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Steering Behaviors
As part of navigation

1. Action-Selection
Strategy => Goals

3. Path-determination or 
Path-following

What path to take exactly

4. Animating
Animation sequencing

2. Path-planning
List of path-points



Steering Behaviors
Vehicle Model

1.  accel = steering.calculate(args)

2.  accel = truncate(accel, max_accel)

3.  velocity = velocity + accel * timeDelta

4.  velocity = truncate(velocity, max_speed)

5.  position += velocity * timeDelta

6.  look-direction = velocity.normalized



Steering Behaviors
List of Reynolds steerings
 Simple behaviors for individuals and pairs:

– Seek and Flee (static target)

– Pursue and Evade (moving target)

– Wander

– Arrive

– Path Following

– Wall Following

– Containment

– Obstacle Avoidance

 Combined behaviors and groups:
– Flocking (combining: separation, alignment, cohesion)

– Leader Following

– Crowd Path Following

– Unaligned Collision Avoidance

Craig Reynolds, "Steering Behaviors For Autonomous Characters" (1999)



Wall Following
Containment



Obstacle Avoidance

• Goal: keep empty cylinder ahead
• Detect nearest obstacle that will collide
• Accelerate laterally away



Leader Following

• Agents are steered to follow a leader
• Steering force consists of:

• Arrival – the target is slightly behind leader
• Separation – to prevent collisions with other followers
• A follower in a rectangular region in front of the leader will steer away from 

the leader’s path



Crowd Path Following

• Path Following + Separation




Unaligned Collision Avoidance

• Predict next potential collision
• Steer laterally to turn away
• Can also accelerate or decelerate



Steering Behaviors
Combining Behaviors

 Can add behaviors
– possibly with weighting factor

 Can prioritize behaviors, e.g.
1.  avoid obstacle if nearby
2.  evade enemy if nearby
3.  seek to goal



Steering Behaviors
Context Steering
● Problem: sum of steering behaviors is not always ideal

Andrew Fray, "Context steering: Behavior-driven steering at the macro scale" (2015)



Steering Behaviors
Context Steering

● Solution: generate context maps
● Map directions to slots



Steering Behaviors
Context Steering

Store chase behavior in interest map Store avoid behavior in danger map



Steering Behaviors
Context Steering

● Find slots with lowest danger
● From those, choose slot with highest interest



Velocity Obstacles

● Goal: avoid collisions more reliably than we 
can achieve with steering behaviors

● Invented in robotics (and elsewhere)

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles” (1998)



Velocity Obstacles

● Agents A, B are at positions pA, pB

● B is travelling at a fixed velocity vB

● Which velocities vA will allow A to avoid colliding with B?



Velocity Obstacles

● B  ⊕ −A is the set of positions where A would collide with B
● S  ⊕ T = { s + t | s  ∈ S, t  ∈ T }   (Minkowski sum)
● If A and B are circles, B  ⊕ −A is a circle whose radius is the sum of the 

radii of A and B



Velocity Obstacles

● The left cone shows velocities vA for which A would not 
collide with B if B were not moving

● But B is moving at vB, so we must consider the relative 
velocity vA - vB



Velocity Obstacles
● λ(p, v) = { p + tv | t ≥ 0 }

– ray starting at p, heading in direction v
● VOA

B(vB) = { vA | λ(pA, vA − vB) ∩ (B ⊕ −A) ≠ ∅ }
– velocity obstacle of B to A
– set of velocities vA for which A will collide with B!



Velocity Obstacles
● VOA

B is a cone with apex at vB

● If vA  ∈VOA
B, A will collide with B

● If vA is the apex velocity vB, they will not collide
● If vA is in the left or right half-plane outside VOA

B, A will pass B on the 
left or right



Reciprocal Velocity Obstacles
Extension of Velocity Obstacles

• Suppose A and B have velocities vA and vB, and are on a 
collision course

• They choose new velocities v'A  ∉ VOA
B(vB), v'B  VO∉ B

A(vA)
– They must choose to pass on the same side (or may still 

collide)

B



• The old velocities vA and vB will be outside the new velocity 
obstacles VOA

B(v'B) and VOB
A(v'A)

• So the agents may immediately switch back to vA and vB if they 
prefer those velocities

• The velocities will oscillate!

