Faculty of Mathematics and Physics
Charles University
November 12t 2024

Artificial Intelligence for Computer Games

More search algorithms

Bidirectional search
Partially unknown environments
Rapid random trees

Goal Bounding
Pruning the space

Idea roughly

When searching towards the goal, do not open nodes that
leads outside your goal

]
1

sy
l. {3 {3

JPS+ Goal Bounding

Image(s) from the presentation:
http://www.gameaipro.com/Rabin AISummitGDC2015 JPSPlusGoalBounding.zi

http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip

Goal Bounding
Pruning the space

Idea roughly
When searching towards the goal, do not open nodes that
leads outside your goal

E"'I_I'LL'I'_'TI_E-.H"T'E:—_

;:;A‘—W“ Eﬁl “Jﬂ.ﬂ':"irnﬂ_]::'r A,

" e

UJL"::ulEFrr-..:_"'" -'=1:L-:|

JPS+ JPS+ Goal Bounding

Image(s) from the presentation:
http://www.gameaipro.com/Rabin AISummitGDC2015 |PSPlusGoalBounding.zi

http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip
http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip

Goal Bounding

Pruning the space

A method to prune the search space

Requires preprocessing the search space offline, so
map must be static

Assumes 2D maps, but extensible to arbitrary
dimensions

Usable for regular grids as well as navmeshes

Two sources:
Rabin, S. 2015. JPS+ now with Goal Bounding: Over
1000 x Faster than A*, GDC 2015. [PPTX]

Rabin, S., Sturtevant, N.R. 2017. Faster A* with Goal
Bounding, Game AI Pro 3. [PDF]

http://www.gameaipro.com/Rabin_AISummitGDC2015_JPSPlusGoalBounding.zip
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding

Pruning the space

Idea

For each oriented edge, store bounding box of the
area that contains all nodes that are part of all
optimal paths leading through that edge.

Use it to prune edges during expansion.

Nodes on
optimal
paths
reachable
via going
left from the
point

Bounding
box of those
nodes.

Image(s) from the paper: http://www.gameaipro.com/GameAlPro3/GameAlPro3 Chapter22 Faster A Star

with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding

Pruning the space

optimally
reachable
through

edges of red

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAlPro3 Chapter22 Faster A Star
with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding

Pruning the space

Nodes
optimally
reachable

through
edges of red
triangle.

Respective
bounding
boxes
enclosing
optimally
reachable
areas.

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAIPro3 Chapter22 Faster A Star
with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding 3

Graph search algorithm integration

Goal boundin% can be integrated into general graph-
search algorithm template! Goal bounding box check is

fast ~ O(1).
Algorithm template

make open-1list
push start into open-1list
while open-1list not empty
extract node from open-1list according to “strategy”
if node is target
return path to node
else
expand node by checking its direct neighbors,
ignoring neighbors whose goal bounding box
does NOT contain the target,
possibly adding those who do into open-list

move expanded node to closed-list

Goal Bounding

Precomputation phase

Precomputation must be done for each
graph node

Can be easily run in parallel for each
node

Nodes on
optimal
paths
reachable
via going
left from the
point

Bounding
box of those
nodes.

Image(s) from the paper: http://www.gameaipro.com/GameAlPro3/GameAlPro3 Chapter22 Faster A Star
with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding

Precomuptation phase

Precomputation idea - step 1

For the %iven node, run Dijkstra’s algorithm
in flood fill mode (no target) marking each
node reached with the first edge of the path
towards that node.

Image(s) from the paper: http://www.gameaipro.com/GameAlPro3/GameAlPro3 Chapter22 Faster A Star
with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Goal Bounding

Precomuptation phase

Precomputation idea - step 2

For each edge, compute the bounding
box of the nodes marked in previous
step, store it.

