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Idea roughly
When searching towards the goal, do not open nodes that 
leads outside your goal

Goal Bounding
Pruning the space

Image(s) from the presentation:
http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip 

A* JPS+ JPS+ Goal Bounding
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Goal Bounding
Pruning the space
 A method to prune the search space

 Requires preprocessing the search space offline, so 
map must be static

 Assumes 2D maps, but extensible to arbitrary 
dimensions

 Usable for regular grids as well as navmeshes
 Two sources:

 Rabin, S. 2015. JPS+ now with Goal Bounding: Over 
1000 × Faster than A*, GDC 2015. [PPTX]

 Rabin, S., Sturtevant, N.R. 2017. Faster A* with Goal 
Bounding, Game AI Pro 3. [PDF] (accessed May 23, 
2020)

http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf


Goal Bounding
Pruning the space

Idea
For each oriented edge, store bounding box of the 
area that contains all nodes that are part of all 
optimal paths leading through that edge.
Use it to prune edges during expansion.

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_
with_Goal_Bounding.pdf
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Goal Bounding
Graph search algorithm integration

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-list according to “strategy”
5.   if node is target
6.     return path to node
7.   else
8.     expand node by checking its direct neighbors,

           ignoring neighbors whose goal bounding box
           does NOT contain the target, 
           possibly adding those who do into open-list

9.     move expanded node to closed-list

Goal bounding can be integrated into general graph-
search algorithm template! Goal bounding box check is 
fast ~ O(1).



Goal Bounding
Precomputation phase

 Precomputation must be done for each 
graph node

 Can be easily run in parallel for each 
node

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_
with_Goal_Bounding.pdf
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Goal Bounding
Precomuptation phase

Precomputation idea – step 1
For the given node, run Dijkstra’s algorithm 
in flood fill mode (no target) marking each 
node reached with the first edge of the path 
towards that node.

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_
with_Goal_Bounding.pdf
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Goal Bounding
Precomuptation phase

Precomputation idea – step 2
For each edge, compute the bounding 
box of the nodes marked in previous 
step, store it.

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_
with_Goal_Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf


Pathfinding

Bidirectional search



Bidirectional search
Primer

Images from the presentation: https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP
%20shortest%20path%20algorithms.pdf

Dijkstra’s Bidirectional Dijkstra’s

● Idea: search from both ends (start  target; →
target   start) until the searches meet→

https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf


Bidirectional search
Shortest paths
● Given a directed graph G with n vertices, m edges
● Every edge v  w has a length l(v, w)→
● Let dist(v, w) be the shortest-path distance from v to 

w
● Goal: find path from start vertex s to goal vertex t 

with distance dist(s, t)



Bidirectional search
Review: Dijkstra's algorithm
● for every vertex v, remembers

– d(v): shortest known distance from s to v
– p(v): parent
– S(v): status = unreached, frontier, expanded

● Initially d(s) = 0, p(s) = nil, S(s) = frontier
– For all other vertices v : d(v) = , p(v) = nil, S(v) = unreached∞

● In each iteration:
– choose frontier vertex v with smallest d(v)
– for each edge (v, w) in graph:

● if d(w) > d(v) + l(v, w):
– set d(w) = d(v) + l(v, w)
– set p(w) = v
– set S(w) = frontier

– set S(v) = expanded



Bidirectional search
Dijkstra's algorithm: properties
● Every vertex is expanded only once
● When a vertex v is expanded, d(v) is the shortest 

distance from the start s to v
● Vertices are expanded in non-decreasing order 

of distance from s



Bidirectional search
Dijkstra's algorithm
● A forward search from s to t or a reverse search 

from t to s will produce the same result
● We can run both at once!

– Each has its own priority queue
– Each stores independent values for d(v), p(v), S(v)
– We write df(v), dr(v) for the forward/reverse distances

● We alternate steps of both searches
● Stop when the searches meet

– What does this mean, exactly?



Bidirectional search
Dijkstra's algorithm

An example



Bidirectional search
Dijkstra's algorithm
● We remember the shortest path seen so far, and its length 

μ (initially )∞
● When we discover an edge (v, w) where v and w have 

already been expanded:
– If df(v) + l(v, w) + dr(w) < μ then update μ and the path

● Let topf and topr be the smallest values in the forward and 
reverse priority queues

● We can stop when topf + topr  μ≥ .  Then we have already 
found the shortest path.
– If we ever expand any vertex in both directions, the stopping condition 

will always be true



Bidirectional search
Dijkstra's algorithm
● Why can we stop when topf + topr  μ≥ ?

– Suppose there is a path P with length less than μ
– So for every vertex x on P, we must have

● dist(s, x) < topf or dist(x, t) < topr

– So P must contain an edge (v, w) such that
● dist(s, v) < topf and dist(w, t) < topr

– So we have already expanded v and w
– When we expanded the second of these, we would have 

already discovered this path and set μ to its length!



