Faculty of Mathematics and Physics Charles University October 22, 2024

Artificial Intelligence for Computer Games

Local Navigation (continued) Grid-Based Pathfinding

Adam Dingle

Steering Behaviors As part of navigation

Steering Behaviors Vehicle Model

- 1. accel = steering.calculate(args)
- 2. accel = truncate(accel, max_accel)
- 3. **velocity** = **velocity** + accel * timeDelta
- 4. velocity = truncate(velocity, max_speed)
- 5. position += velocity * timeDelta
- 6. look-direction = velocity.normalized

Steering Behaviors List of Reynolds steerings

- Simple behaviors for individuals and pairs:
 - Seek and Flee (static target)
 - Pursue and Evade (moving target)
 - Wander
 - Arrive
 - Path Following
 - Wall Following
 - Containment
 - Obstacle Avoidance
- Combined behaviors and groups:
 - Flocking (combining: separation, alignment, cohesion)
 - Leader Following
 - Crowd Path Following
 - Unaligned Collision Avoidance

Craig Reynolds, "Steering Behaviors For Autonomous Characters" (1999)

Wall Following Containment

Obstacle Avoidance

- Goal: keep empty cylinder ahead
- Detect nearest obstacle that will collide
- Accelerate laterally away

Leader Following

- Agents are steered to follow a leader
- Steering force consists of:
 - Arrival the target is slightly behind leader
 - **Separation** to prevent collisions with other followers
 - A follower in a rectangular region in front of the leader will steer away from the leader's path

Crowd Path Following

• Path Following + Separation

Unaligned Collision Avoidance

- Predict next potential collision
- Steer laterally to turn away
- Can also accelerate or decelerate

Steering Behaviors Combining Behaviors

- Can add behaviors
 - possibly with weighting factor
- Can prioritize behaviors, e.g.
 - 1. avoid obstacle if nearby
 - 2. evade enemy if nearby
 - 3. seek to goal

• Problem: sum of steering behaviors is not always ideal

Andrew Fray, "Context steering: Behavior-driven steering at the macro scale" (2015)

- Solution: generate context maps
- Map directions to slots

Store chase behavior in **interest map**

Store avoid behavior in danger map

- Find slots with lowest danger
- From those, choose slot with highest interest

- Goal: avoid collisions more reliably than we can achieve with steering behaviors
- Invented in robotics (and elsewhere)

P. Fiorini and Z. Shiller, "Motion planning in dynamic environments using velocity obstacles" (1998)

- Agents A, B are at positions \mathbf{p}_A , \mathbf{p}_B
- *B* is travelling at a fixed velocity \mathbf{v}_{B}
- Which velocities v_A will allow A to avoid colliding with B?

- $B \oplus -A$ is the set of positions where A would collide with B
- $S \oplus T = \{ \mathbf{s} + \mathbf{t} \mid \mathbf{s} \in S, \mathbf{t} \in T \}$ (Minkowski sum)
- If A and B are circles, $B \oplus -A$ is a circle whose radius is the sum of the radii of A and B

- The left cone shows velocities v_A for which A would not collide with B if B were not moving
- But *B* is moving at \mathbf{v}_B , so we must consider the *relative* velocity $\mathbf{v}_A \mathbf{v}_B$

- $\lambda(\mathbf{p}, \mathbf{v}) = \{ \mathbf{p} + t\mathbf{v} \mid t \ge 0 \}$
 - ray starting at p, heading in direction v
- $VO^{A_{B}}(\mathbf{v}_{B}) = \{ \mathbf{v}_{A} \mid \lambda(\mathbf{p}_{A}, \mathbf{v}_{A} \mathbf{v}_{B}) \cap (B \oplus -A) \neq \emptyset \}$
 - velocity obstacle of B to A
 - set of velocities \mathbf{v}_A for which A will collide with B!

- VO^{A_B} is a cone with apex at v_B
- If $v_A \in VO^{A_B}$, A will collide with B
- If v_A is the apex velocity v_B , they will not collide
- If v_A is in the left or right half-plane outside VO^A_B , A will pass B on the left or right

Extension of Velocity Obstacles

- Suppose A and B have velocities v_A and v_B, and are on a collision course
- They choose new velocities $\mathbf{v}'_A \notin VO^A_B(\mathbf{v}_B)$, $\mathbf{v}'_B \notin VO^B_A(\mathbf{v}_A)$
 - They must choose to pass on the same side (or may still collide)

- The old velocities \mathbf{v}_A and \mathbf{v}_B will be outside the new velocity obstacles $VO^A_B(v'_B)$ and $VO^B_A(\mathbf{v'}_A)$
- So the agents may immediately switch back to v_A and v_B if they prefer those velocities
- The velocities will oscillate!