[a] Bounding box

[c] Bounding box

Image(s) from the paper: http://www.gameaipro.com/GameAIPro3/GameAlPro3 Chapter22 Faster A Star

with Goal Bounding.pdf

http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf
http://www.gameaipro.com/GameAIPro3/GameAIPro3_Chapter22_Faster_A_Star_with_Goal_Bounding.pdf

Pathfinding

Bidirectional search

Bidirectional search

Primer

* Idea: search from both ends (start - target;
target — start) until the searches meet

ih!.‘ e

Bidirectional Dijkstra’s

Dijkstra’s

Images from the presentation: https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP

%20shortest%20path%20algorithms.pdf

https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf
https://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/EPP%20shortest%20path%20algorithms.pdf

Bidirectional search 3

Shortest paths

* Given a directed graph G with n vertices, m edges
* Every edge v — w has a length I(v, w)

* Let dist(v, w) be the shortest-path distance from v to
W

* Goal: find path from start vertex s to goal vertex t
with distance dist(s, t)

Bidirectional search 3

Review: Dijkstra's algorithm

* for every vertex v, remembers
~ d(v): shortest known distance fromstov
~ p(v): parent
~ S(v): status = unreached, frontier, expanded

* Initially d(s) = 0O, p(s) = nil, S(s) = frontier

~ For all other vertices v : d(v) = =, p(v) = nil, S(v) = unreached

* In each iteration:
~ choose frontier vertex v with smallest d(v)

- for each edge (v, w) in graph:
if d(w)>d(v) + (v, w):
— set d(w)=d(v) + (v, w)
— set p(w)=v
— set S(w) = frontier

~ set S(v) = expanded

Bidirectional search 3

Dijkstra's algorithm: properties

* Every vertex is expanded only once

* When a vertex v is expanded, d(v) is the shortest
distance from the startsto v

* Vertices are expanded in non-decreasing order
of distance from s

Bidirectional search 3

Dijkstra's algorithm

A forward search from s to t or a reverse search
from t to s will produce the same result

* We can run both at once!
~ Each has its own priority queue
~ Each stores independent values for d(v), p(v), S(v)
— We write d«v), d.(v) for the forward/reverse distances

We alternate steps of both searches

Stop when the searches meet
~ What does this mean, exactly?

Bidirectional search

Dijkstra's algorithm

An example

4 4
(OO0

Bidirectional search 3

Dijkstra's algorithm

We remember the shortest path seen so far, and its length
U (initially oo)

When we discover an edge (v, w) where v and w have
already been expanded:

- Ifddv) + I(v, w) + d(w) < p then update p and the path

Let topr and top: be the smallest values in the forward and
reverse priority queues

We can stop when tops + top, = pJ. Then we have already
found the shortest path.

If we ever expand any vertex in both directions, the stopping condition
will always be true

Bidirectional search
Dijkstra's algorithm

* Why can we stop when tops + top, = p?

Suppose there is a path P with length less than p

So for every vertex x on P, we must have
* dist(s, x) < tops or dist(x, t) < top:

So P must contain an edge (v, w) such that
* dist(s, v) < toprand dist(w, t) < top:

So we have already expanded vand w

When we expanded the second of these, we would have
already discovered this path and set p to its length!

>

Bidirectional search 3

Review: A*

* A* uses a heuristic function h(v)

* his admissible (optimistic) if for every vertex v,
N(v) < dist(v, t)

* his consistent if for every edge (v, w), h(v) = l(v, w)
+ h(w)

* Every consistent heuristic is admissible

Bidirectional search

Review: A*

* for every vertex v, A* remembers
~ g(v): shortest known distance from sto v
~ p(v): parent
~ S(v): status = unreached, frontier, expanded

* Initially g(s) = 0, p(s) = nil, S(s) = frontier

~ For all other vertices v : g(v) = «, p(v) = nil, S(v) = unreached

* In each iteration:
~— choose frontier vertex v with smallest f(v) = g(v) + h(v)

~ for each edge (v, w) in graph:
if g(w) > g(v) + I(v, w):
~ set g(w) =g(v) + (v, w)
- setp(w)=v
~ set S(w) = frontier

~ set S(v) = expanded

Bidirectional search 3

A*: graph transformation

* If his consistent, then h(v) < I(v, w) + h(w)
= Sol(v, w)-h(v)+ h(w)=0

* Define In(v, w) = I(v, w) = h(v) + h(w)

* Consider a graph G' that's like G, but uses length function I,
* Let distn(X, y) be the shortest distance from xtoy in G

* Forall x andy, distn(x, y) = dist(x, y) - h(x) + h(y)

* Apathfromxtoyin Gis ashortest path iffitis a
shortest path from xtoy in G'

Bidirectional search 3

A*: graph transformation

* We know that
~ for all x andy, distn(x, y) = dist(x, y) - h(x) + h(y)

* A* on graph G is the same as Dijkstra's
on G'!
~ A* on G picks vertex with smallest
* f(v) = g(v) + h(v) = dist(s, v) + h(v)