B

Reciprocal Velocity Obstacles



• Reciprocal velocity obstacles will let the agents pass each 
other naturally without oscillation

B

Van den Berg et al, "Reciprocal velocity obstacles for real-time multi-agent navigation" (2008)

Reciprocal Velocity Obstacles



• Basic idea: each agent will choose a velocity that goes 
only halfway toward resolving the collision

• So v'A = (vA + v) / 2 for some v  ∉ VOA
B(vB)

– and so 2v'A – vA  ∉ VOA
B(vB)

• Definition (Reciprocal Velocity Obstacle):
– RVOA

B(vB, vA) = {v'A | 2v'A – vA  ∈ VOA
B(vB) }

B

Reciprocal Velocity Obstacles



• RVOA
B(vB, vA) = {v'A | 2v'A – vA  ∈ VOA

B(vB) }
• A cone with apex (vA + vB) / 2
• If both A and B choose the apex velocity, they will move at 

the same speed and won't collide

B

Reciprocal Velocity Obstacles



• Theorem 1: If A and B choose new velocities v'A and v'B outside each other's 
RVO, they will not collide, as long as they choose to pass on the same side

– v'A ∉⃗ RVOA
B(vB, vA) ∧ v'B ∉⃗ RVOB

A(vA, vB) ⇒ v'A ∉⃗ VOA
B(v'B) ∧ v'B ∉⃗ VOB

A(v'A)
– Proof: easy algebra

B

Reciprocal Velocity Obstacles



• Theorem 2: Suppose that A chooses a new velocity v'A that is outside B's RVO and 
as close as possible to vA, and B similarly chooses v'B.  Then

1. A and B will choose the same side to pass each other.

2. vA ∈ RVOA
B(v'B, v'A) (and similarly for vB).

3. RVOA
B(v'B, v'A) = RVOA

B(vB, vA) : the RVO does not change (and similarly for 
RVOB

A(v'A, v'B)).
• By (2), A cannot switch back to vA (and similarly for B).  No oscillations will occur.

B

Reciprocal Velocity Obstacles



B

Reciprocal Velocity Obstacles

• Can also be used to avoid collisions among many agents!
• The combined RVO for an agent A is the union of the individual 

RVOs of all other agents to agent A.
• On each tick, each agent is assigned a velocity outside its 

combined RVO.



B

Reciprocal Velocity Obstacles
• The space may become so crowded that all admissible velocities for an agent 

are inside the combined RVO
• Then we choose a velocity v' in the combined RVO that minimizes the penalty 

w / tc(v') + ‖vpref – v'‖, where
– vpref is the agent's preferred velocity
– tc(v') is the expected time to collision with any other agent
– w is a weighting factor



B

Reciprocal Velocity Obstacles

• Combining RVOs had some problems in the original RVO paper 
(2008)

– Agents couldn't agree which side to pass on

• Improved using hybrid reciprocal velocity obstacles (2011)

Snape et al, The Hybrid Reciprocal Velocity Obstacle (2011)



B

Reciprocal Velocity Obstacles
● Implemented in Godot (and probably other game engines)
● Videos at

– http://gamma.cs.unc.edu/RVO



Pathfinding
Definition of the problem

Given an environment abstraction find a good 
path between given start and end points for an 
agent.
Environment 
abstraction
 Tiles
 Navigation graph
 Navmesh
 Hierarchies

A path
 List of cells to go through
 Straight lines (list of points)
 Curves

A “good” path
 Shortest
 Cheapest
 Safest
 Believable
 …

Start/Endpoints
 1:1, 1:N, N:1, N:M
 Position
 Graph node



Environment abstraction
 Complete / Incomplete
 Navigation graph
 Tiles
 Navmesh
 Hierarchies

A path
 Straight lines (list of points)
 Curves

A “good” path
 Shortest
 Cheapest
 Safest
 Believable
 Most desirable
 Different then
 …

Start/Endpoints
 1:1, 1:N, N:1, N:M
 Position
 Graph node
 Procedurally described

Pathfinding
Definition

Given the environment abstraction find a good 
path between given start and endpoints for IVA.

A “good” path can be quite complex…
In a dungeon complex within an asteroid, 
fly to enemy base
  - as fast as possible
  - while using as less fuel as possible
  - avoid too narrow passages
  - not looking mechanical
  - pick as many items along the way as 
possible
  - and avoid guard routes of the enemy.



Solution of the pathfinding problem
Is…

Environment abstraction 
+ 

Search algorithm
that

may require additional precomputed data to 
work.