Reciprocal velocity obstacles will let the agents pass each other naturally without oscillation

- Basic idea: each agent will choose a velocity that goes only halfway toward resolving the collision
- So $\mathbf{v}'_{A} = (\mathbf{v}_{A} + \mathbf{v}) / 2$ for some $\mathbf{v} \notin VO^{A}_{B}(\mathbf{v}_{B})$

- and so
$$2\mathbf{v}'_{A} - \mathbf{v}_{A} \notin VO^{A}_{B}(\mathbf{v}_{B})$$

• Definition (Reciprocal Velocity Obstacle):

$$= RVO^{A}{}_{B}(\mathbf{v}_{B}, \mathbf{v}_{A}) = \{\mathbf{v}'_{A} \mid 2\mathbf{v}'_{A} - \mathbf{v}_{A} \in VO^{A}{}_{B}(\mathbf{v}_{B})\}$$

- $RVO^{A}_{B}(\mathbf{v}_{B}, \mathbf{v}_{A}) = \{\mathbf{v}'_{A} \mid 2\mathbf{v}'_{A} \mathbf{v}_{A} \in VO^{A}_{B}(\mathbf{v}_{B})\}$
- A cone with apex $(v_A + v_B) / 2$
- If both A and B choose the apex velocity, they will move at the same speed and won't collide

- Theorem 1: If *A* and *B* choose new velocities $\mathbf{v'}_A$ and $\mathbf{v'}_B$ outside each other's RVO, they will not collide, as long as they choose to pass on the same side
 - $\mathbf{v}_{A} \notin RVO^{A}{}_{B}(\mathbf{v}_{B}, \mathbf{v}_{A}) \wedge \mathbf{v}_{B} \notin RVO^{B}{}_{A}(\mathbf{v}_{A}, \mathbf{v}_{B}) \Rightarrow \mathbf{v}_{A} \notin VO^{A}{}_{B}(\mathbf{v}_{B}) \wedge \mathbf{v}_{B} \notin VO^{B}{}_{A}(\mathbf{v}_{A})$
 - Proof: easy algebra

- Theorem 2: Suppose that *A* chooses a new velocity \mathbf{v}'_A that is outside *B*'s RVO and *as close as possible* to \mathbf{v}_A , and *B* similarly chooses \mathbf{v}'_B . Then
 - 1. A and B will choose the same side to pass each other.
 - **2.** $\mathbf{v}_A \in RVO^{A_B}(\mathbf{v}'_B, \mathbf{v}'_A)$ (and similarly for \mathbf{v}_B).
 - 3. $RVO^{A}_{B}(\mathbf{v}'_{B}, \mathbf{v}'_{A}) = RVO^{A}_{B}(\mathbf{v}_{B}, \mathbf{v}_{A})$: the RVO does not change (and similarly for $RVO^{B}_{A}(\mathbf{v}'_{A}, \mathbf{v}'_{B})$).
- By (2), A cannot switch back to \mathbf{v}_A (and similarly for B). No oscillations will occur.

- Can also be used to avoid collisions among many agents!
- The *combined RVO* for an agent A is the union of the individual RVOs of all other agents to agent A.
- On each tick, each agent is assigned a velocity outside its combined RVO.

- The space may become so crowded that all admissible velocities for an agent are inside the combined RVO
- Then we choose a velocity **v**' in the combined RVO that minimizes the penalty $w / tc(\mathbf{v}') + \|\mathbf{v}^{\text{pref}} \mathbf{v}'\|$, where
 - v^{pref} is the agent's preferred velocity
 - *tc*(**v**') is the expected time to collision with any other agent
 - w is a weighting factor

- Combining RVOs had some problems in the original RVO paper (2008)
 - Agents couldn't agree which side to pass on
- Improved using hybrid reciprocal velocity obstacles (2011)

Snape et al, The Hybrid Reciprocal Velocity Obstacle (2011)

- Implemented in Godot (and probably other game engines)
- Videos at
 - http://gamma.cs.unc.edu/RVO

Pathfinding Definition of the problem

Given an environment abstraction find a good path between given start and end points for an agent.