~ Dijkstra's on G' picks vertex with smallest
* dn(v) = distu(s, v) = dist(s, v) - h(s) + h(v)

~ h(s) is constant, so these are the same

Bidirectional search 3

Bidrectional A*

We need two heuristic functions

~ hgv): estimate of dist(v, t)

~ hq{v): estimate of dist(s, V)
We want these functions to produce the same transformed
graph

~ so we can use the stopping criterion from bidirectional Dijkstra's
* Forward: l{v, w) = I(v, w) = h{Vv) + h{w)
Reverse: |(w, v) = I(v, w) = h{w) + h(V)

For all edges (v, w), we need I{v, w) = I(w, v)

~ 50 hdVv) + h(v) = h{w) + h(w)

~ The function (hs + h;) must be constant!

~ Most heuristics (e.g. Euclidean distance) are not like that

Bidirectional search 3

Bidrectional A*

Given heuristic functions hs, h,

Define

~ pdv) =(hdv) - he(v)) / 2

= prv) = (he(v) - h(v)) / 2

~ Then p«Vv) + p(v) =0

~ We can show that prand pr are consistent / admissable

Refinement

~ pev) = (hdv) - he(v) + he(t)) / 2

= pdv) = (he(v) = hv) + h(s)) / 2

Now pr(t) = p«(s) = 0

pr + pris still a constant function

~ prand p, are still consistent / admissable

Bidirectional search 3

Bidrectional A*

* Using heuristic functions prand p., A* is equivalent to Dijkstra's on the
graph G'

* Bidirectional Dijkstra's stops when topf' + top:' = '
* Letv;be the top element in the forward heap

- topr = dist(s, vi) + pr(vr)

— topy = distyd(s, vr) = dist(s, vs) — pS) + pdvs)

— So topr = topr - pAs)

- Similarly, top:' = topr - pA(t)
* ' =diste(s, t) = P - pds) + pAt)

* So we can stop when
- [topr - pds)] + [topr - pt)] = [- pH(s) + p(t)

* Simplifying and using p«(t) = 0, we have
- topr+ topr = Y + pi(t)

Pathfinding
The Algorithms

How to find a path in an unknown
environment?

Dynamic searches
(peeking into the field of robotics)

Dynamic pathfinding 3

Problem statement

The Problem
The environment is not known in advance and is

being updated online based on sensor readings.
How to find a path to the target?

D* Lite; based on Lifelong Planning A* (LPA¥)
Koenig, S., & Likhachev, M. (2002). D* Lite. Aaai/iaai, 15.

https://aaai.org/Papers/AAAI/2002/AAAI02-072.pdf

t search

irs

f

Example

lteration #1 Iteration #2

Start distances / heuristics

lteration #5

lteration #4

Iteration #8

lteration &7

1 2 3

0

Shortest path

0

2 3

1

1 2 3

0

Iteration #10

[teraiion #3

Iteration #6

2 3

0

Iteration #9

Example: second search

Iteration #1 Iteration #2 Iteration #3
o0 1 2 3 0 1 2 3 0o 1 2 3
A s |im 110f A (31| (721 L]0
B 2 1| g 2 1
c 3 2| ¢ 3 2
D D
E & ma| E 57 74
O |lee|ea| e o | oo | o0
F [7:6] | [8;6] F [8:7)
lteration #4 lteration #5
0 1 2 3 0o 1 2 3
Y 0] a A
B 1| g B
C 2 C C
D D D
E E E
F F F
lteration #8
o 1 2 3
& AIBIZTT]0] A
B B 2 1] g
c g E 2| ¢
D D D
E E 6 4 E
A
F F [_z';,] Ea F

Lifelong Planning A* (LPA¥)

* For each vertex s, LPA* maintains two estimates of the shortest distance
to it;
- g(s): like in A*
- rhs(s): a one-step lookahead

rhs(Sstart) = 0

for other states s,
- rhs(s) = min (g(s') + c(s', s)) over all neighbors s'

* sis called locally consistent if g(s) = rhs(s)
- If g(s) <rhs(s), it is locally underconsistent. If g(s) > rhs(s), it is locally overconsistent.