Pathfinding
Environment Abstractions

No abstraction Rect. tiles Navigation 
graph

Navmesh Quad-tree tiles Potential fields



Pathfinding
Solution quality metrics

Given a pathfinding solution (an environment 
abstraction + a pathfinding algorithm), we may 
consider its

Time complexity 

Space complexity 

Path optimality 

First move delay

Precomputation requirements

Implementation complexity



Pathfinding
Environment Abstractions

Tile-based Approaches



Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 Games started of 

with grid base 
environments

Rogue (1980)

Dwarf Fortress (2006)

http://fightingkitten.webcindario.com/?p=850


Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 Some games are 

already grid-based
 Space is represented 

as a grid of regular 
(square or hex) tiles

 Tiles are as big as the 
smallest character in 
a game (~ smallest 
sprite dimension)

http://fightingkitten.webcindario.com/?p=850


Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles 

as non-walkable

http://fightingkitten.webcindario.com/?p=850


Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles 

as non-walkable
 And create a graph 

out of walkable tiles

http://fightingkitten.webcindario.com/?p=850


Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles 

as non-walkable
 And create a graph 

out of walkable tiles
 Which provides us 

with mechanical 
paths

http://fightingkitten.webcindario.com/?p=850


Environment abstraction
Regular tiles

Warcraft III, editor. Blizzard Entertainment (2002).

Dune II (1993)

Warcraft II (1995)



Environment abstraction
Regular tiles

Regular tiles
 Can be used for 

terrain in 3D as well
 With the same trick 

(non-walkable, 
graph, paths)

Warcraft III, editor. Blizzard Entertainment (2002).



Environment abstraction
Regular tiles

Regular tiles
 Can be used for 

terrain in 3D as well
 With the same trick 

(non-walkable, 
graph, paths)

 Notice that pictured 
paths are of the 
same length! :-/

Warcraft III, editor. Blizzard Entertainment (2002).



Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can 

create a different 
graph (twice as 
large)

Warcraft III, editor. Blizzard Entertainment (2002).



Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can 

create a different 
graph (twice as 
large)

 Which gives rise to 
more natural paths

Warcraft III, editor. Blizzard Entertainment (2002).



Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can 

create a different 
graph (twice as 
large)

 Which gives rise to 
more natural paths

 And we can smooth 
it with a funnel 
algorithm

Warcraft III, editor. Blizzard Entertainment (2002).



Pathfinding
Environment Abstractions

Modelling terrain with a weighted graph



Pathfinding
Tiles and Costs

Terrain is often 
associated with a 
“travel cost”.
When turning tiles 
(or anything else 
in graph) we have 
two options how 
to model it
1. Associate the 

cost with nodes
2. Associate the 

cost with links 
(allows for 
different costs 
for traveling 
up/down the hill)

Road: 
1

Grass: 
2

Stairs up: 10
Stairs down: 

5

Climbing the 
wall up: 100

Rock: 5

Auto-makes the path more 
believable if tweaked 

correctly.



Pathfinding
The Algorithms

How to find a path?

Graph search algorithms
(the skeleton)



Graph search algorithms
The Skeleton (unidirectional)

Idea
 Start from origin
 Incrementally push newly 

touched nodes into the 
open-list (the frontier or the 
fringe)

 Select next nodes from the 
open-list according to a 
strategy

Plug-ins
 Open-list implementation
 Strategy of extraction
 (Closed-list 

implementation)

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-

    list according to
    “strategy”

5.   if node is target
6.     return path to node
7.   else
8.     expand node by

      checking its direct
      neighbors possibly
      adding them
      to open-list

9.     move expanded node to
      closed-list



Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-

    list according to
    “strategy”

5.   if node is target
6.     return path to node
7.   else
8.     expand node by

      checking its direct
      neighbors possibly
      adding them
      to open-list

9.     move expanded node to
      closed-list

The open-list, also called 
fringe or frontier, contains 

nodes that are currently 
considered for expansion, i.e., 

next nodes to check.

Closed-list, nodes we have 
already expanded; if the 

strategy is optimal, those 
nodes will not need to be 

moved back to the open-list 
(referred to as reopened).



Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Target 
node we’re 
finding the 

path to.

Node selected for 
the expansion 

according to the 
algorithm 
“strategy”.

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-

    list according to
    “strategy”

5.   if node is target
6.     return path to node
7.   else
8.     expand node by

      checking its direct
      neighbors possibly
      adding them
      to open-list

9.     move expanded node to
      closed-list

10. return no-path



Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-

    list according to
    “strategy”

5.   if node is target
6.     return path to node
7.   else
8.     expand node by

      checking its direct
      neighbors possibly
      adding them
      to open-list

9.     move expanded node to
      closed-list

10. return no-path

Expanded node was moved 
to the closed-list and it’s 

neighbors, which were not in 
either lists, were moved into 

the open-list.



Graph search algorithms
The Skeleton (unidirectional)

Notes
 More complex open-list 

or strategy is, more time 
it requires to compute 
one step of the search

 Trade-offs
Path quality vs.
Path optimality vs. 
Terrain vs. 
First move delay vs.
Computation time vs.
Precomputations

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4.   extract node from open-

    list according to
    “strategy”

5.   if node is target
6.     return path to node
7.   else
8.     expand node by

      checking its direct
      neighbors possibly
      adding them
      to open-list

9.     move expanded node to
      closed-list

10. return no-path



Pathfinding
The Algorithms

How to find the path?

