YEAR PROJECTS AND BACHELOR THESES AT KTIML

Martin Pilát

Martin.Pilat@mff.cuni.cz

MAIN FIELDS OF YEAR PROJECTS AND BACHELOR THESES

Implementation/experimental and theoretical work, typically related to any of the following topics

- Artificial Intelligence
 - Machine Learning
 - Robotics
 - Planning
 - Games
- Theoretical Informatics
 - Logic SAT
 - Optimizing
 - Algorithms
 - Charts

Thesis topics are often listed after the student has agreed→ don't be afraid to write to someone if you are interested in the topics covered

MACHINE LEARNING

Iveta Mrázová, Marta Vomlelová, Martin Pilát, Roman Neruda

Typically, the application of machine learning methods to some suitable problem

- Data mining, social network analysis (IM)
- Artificial neural, deep learning (IM, MP, RN)
- Probabilistic models, machine learning in general (MV)
- Nature-inspired algorithms (IM, MP, RN)

- Layered neural networks and visualization of their structure (IM)
- Social networks: trend and sentiment analysis (IM)
- Raman Microspectroscopy Data Processing (MP)
- Machine learning tools for Diagnosis of Heart Arrhythmia (MV)
- Exploring the vulnerabilities of real-life AI systems against adversarial attacks (RN)

PLANNING

Roman Barták, Jiří Švancara

- Finding plans (sequences of actions) to achieve the goal
- Hierarchical planning (planning by decomposition into subtasks)
- Using formal grammars and automata in planning
- Multi-agent planning
- Applications Automatic storage, intelligent intersection, aircraft taxiing, recognition plans/intents

- Path planning for multi-robotic warehouses (RB)
- Planning of container terminals (RB)
- Autonomous junction (RB)
- Reduction-based Solvers for Multi-agent Pathfinding: Comparing Different Models (JŠ)
- Effectiveness of centralised junction planning (JŠ)

ROBOTICS

David Obdržalek

Possibility to work directly with HW

Building, controlling robots

Simulated environment, applications

Use of robots, e.g. coordinated path finding (Roman Barták)

- Graph-based SLAM on Normal Distributions Transform Occupancy Map (DO)
- Home automatic control system (DO)
- Control system for mobile robot (DO)
- Formula F1:10 (DO)
- Stabilization of a flying drone in a dynamic environment (RB)
- Finding coordinated paths for a group of robots (RB)
- Implementation and monitoring of AR.Drone (RB) plans

GAMES

Jan Hric, Vladan Majerech, Martin Pilát

Combinatorial games, puzzles, board games, ...

RP is typically the implementation of a game, BP is then the implementation of an artificial Intelligence

- MCTS for Metro (JH)
- Settlers of Catan (JH)
- Game tree search control (JH)
- Arimaa challenge comparison study of MCTS versus alpha-beta methods (VM)
- Rubik's Cube (VM)

OPTIMIZATION

Jiří Fink, Marika Ivanová, Roman Barták

Energy (JF)

Electricity production and consumption planning

Communication networks (MI)

Logistics (JF, RB)

Transport planning, optimisation of timetables, optimisation of winter maintenance

- Algorithms for the placement of wireless communication systems (JF)
- Optimization of a circulating multi-car elevator system (JF)
- Optimization of delivery problems (JF)
- Planning for Transportation Problems (RB)
- Path planning for multi-robotic warehouses (RB)

SAT

Ondřej Čepek, Petr Kučera

- Knowledge representation
- Compression and formula conversions
- SAT solvers
- Problem modelling

Mostly theoretical work with only minor implementation - typically for algorithm verification/experiments

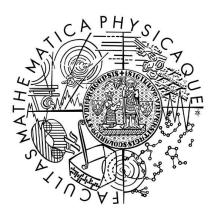
THEORETICAL COMPUTER SCIENCE

Jakub Bulín, Petr Gregor

Discrete Optimization

Problem Complexity

Algorithms


Isormorphism of graphs

Problems on hypercubes

Marta Vomlelová

Automata and grammars

- Parity vertex colourings (PG)
- Hamiltonian circles in hypercubes with removed vertices (PG)
- Minimum 0-Extensions of Graph Metrics (JB diploma thesis)

Contact: https://www.ktiml.mff.cuni.cz/KTIML-21.html