Bidirectional search
Review: A*
● A* uses a heuristic function h(v)
● h is admissible (optimistic) if for every vertex v, 

h(v)   dist(v, t)≤
● h is consistent if for every edge (v, w), h(v)   l(v, w) ≤

+ h(w)
● Every consistent heuristic is admissible



Bidirectional search
Review: A*
● for every vertex v, A* remembers

– g(v): shortest known distance from s to v
– p(v): parent
– S(v): status = unreached, frontier, expanded

● Initially g(s) = 0, p(s) = nil, S(s) = frontier
– For all other vertices v : g(v) = , p(v) = nil, S(v) = unreached∞

● In each iteration:
– choose frontier vertex v with smallest f(v) = g(v) + h(v)
– for each edge (v, w) in graph:

● if g(w) > g(v) + l(v, w):
– set g(w) = g(v) + l(v, w)
– set p(w) = v
– set S(w) = frontier

– set S(v) = expanded



Bidirectional search
A*: graph transformation
● If h is consistent, then h(v)   l(v, w) + h(w)≤

– So l(v, w) – h(v) + h(w)  0≥

● Define lh(v, w) = l(v, w) – h(v) + h(w)
● Consider a graph G' that's like G, but uses length function lh
● Let disth(x, y) be the shortest distance from x to y in G
● For all x and y, disth(x, y) = dist(x, y) – h(x) + h(y)
● A path from x to y in G is a shortest path iff it is a 

shortest path from x to y in G'



Bidirectional search
A*: graph transformation
● We know that

– for all x and y, disth(x, y) = dist(x, y) – h(x) + h(y)
● A* on graph G is the same as Dijkstra's 

on G' !
– A* on G picks vertex with smallest

● f(v) = g(v) + h(v) = dist(s, v) + h(v)
– Dijkstra's on G' picks vertex with smallest

● dh(v) = disth(s, v) = dist(s, v) – h(s) + h(v)
– h(s) is constant, so these are the same 



Bidirectional search
Bidrectional A*
● We need two heuristic functions

– hf(v): estimate of dist(v, t)
– hr(v): estimate of dist(s, v)

● We want these functions to produce the same transformed 
graph
– so we can use the stopping criterion from bidirectional Dijkstra's

● Forward: lf(v, w) = l(v, w) – hf(v) + hf(w)
● Reverse: lr(w, v) = l(v, w) – hr(w) + hr(v)
● For all edges (v, w), we need lf(v, w) = lr(w, v)

– so hf(v) + hr(v) = hf(w) + hr(w)
– The function (hf + hr) must be constant!
– Most heuristics (e.g. Euclidean distance) are not like that



Bidirectional search
Bidrectional A*
● Given heuristic functions hf, hr
● Define

– pf(v) = (hf(v) – hr(v)) / 2
– pr(v) = (hr(v) – hf(v)) / 2
– Then pf(v) + pr(v) = 0
– We can show that pf and pr are consistent / admissable

● Refinement
– pf(v) = (hf(v) – hr(v) + hr(t)) / 2
– pr(v) = (hr(v) – hf(v) + hf(s)) / 2
– Now pf(t) = pr(s) = 0
– pf + pr is still a constant function
– pf and pr are still consistent / admissable



Bidirectional search
Bidrectional A*
● Using heuristic functions pf and pv, A* is equivalent to Dijkstra's on the 

graph G'
● Bidirectional Dijkstra's stops when topf' + topr'   μ'≥
● Let vf be the top element in the forward heap

– topf = dist(s, vf) + pf(vf)
– topf' = distpf(s, vf) = dist(s, vf) – pf(s) + pf(vf) 
– So topf' = topf – pf(s)
– Similarly, topr' = topr - pr(t)

● μ' = distpf(s, t) = μ – pf(s) + pf(t)
● So we can stop when

– [topf – pf(s)] + [topr – pr(t)]  μ – p≥ f(s) + pf(t)

● Simplifying and using pf(t) = 0, we have
– topf + topr  μ + p≥ r(t)



Pathfinding
The Algorithms

How to find a path in an unknown 
environment?

Dynamic searches
(peeking into the field of robotics)



Dynamic pathfinding
Problem statement
The Problem
The environment is not known in advance and is 
being updated online based on sensor readings.
How to find a path to the target?

