
Spatial awareness
Continuous pathfinding

Artificial Intelligence for Computer Games

Faculty of Mathematics and Physics
Charles University
October 29th, 2024

Adam Dingle

Spatial Awareness

Spatial awareness is the capacity to
understand and reason about the relations
among objects in space.

Spatial Awareness
How do you perceive the world?

Spatial Awareness
How do you perceive the world?

Great sniping
spot

Place not
visible from

the other
tower.

The bridge is
the only

connection.
You can fall

into the void.

Big structure,
probably has
some interior.

Blue team
tower

Red team
tower

Spatial Awareness

Spatial Awareness is a general term for any code /
data structure that provides reasoning about the
environment:
 What items are available in my vicinity / in the

map?
 How do I get to item X?
 What (safe) routes lead from my base to the

enemy base?
 What is a good guarding/cover/ambush spot?
 A rocket is approaching! How can I dodge it? Can

I fire back?
 …

Spatial Awareness
How to reason about the virtual world?

 Floors, Walls,
Pits, Static
obstacles

Spatial Awareness
How to reason about the virtual world?

 Floors, Walls,
Pits, Static
obstacles

 Doors, Gates,
Ladders, Stairs

Spatial Awareness
How to reason about the virtual world?

 Floors, Walls,
Pits, Static
obstacles

 Doors, Gates,
Ladders, Stairs

 Items

Spatial Awareness
How to reason about the virtual world?

 Floors, Walls,
Pits, Static
obstacles

 Doors, Gates,
Ladders, Stairs

 Items
 Dynamic objects,

Other agents

Environment Representation

Environment Representation

Environment Representation

Height
maps

2D matrix of heights transformed into a mesh

Environment Representation

 Environment
 Terrain
 Walls
 Objects

 It all boils
down to
triangles

Environment Representation
BSP (Binary Space Partition) Trees

● widely used data structure
– found in classic games (Doom, Quake)

● work in any number of dimensions
● partition space hierarchically into convex

regions
● partitions are hyperplanes: lines (in 2D)

or planes (in 3D)

Environment Representation
BSP Trees: storing points

 Nodes divide the
space into two
parts

 Leaves contain
points

Environment Representation
BSP Trees

● We've seen how to store points
● More commonly, we want to store

segments (in 2D) or polygons (in 3D)
– So even interior nodes may contain objects

● How to choose splitting hyperplanes?
– axis-aligned partitions: kd-trees
– auto-partition: extend segments/polygons to make

hyperplanes

Environment Representation
BSP Trees

Axis-aligned
splitting planes
partitioning the

space into
rectangular

cuboids.

Environment Representation
BSP Trees: Constructing
● Auto-partition: choose an object, extend to a

plane, place at root
● Any other objects may need to be split!

Environment Representation
BSP Trees: Constructing
● Auto-partition: choose an object, extend to a

plane, place at root
● Any other objects may need to be split!

Environment Representation
BSP Trees: Operations
● raycasting
● collision detection
● ordering polygons for rendering
● not very useful for pathfinding

Environment Representation
Raycasting

Environment Representation
Raycasting

Can answer questions:
 Can I see (x1,y1,z1) from (x2,y2,z2)?
 What will I see looking in direction v from

(x1,y1,z1)?

Environment Representation
Raycasting in a BSP tree

adapted from Hughes et al, Computer Graphics: Principles and Practice, 3rd ed., 36.2.1 "BSP Ray-
Primitive Intersection"

Environment Representation
Visibility testing in a BSP tree

function intersects(P, Q, node):
 if PQ intersects a primitive in the node:
 return true

 if node is a leaf:
 return false

 closer, farther = node.positiveChild, node.negativeChild

 if P is in the negative half-space of node:
 swap closer, farther

 if intersects(P, Q, closer):
 return true

 if P and Q are in the same half space of node:
 return false

 return intersects(P, Q, farther)

function visible(P, Q):
 return not intersects(P, Q, root)

Environment Representation
Raycasting in a BSP tree

● To raycast from P in direction v:
– Let Q be a point at infinity in direction v
– Check whether Q is visible from P
– If not, return the first object that was hit

Environment Representation
Detour: Spherecasting

● Volumes can be “raycast” using spherecasting
● Some physics engines (e.g. Unity) can do this

