-Beta (RAB)
Serializing the simultaneous node

Assumption: not really, simultaneous node can be encountered
anywhere along the search

Idea: Once simultaneous node is reached,
 alternate between maxmin and minimax

e.g. on the first sim-node use maxmin,
 on the second minmax, etc.

Alpha-Beta Considering Durations
(ABCD)

Alpha-Beta Considering Durations
a.k.a. ABCD

s – state
d – depth to search
m0 – delayed action effect
 used for
simultaneous
 nodes
 – bounds

Meant to be used with
iterative deepening.

𝜶, 𝜷

Alpha-Beta Considering Durations
a.k.a. ABCD

First, mind the real-time
constraints. Note that this
ABCD should be run in

“iterative deepening”
manner, thus timeout

means “do not use this
result at all”.

Alpha-Beta Considering Durations
a.k.a. ABCD

If we are in terminal node
(either depth reaches

zero or maximal time for
scenario is reached), we
return evaluation of the

state.

Alpha-Beta Considering Durations
a.k.a. ABCD

This line condenses
a lot of stuff.

[A] If no unit can perform
actions (different from

“pass”), advance the time
to the point some unit
may perform an action

first.

Alpha-Beta Considering Durations
a.k.a. ABCD

This line condenses
a lot of stuff.

[B] Given the current
state, i.e., state of units,

determine which players
can move.

If at this stage, we are in
simultaneous node, use
“policy” to determine,

which player will make its
decision first.

Alpha-Beta Considering Durations
a.k.a. ABCD

Next, we are iterate over
moves player “toMove”

can do, save current batch
of moves we’re going to

investigate into m.

Alpha-Beta Considering Durations
a.k.a. ABCD

If we are in simultaneous
node, and there is nothing

in m0 buffer, i.e., this
ABCD has not been

called from simultaneous
node …

Alpha-Beta Considering Durations
a.k.a. ABCD

… then we continue with
next ply of ABCD, but (!)
passing actions “m” as an

argument.

This “m” will act as m0 in
next invocation, so we will
not get into this branch

next time.

Alpha-Beta Considering Durations
a.k.a. ABCD

Additionally, if we are near
the end of the search

depth, we do not bother
resolving simultaneous

node as we’re terminating
anyway.

Alpha-Beta Considering Durations
a.k.a. ABCD

The else branch is then
about solving the “delayed

action” effect.

Alpha-Beta Considering Durations
a.k.a. ABCD

First, this version of
ABCD is not using

reversible action. So even
though we are performing
DFS, we clone the state.

Alpha-Beta Considering Durations
a.k.a. ABCD

Then, we are solving the
delayed action effect, if m0
is containing some actions,

we apply them here …

Alpha-Beta Considering Durations
a.k.a. ABCD

… before applying
currently selected actions.

Alpha-Beta Considering Durations
a.k.a. ABCD

The rest of the algorithm
is standard alpha-beta

pruning.

State Evaluation Function
(eval)

State evaluation function
eval

The state evaluation
function is used here to

evaluate nodes at certain
depths.

State evaluation function
eval

LTD3(s): playout
• instead of evaluation finish the game by performing a playout
• i.e., on each unit decision point use preselected script

to select an action
• play until either or both sides are annihilated

Move Ordering
in

ABCD Iterative Deepening

Move Ordering
Sequence of trying out the actions

If move ordering is done
right, it improves the
effect of alpha-beta

pruning as better state
values are found faster.

Move Ordering
Sequence of trying out the actions

As we are running ABCD
using iterative deepening,
we can store information
about promising moves
from previous runs. This

can be used to sort
actions in consecutives

ABCD invocations,
allowing it to run faster. If

no such information is
available, we can still use a

script to suggest “first
move”.

Paper Results

Setup
Paper Results

N vs. N combats in Star Craft; N ranged 2-8

Four different army types: Marine only, Marine+Zergling, Dragoon + Zealot, Dragoon
+ Marine (all combinations, up-to 4 of each unit type)

Symmetric starting locations

Max 500 actions, after that LTD was used to determine the winner.

Final player score: score = (#wins + #draws / 2) / #matches

Scripts vs. Searches
Paper Results

Alt’: The difference from
described Alt is, that in

simultaneous nodes, we pick
the player to move first as the

one who moved last.

Searches vs. Searches
Paper Results

Scripts exploitability
Paper Results

Results of search with opponent modeling, i.e., the other player in
the search was modeled by the exact script the search has been
playing against.

We can see, that scripts are highly exploitable!