Graph search algorithms
(instances)



Graph search algorithms
Breadth-first search (BFS)

Open-list
A queue (first-in first-out)

Strategy
To select the first node in the queue

Notes
? Expands nodes uniformly 
around
  the origin without checking
  its terrain cost
- Expands a lot of nodes

 Good for “checking what is 
around”



Graph search algorithms
Dijkstra’s algorithm
Open-list
A prioritized queue (first-in first-
out); nodes are sorted according to 
their path-distance from the start
Strategy
To select the first node from the 
queue
Notes
+ Takes terrain into account
+ Does not assume anything about
  the topology of the environment
  (works with, e.g., teleports)
- Expands a lot of nodes
 Good for “checking what is 

around in certain path-distance”



Graph search algos
Best-first search

  



Graph search algorithms
A* search

  



Graph search algorithms
A* search

  

 
 

smallest smallest

 



A* Search
Properties

  

 
 

smalle
st 



A* Search
Heuristic functions

smallest  



A* Search
Relation to other searches

smallest

  



A* Search
Optimization

   

 When A* hits obstacle, it expands a lot of unnecessary 
nodes

 We can use non-admissible heuristic to force A* to expand 
the promising nodes faster => does not always return the 
optimal path then

 Can be used in open environments, elsewhere value 
between 1.5 and 2.0 is typically used



A* Search
More notes

  

Actually the negatives 
holds for all graph search 
algorithms seen so far…

„AI research often focuses in a direction that is less useful for games. A* is the most successful technique that AI 
research has come up with—and nearly the only one applied in computer games.“ (A. Nareyek, 2004)



Pathfinding
The Algorithms

How to find a path?

Speed-ups for regular grid



JPS
Improved A* on regular grids

 A* expands lots of nodes on grid-based maps
 Jump Point Search (JPS) performs “jump” lookaheads 

improving A* running time by about 10x

Harabor, D. D., & Grastien, A. (2011, August). Online graph pruning for pathfinding 
on grid maps. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

Traditional A* A* using JPS



JPS
Improved A* on regular grids

 Another example

Images from: https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html

Traditional A* A* using JPS

https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html
https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html


JPS
Improved A* on regular grids

 Works on an undirected uniform-cost grid
 Straight moves cost 1, diagonal moves cost sqrt(2)
 Traditional A* will check many paths with equivalent cost!



JPS
Improved A* on regular grids

 JPS prunes most successor nodes
 In open space, only searches in directions seen here



JPS
Improved A* on regular grids

 A jump point is an "important" node we must add to the open list
 Below, dashed lines do not yield any jump point successors



JPS
Pruning rules

 Straight moves: prune neighbors that could be reached from the 
parent by another path of shorter or equal length

 Diagonal moves: prune neighbors that could be reached from 
the parent by another path of strictly shorter length 



JPS
Forced and natural neighbors

 When there are no obstacles nearby, all neighbors are 
natural

 Obstacles produce additional forced neighbors



JPS
Jump point: definition

 Node y is the jump point from node x, heading in direction d⃗ , if y minimizes k such that y = x + kd⃗  and one 
of:

1. y is the goal node

2. y has at least one forced neighbor

3. d⃗  is a diagonal move and there exists z = y + kid⃗ i where d⃗ i ∈ {d⃗ 1, d⃗ 2} and z is a jump point from y by 
condition 1 or 2

 {d⃗ 1, d⃗ 2} are the straight directions at 45 degrees to d



JPS
Algorithm



JPS
Algorithm



JPS+
Baking JPS into the grid

● We can use precomputation to make JPS even faster!
● For each node, precompute jump points in all 8 directions
● Below, jump points 1-3 are ordinary
● Jump points 4-8 are sterile and would normally be discarded, 

but we keep them anyway

Rabin, S., & Silva, F. (2015). An Extreme A* Speed Optimization for Static 
Uniform Cost Grids [J]. Game AI Pro 2: Collected Wisdom of Game AI 
Professionals, 131.



JPS+
Baking JPS into the grid

● For each direction, store the distance to the next jump point
– or a value ≤ 0 for a distance to a sterile jump point

● A 16-bit integer is enough



JPS+
Finding the target node

● Precomputed jump points are independent of the target!
● At run time, check whether the path to each sterile successor crosses the 

row or column of the target T at some point J
– If so, add a new jump point at J if there is a direct path from J to T
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