Environment Abstraction
Structures for continuous pathfinding

 Visibility graphs
 Waypoint graphs

 also called "navigation graphs"
 Navigation meshes

Environment Abstraction
Visibility graphs
● From computational geometry
● Goal: Find shortest path in 2D from start to

goal among a set of polygonal obstacles

de Berg et al, Computational Geometry, 3rd ed., 15.1 "Shortest Paths for a Point Robot"

Environment Abstraction
Visibility graphs
● Lemma: Any shortest path from pstart to pgoal

among a set S of polygonal obstacles is a
sequence of line segments whose vertices
(other than pstart/pgoal) are all vertices of S

Environment Abstraction
Visibility graphs
● Definition of visibility graph of S:

– nodes = vertices of S
– there is an edge between v and w if the segment vw

does not pass through any polygon in S

de Berg et al, Computational Geometry, 3rd ed., 15.1 "Shortest Paths for a Point Robot"

Environment Abstraction
Visibility graphs
● Using a visibility graph, we can find a

shortest path using Dijkstra's algorithm
– weight of each edge = Euclidean distance

Environment Abstraction
Visibility graphs
● Suppose that polygons in S have a total of

n vertices
● How efficiently can we compute a visibility graph

for S?

Environment Abstraction
Visibility graphs
● Naive algorithm runs in O(n3)

– for all pairs (v, w) of vertices, check whether vw intersects any polygon
● Faster algorithms are known

– O(n2 log n) (Lee, 1978)
– O(n log n + k) where the graph has k edges (Ghosh and Mount, 1991)

Environment Abstraction
 Waypoint Graphs

Waypoint

Placed by
designer,

or
automated

Environment Abstraction
 Waypoint Graphs

Waypoints

Environment Abstraction
 Waypoint Graphs

Navigation
links

Environment Abstraction
Waypoint Graphs

Both points and
edges may be
then annotated

This is an item
point.

This is a sniping
point.

This is a guard
point.

This is a teleport
point….

Environment Abstraction
Waypoint Graphs – 2D-ish improvements

Another example

Environment Abstraction
Waypoint Graphs - 2D-ish improvements

Adding area info

Environment Abstraction
Waypoint Graphs - 2D-ish improvements

Adding area info

Environment Abstraction
Navigation Meshes

Environment Abstraction
Navigation Meshes

A navigation mesh is
composed of convex
polygons where an

agent can stand
collision-free

A navigation mesh is
composed of convex
polygons where an

agent can stand
collision-free Jump-links are

represented as
off-mesh links

Environment Abstraction
Navigation Meshes

A navigation mesh is
composed of convex
polygons where an

agent can stand
collision-free

Some off-mesh
links may carry
extra semantic

information,
e.g. lift-links,

teleport-links.

Environment Abstraction
Navigation Meshes

Environment Abstraction
Navigation Meshes
 Recast (Mikko Mononen, 2009)

 Automatically creates navigation mesh from triangle data
 open source
 used in Godot, Unity, Unreal Engine

 Inputs:
 triangle data
 height, radius of agent(s) that will use mesh
 maximum step-up distance
 maximum slope that can be climbed

 Comes with Detour library for pathfinding

Environment Abstraction
Navigation Meshes
 How big is the benefit of this abstraction?

 Key points about navigation meshes
 Better representation of the floor, cheap “nm

raycast”
 Automatic creation
 Suitable for steerings, movement can be refined

UT2004 Map Text (XML) Vertices Triangles log2(Tris) NavPoints NavMesh

 [MB] [Count] [Count] [Count] [Count]
DM-Flux2 6 86615 63611 15,95698865 194 413

CTF-FaceClassic 10 82189 68357 16,06080146 313 2492
CTF-January 30 502051 354342 18,43478295 438 3296

CTF-MoonDragon 60 745755 570444 19,12172574 498 4425

Environment Abstraction
Navigation Mesh – Finding the Path

 We can use A* to search in a navmesh!
 We must choose points for distance

calculations

http://gamedevevacademic.tumblr.com/post/69849130309/ai-pathing

Environment Abstraction
Navigation Mesh – Finding the Path

 Navmesh “graph” – two options

Environment Abstraction
Navigation Mesh – Finding the Path
 Navmesh “graph” – two options
 Green path is the shortest (final) path

Environment Abstraction
Navigation Mesh – Refining the path

http://gamedevevacademic.tumblr.com/post/69849130309/ai-pathing

 We've used A* to find a corridor of
polygons from A to B

 Now, how to produce a path?