* If all vertices are locally consistent, then all values g(s) are shortest-path
distances

* The open list holds all locally inconsistent vertices

* Itis a priority queue ordered lexicographically by k(s) = [ki(s); ka(s)],
where
- ki(s) = min(g(s), rhs(s)) + h(s)
- kx(s) = min(g(s), rhs(s))

procedure CalculateKey (s)
{01} return [min(g(s), ris(s)) + h(s); min(g(s), rhs(s))];

procedure Initialize()

{02} U =0,

{03} for all s € S rhs(s) = g(s) =

{04} rhs(sstart) =0,

{05} U.Insert(sstart, [A(sstart); 01);

procedure UpdateVertex (i)

{06} if (1 # Sgtare) rhs(u) = min ;Epmd(u)(g{s Y4l)
{07} if (u € U) U.Remove(u);

{08} if (g(u) # rhs(u)) U.Insert(u, CalculateKey(u)):

procedure ComputeShortestPath ()

{09} while (U.TopKey() < CalculateKey(sgoq7) OR rhs(sgoql) # &(Sgoal))
{ 10} u = U.Pop();

{11} if (g(u) = rhs(u))

{1

{

{

2} g(u) =rhs(u);
13} for all s € succ(u) UpdateVertex(s);
14} else
{15} gu) =00

{16} for all s € succ(u) U {u} Update Vertex(s):

procedure Main()

{17} Initialize();

{18} forever

{19} ComputeShortestPath();

{20} Wait for changes in edge costs;

{21} for all directed edges (u, v) with changed edge costs
{22} Update the edge cost c(u, v);

{23} UpdateVertex(v);

D* Lite (Koenig, 2002)

An adaptation of LPA* for dynamic planning
Now the start vertex may change each time we replan!

Knowledge Before the First Move of the Robot

dlBJTr2lunlwl[o[s[7][6l6]l6]l6]6l6]6]6]6]6

41312l jiwlol 8765515155551 515

G198 [7 (65144444444

G987 (65143333333

dli3lre(ulwlols8 76 slal3 21212121213

4 (1312111) [8 [7 slal3l 21111213

14 [13112 7 sla 13211 lseeal 1 213

s 4321 (0123

14 [13]12 54132222213

14 13 [12]11]10 slal33[3[3[3][3]3

4 [13 [12]11]10 5144444 a4a]4

4 13 [12 1111 51555555515

14 13]12 s | 6 6166|6166 66

FTS 7171721717171l 7173 17173

IS "it.'l'n'rl Iﬁ | |5 | l4 | I‘:1 8 8 8 8 8 8 8 8 8 8
Knowledge After the First Move of the Robot

4(13[12]11Ji0[9o[8[76]6]6[6][6[6]6[6]6]6

413 [12(11]10]l9[8 7655555551515

4131211109 8 |7 | 654 4] 4] 444 4]4

432[l 9[8[7 (651433333313

41312l lwlo[8765432212121 213

3121119 817 5132l 11213

1 9 7 ST a 131211 JSecdl 1 1213

sa 321 [T [1 213

s|a4 (321212121213

5|43 333333

S|4 44| 4]a]aa]a

5515151515151 515

6l 66|61 6|6|16|6]6

7171717171717 1713

S| 8 | 8188|8888

D* Lite

First modification of LPA*: we must search backwards from
the goal to the start

- because we always want shortest paths to the fixed goal

- Now the heuristic function estimates the distance from
any position to the robot

Second modification: every time the robot moves, the

heuristic function changes, so we must recalculate all
priorities

procedure CalculateKey(s)

{01°} return [min(g(s), rhs(s)) + h{sstart, s);min(g(s),rhs(s))|;
procedure Initialize()

{02’} U = 0;

{03} forall s € Srhs(s) — g(s) — oo;

{045} Ths('sgoafj =0

{05°} U‘In53ﬂisgoa£ ; CalculateKey [59031):

procedure UpdateVertex(u)

{06} if (u # Sgoa1) Ths(w) = min, ¢ Succru) (€l ') + 9(5'));
{07} if (u € U) U.Remove(u);

{08} if (g{n) # rhs{u)) Ulnsert{u, CalculateKey(u));
procedure ComputeShortestPath()

{09’} while (U.TopKey()<CalculateKey (sstart) OR rhs{sstart) £ 9(Sstart))
{100} u = U.Pop();

{11’} if (g{u) > rhs(u))

{12’} g(u) = rhs(u);

{13°} for all s € Pred(u) UpdateVertex(s):

{14} else

{15’} g(u) = oo

{16’} forall s € Pred(u) U {u} UpdateVertex(s):

procedure Main()