D* Lite; based on Lifelong Planning A* (LPA*)
Koenig, S., & Likhachev, M. (2002). D* Lite. Aaai/iaai, 15.

https://aaai.org/Papers/AAAI/2002/AAAI02-072.pdf


Lifelong Planning A*
Example: first search



Lifelong Planning A*
Example: second search



Lifelong Planning A* (LPA*)

● For each vertex s, LPA* maintains two estimates of the shortest distance 
to it:

– g(s): like in A*
– rhs(s): a one-step lookahead

● rhs(sstart) = 0
● for other states s,

– rhs(s) = min (g(s') + c(s', s)) over all neighbors s'

● s is called locally consistent if g(s) = rhs(s)
– If g(s) < rhs(s), it is locally underconsistent.  If g(s) > rhs(s), it is locally overconsistent.

● If all vertices are locally consistent, then all values g(s) are shortest-path 
distances

● The open list holds all locally inconsistent vertices
● It is a priority queue ordered lexicographically by k(s) = [k1(s); k2(s)], 

where
– k1(s) = min(g(s), rhs(s)) + h(s)
– k2(s) = min(g(s), rhs(s))



Lifelong Planning A*



D* Lite

D* Lite (Koenig, 2002)

 An adaptation of LPA* for dynamic planning
 Now the start vertex may change each time we replan!



D* Lite



D* Lite

D* Lite

 First modification of LPA*: we must search backwards from 
the goal to the start
– because we always want shortest paths to the fixed goal
– Now the heuristic function estimates the distance from 

any position to the robot
 Second modification: every time the robot  moves, the 

heuristic function changes, so we must recalculate all 
priorities



D* Lite:
Basic Version



D* Lite

D* Lite

 Updating all queue priorities is expensive
 We can modify the algorithm so each queue priority is only a 

lower bound on the actual priority
 When the robot moves from s to s', actual priorities can 

decrease by at most h(s, s')
 Instead of subtracting h(s, s') from all priorities, we can 

accumulate the decrease into a variable km and then apply it 
to any vertex when it comes out of the queue 

 For details and pseudocode, see the D* Lite paper



Pathfinding
The Algorithms

How to find the path in an unknown 
environment faster?

Beating D* Lite (almost every time)
(peeking into the field of robotics)



Multipath Adaptive A* (MPAA*)
Speeding up A* to outperform D* Lite

Multipath Adaptive A*
Hernández, C., Baier, J. A., & Asín, R. (2014, May). Making A* run faster 
than D*-Lite for path-planning in partially known terrain. 
 Proposes Multipath Adaptive A* as a simpler approach, 

usually faster than D* Lite

https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewPaper/7944
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewPaper/7944


Adaptive A*

● Let gd[s] be the minimal cost from state s to the goal
● Let f* = gd[sstart] be the minimal cost found by an A* search
● For any state s that was expanded,

– g[s] is the minimal cost from the start to s
– f[s] = g[s] + h[s]

● Now
– f*  g[s] + gd[s]≤
– f* - g[s]  gd[s]≤
– So f* - g[s] is an admissable estimate of gd[s]
– We can use this as a new heuristic value for s

● Also, since s was expanded, we have
– f[s]  f*≤
– g[s] + h[s]  f*≤
– h[s]  f* - g[s]≤
– So the new heuristic value f* - g[s] dominates the old



Adaptive A*: pseudocode (part 1)



Adaptive A*: pseudocode (part 2)



Multipath Adaptive A*

● Suppose we select a state s such that
– s belongs to a previously found path σ
– the suffix of σ starting in s is a provably optimal path from 

s to the goal
● Then we can stop the search immediately
● We can check these conditions easily



Pathfinding
The Algorithms

How to find a path in a continuous space?
Rapidly exploring random trees 

(RRT, RRT*)
(peeking into the field of robotics)



RRT
LaValle, S. M., & Kuffner Jr, J. J. (2001). Randomized kinody
namic planning. The international journal of robotics 
research, 20(5), 378-400.

RRT*
Karaman, S., & Frazzoli, E. (2011). Sampling-based algorit
hms for optimal motion planning. The international 
journal of robotics research, 30(7), 846-894.

Rapidly-exploring Random Trees 
RRT and RRT*

IDEA: Randomly throw a point, find nearest 
existing point of RRT, make a step from that point 
towards the random point. Repeat.

IDEA: Do RRT but then try to rewire the tree around 
new point to be more optimal.

http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
https://arxiv.org/pdf/1105.1186.pdf
https://arxiv.org/pdf/1105.1186.pdf


Rapidly-exploring Random Trees 
RRT and RRT* Beautiful explanation available on YouTube 

by Aaron Becker.

● YouTube video: "RRT, RRT* & 
Random Trees" (Aaron Becker)

https://www.youtube.com/watch?v=Ob3BIJkQJEw


  

Rapidly-exploring Random Trees 
Algorithms



  

Rapidly-exploring Random Trees 
Algorithms



Material has been produced within and supported by the project
„Zvýšení kvality vzdělávání na UK a jeho relevance pro potřeby trhu práce“

kept under number CZ.02.2.69/0.0/0.0/16_015/0002362.
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