Environment Abstraction
Navigation Mesh – Refining the path

http://gamedevevacademic.tumblr.com/post/69849130309/ai-pathing

 Using polygon centroids is no good

Environment Abstraction
Navigation Mesh – Refining the path

http://gamedevevacademic.tumblr.com/post/69849130309/ai-pathing

 Using middle points of sides is far from
optimal

Environment Abstraction
Navigation Mesh – Refining the path

 The funnel algorithm finds a shortest
path from points A to B along a corridor
of polygons

 Sometimes called "string pulling"

Environment Abstraction
Navigation Mesh – Funnel algorithm

 Simple Stupid Funnel Algorithm (2010)
– from Mikko Mononen, author of Recast
– published in a blog post
– much simpler than previous funnel algorithms

http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html

Environment Abstraction
Navigation Mesh – Funnel algorithm

● On each iteration, we move
to the next polygon and
advance the left and/or right
points

● If a point is inside the funnel
(A-D), we simply advance it

● If a point is outside the
funnel on its own side (E),
we leave it in place

● If a point is outside the
funnel on the other side (F),
we add the other point to
the path and restart the
algorithm from that point (G)

Environment Abstraction
Navigation Mesh – Finding the Path

 Problematic case
 Green path == shortest path between green

points

Environment Abstraction
Navigation Mesh – Finding the Path

 Problematic case
 Green path == shortest path between green

points
 Blue path == navmesh polygon path

The problem is
caused by

triangles of
uneven areas or
triangles that are

too obtuse.

Environment Abstraction
Navigation Mesh – Finding the Path

● Demo: pathfinding in Godot

Environment Abstraction
Navigation Mesh – Finding the Path

● Navigation meshes in a larger game
● video "Death Stranding:

An AI Postmortem" (YouTube)

	Spatial Awareness
	Spatial Awareness Definition
	Spatial Awareness How do you perceive the V-World?
	Spatial Awareness How do you perceive the V-World? (2)
	Spatial Awareness Prodiving answers/support for questions
	Spatial Awareness How to reason about the virtual world?
	Spatial Awareness How to reason about the virtual world? (2)
	Spatial Awareness How to reason about the virtual world? (3)
	Spatial Awareness How to reason about the virtual world? (4)
	Environment Representation
	Environment Representation (2)
	Environment Representation (3)
	Environment Representation (5)
	Environment Representation Binary Space Partitioning (BSP) Tree
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Environment Representation Raycasting
	Environment Representation Raycasting (2)
	Slide 23
	Slide 24
	Slide 25
	Environment Representation Detour: Spherecasting
	Environment Abstraction Reducing the space
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Environment Abstraction Navigation Graph
	Environment Abstraction Navigation Graph (2)
	Environment Abstraction Navigation Graph (3)
	Environment Abstraction Navigation Graph (5)
	Environment Abstraction Navigation Graph – 2D-ish improvements
	Environment Abstraction Navigation Graph - 2D-ish improvements
	Environment Abstraction Navigation Graph - 2D-ish improvements (2)
	Environment Abstraction Navigation Mesh
	Environment Abstraction Navigation Mesh (2)
	Environment Abstraction Navigation Mesh (3)
	Environment Abstraction Navigation Mesh (4)
	Environment Abstraction Navigation Mesh (5)
	Environment Abstraction Navigation Mesh (6)
	Environment Abstraction Navigation Mesh – Finding the Path
	Environment Abstraction Navigation Mesh – Finding the Path (2)
	Environment Abstraction Navigation Mesh – Finding the Path (3)
	Environment Abstraction Navigation Mesh – Refining the path
	Environment Abstraction Navigation Mesh – Refining the path (2)
	Environment Abstraction Navigation Mesh – Refining the path (3)
	Environment Abstraction Navigation Mesh – Refining the path (4)
	Environment Abstraction Navigation Mesh – Refining the path (5)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