{17} Initialize();

{18} ComputeShortestPath();

{19'} while (Satart 7 Sg0at)

{20} /*if (g(sstart) — o) then there is no known path */
{21’} sstare = argming cgueerg, .y (e(Sstart, 5') + 9(s'));
{22’} Move 10 Sstart:

{23’} Scan graph for changed edge costs;

{24’} if any edge costs changed

125’} for all directed edges (u, v) with changed edge costs

{26} Update the edge cost ¢(u, v);
{27’} UpdateVertex (u);

{28} foralls €U

{29’} U.Update{ s, CalculateKey (s)):

{30} ComputeShortestPath();

D* Lite

Updating all queue priorities is expensive

We can modify the algorithm so each queue priority is only a
lower bound on the actual priority

When the robot moves from s to s', actual priorities can
decrease by at most h(s, s")

Instead of subtracting h(s, s') from all priorities, we can
accumulate the decrease into a variable km and then apply it
to any vertex when it comes out of the queue

For details and pseudocode, see the D* Lite paper

Pathfinding 3
The Algorithms

How to find the path in an unknown
environment faster?

Beating D* Lite (almost every time)
(peeking into the field of robotics)

Multipath Adaptive A* (MPAA*))

Speeding up A* to outperform D* Lite

Multipath Adaptive A*

Hernandez, C., Baier, J. A., & Asin, R. (2014, May). Making A* run faster
than D*-Lite for path-planning in partially known terrain.

Proposes Multipath Adaptive A* as a simpler approach,
usually faster than D* Lite

https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewPaper/7944
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/viewPaper/7944

Adaptive A*

* Let gd[s] be the minimal cost from state s to the goal
* Let f* = gd[ssar] be the minimal cost found by an A* search

* For any state s that was expanded,
- g[s]is the minimal cost from the startto s
- f[s]=gls] + h[s]

°* Now
- f*=g[s]+gdls]
- f*-g[s] = gd[s]
- So f* - g[s] is an admissable estimate of gd[s]
- We can use this as a new heuristic value for s

* Also, since s was expanded, we have
- f[s] = f*
- g[s]+h[s] =f*
- h[s] =f*-qls]
— So the new heuristic value f* - g[s] dominates the old

procedure TnitializeState (s)

1

2 if search(s) # counter then

3 g(s) « oo

4 | search(s) < counter

5 procedure 2+ (St)

6 InitializeState (S;nt)

7 parent(sini) < null

8 Q(Siniﬂ) +— 0

9 Open « ()

10 insert s;,;¢ into Open with f-value g(sinit) + h(Sinit)

11 Closed <+ @

12 while Open # () do

13 remove a state s from Open with the smallest f-value g(s) + h(s)
14 if GoalCondition (s) then

15 | return s

16 insert s into Closed

17 for each s € suce(s) do

18 InitializeState(s’)

19 if g(s") > g(s) + (s, s") then
20 g(s") + g(s) + c(s,8")
21 parent(s’) «+ s
22 if s’ is in Open then
23 | set priority of s” in Open to g(s’) + h(s")
24 else
25 | insert s” into Open with priority g(s") + h(s")
26 return null

27
28
29

30

36
37
38
39
40
41

42
43

45
46
47

48
49

50
51
52
33
54
55
56

procedure BuildPath (s)

W

L

procedure Observe (s)
for each arc (t,t") in the range of visibility from s do

while s # s.,,+ do
next(parent(s)) + s
§ + parent(s)

if cost of (t,t") has increased then

L

procedure main ()

counter + 0

Observe (Sstart)

for each state s € S do
search(s) < 0
h(s) + H(s, Sgoat)
next(s) < null

W

update c(t,t")
next(t) < null

hile ssart 7 Sgoar do
counter < counter + 1
:‘5' — BAx (Sstart)
if s = null then
| return “goal is not reachable”

for each s’ € Closed do

h(s") + g(s) + h(s) — g(s") /+ heuristic
* /

BuildPath (s)
hile no action cost has just increased in path [ssmﬂ] d

t < Sstart
Sstart ﬂﬁﬂ?t(ssmﬂ)

next(t) < null
Move agent t0 Sgzqrt
Observe (Sstart)

Multipath Adaptive A* 3

* Suppose we select a state s such that

~ s belongs to a previously found path o

~ the suffix of o starting in s is a provably optimal path from
s to the goal

* Then we can stop the search immediately
* We can check these conditions easily

1 function GoalCondition(s)

2 while next(s) # null and h(s) = h(next(s)) + c(s, next(s)) do
3 | s« next(s)
4

return s,,q; — S

Pathfinding 3
The Algorithms

How to find a path in a continuous space?
Rapidly exploring random trees
(RRT, RRT*)

(peeking into the field of robotics)

Rapidly-exploring Random Trees
RRTP P g

and RRT*

706 nodes, path length 59.92

RRT

LaValle, S. M., & KuffnerJr, J. J. (2001). Randomized kinody
namic planning. The international journal of robotics

research, 20(5), 378-400.

IDEA: Randomly throw a point, find nearest
existing point of RRT, make a step from that point

towards the random point. Repeat.

289 nodes, path length 40.37

RRT*

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorit
hms for optimal motion planning. The international

journal of robotics research, 30(7), 846-894.

IDEA: Do RRT but then try to rewire the tree around
new point to be more optimal.

http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01b.pdf
https://arxiv.org/pdf/1105.1186.pdf
https://arxiv.org/pdf/1105.1186.pdf

Tpldl)é exploring Random Trees 3

RT* Beaut | explanation available on

and by Aaron Becker.

* YouTube video: "RRT, RRT* &
Random Trees" (Aaron Becker)

https://www.youtube.com/watch?v=Ob3BIJkQJEw

706 nodes, path length 59.92

Rapidly-exploring Rand

Algorithms

“RT (trying to find path to target with certain epsilon)
G.init (root: Point)
while path to epsilon-area
around target not found

point := random
nearest := G.nearest vertex(point)
new vertex =
nearest + (point - nearest) .normalized

* step
if no obstacle nearest->new vertex
G.add edge (nearest, new vertex)

289 nodes, path length 40.37

Rapidly-exploring Rand

Algorithms

G.init (root: Point)
while path to epsilon-area
around target not found

PRT* (trying to find path to target with certain epsilon)

point := random
nearest := G.nearest vertex(point)
new vertex =
nearest + (point — nearest) .normalized
* step

if no obstacle nearest->new vertex

min cost vertex =
find vertex

| from G.vertices around(new vertex)

| with min path cost from root

| and no obstacle on vertex->new vertex
G.add edge (min cost vertex, new vertex)
for vertex in G.vertices around(new vertex)
if obstacle on vertex->new vertex

continue

if path cost(root, vertex) >
path cost (root, new vertex) +
G.remove edge (parent (vertex),

G.add edge (new vertex,

vertex)

|vertex, new vertex|
vertex)

EVROPSKA UNIE
Evropské strukturalni a investi¢ni fondy

Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTVI
MLADEZE A TELOVYCHOVY

Material has been produced within and supported by the project
+Zvyseni kvality vzdélavani na UK a jeho relevance pro potreby trhu prace”
kept under number CZ.02.2.69/0.0/0.0/16_015/0002362.

	Pathfinding Part II
	Goal Bounding Pruning the space
	Goal Bounding Pruning the space (2)
	Goal Bounding Pruning the space (3)
	Goal Bounding Pruning the space (4)
	Goal Bounding Pruning the space (5)
	Goal Bounding Pruning the space (6)
	Goal Bounding Graph search algorithm integration
	Goal Bounding Precomuptation phase
	Goal Bounding Precomuptation phase (2)
	Goal Bounding Precomuptation phase (3)
	Pathfinding The Algorithms
	Bidirectional search Primer
	Slide 14
	Slide 15
	Slide 16
	Bidirectional search Algorithm skeleton
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Pathfinding The Algorithms (3)
	Dynamic A* (~ D*) and alikes Problem statement
	Lifelong Planning A* Algorithm Skeleton
	Slide 31
	Slide 32
	D* Lite as Lifelong Planning A* LPA* Properties and D* Lite fol
	D* Lite as Lifelong Planning A* LPA* Properties and D* Lite fol (2)
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Pathfinding The Algorithms (4)
	Multipath Adaptive A* (MPAA*) Speeding up A* to outperform D* L
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Pathfinding The Algorithms (5)
	Rapidly-exploring Random Trees RRT and RRT*
	Slide 47
	Rapidly-exploring Random Trees Algorithms
	Rapidly-exploring Random Trees Algorithms (9)
	Slide 50