Environment abstraction

- Tiles
- Navigation graph
- Navmesh
- Hierarchies

Start/Endpoints

- 1:1, 1:N, N:1, N:M
- Position
- Graph node

A path

- List of cells to go through Straight lines (list of points)
- Curves

A "good" path

- Shortest
- Cheapest
- Safest
- Believable

A **"good" path** can be quite complex...

In a dungeon complex within an asteroid, fly to enemy base

- as fast as possible
- while using as less fuel as possible
- avoid too narrow passages
- not looking mechanical
- pick as many items along the way as possible
 - and ayoid guard routes of the enemy.
 - Tiles
 - Navmesh
 - Hierarchies

Start/Endpoints

- 1:1, 1:N, N:1, N:M
- Position
- Graph node
- Procedurally described

A "good" path

- Shortest
- Cheapest
- Safest
- Believable
- Most desirable
- Different then

list of points)

Environment abstraction + Search algorithm that may require additional precomputed data to work.

Pathfinding Environment Abstractions

Pathfinding Solution quality metrics

Given a pathfinding solution (an environment abstraction + a pathfinding algorithm), we may consider its

Time complexity

Space complexity

Path optimality

First move delay

Precomputation requirements

Implementation complexity
Pathfinding Environment Abstractions

Tile-based Approaches

Regular tiles Games started of with grid base environments Rogue (1980)

Dwarf Fortress (2006)

http://fightingkitten.webcindario.com/?p=8

Regular tiles

- Some games are already grid-based
- Space is represented as a grid of regular (square or hex) tiles
- Tiles are as big as the smallest character in a game (~ smallest sprite dimension)

http://fightingkitten.webcindario.com/?p=8

Regular tiles

We mark some tiles as non-walkable

http://fightingkitten.webcindario.com/?p=8

¢

Regular tiles

- We mark some tiles as non-walkable
- And create a graph out of walkable tiles

http://fightingkitten.webcindario.com/?p=8

E

Regular tiles

- We mark some tiles as non-walkable
- And create a graph out of walkable tiles
- Which provides us with mechanical paths

http://fightingkitten.webcindario.com/?p=8

C

Warcraft III, editor. Blizzard Entertainment (2002

Regular tiles

- Can be used for terrain in 3D as well
- With the same trick (non-walkable, graph, paths)

Warcraft III, editor. Blizzard Entertainment (2002

Regular tiles

- Can be used for terrain in 3D as well
- With the same trick (non-walkable, graph, paths)
- Notice that pictured paths are of the same length! :-/

Warcraft III, editor. Blizzard Entertainment (2002

- Regular tiles
- Alternatively, we can create a different graph (twice as large)

Warcraft III, editor. Blizzard Entertainment (2002

Regular tiles

- Alternatively, we can create a different graph (twice as large)
- Which gives rise to more natural paths

Warcraft III, editor. Blizzard Entertainment (2002

Regular tiles

- Alternatively, we can create a different graph (twice as large)
- Which gives rise to more natural paths
- And we can smooth it with a funnel algorithm

Warcraft III, editor. Blizzard Entertainment (2002

Pathfinding Environment Abstractions

Modelling terrain with a weighted graph

Pathfinding Tiles and Costs

Terrain is often associated with a "travel cost".

When turning tiles (or anything else in graph) we have two options how to model it

- 1. Associate the cost with nodes
- 2. Associate the cost with links (allows for different costs for traveling up/down the hill)

Pathfinding The Algorithms

How to find a path?

Graph search algorithms *(the skeleton)*

Graph search algorithms The Skeleton (unidirectional)

Idea

- Start from origin
- Incrementally push newly 2. touched nodes into the 3. open-list (the frontier or the 4. fringe)
- Select next nodes from the open-list according to a strategy

Plug-ins

- Open-list implementation
- Strategy of extraction
- (Closed-list implementation)

```
make open-list
   push start into open-list
   while open-list not empty
     extract node from open-
       list according to
       "strategy"
     if node is target
5.
       return path to node
6.
     else
7.
       expand node by
8.
         checking its direct
         neighbors possibly
         adding them
         to open-list
       move expanded node to
9.
         closed-list
```

fringe or frontier, contains nodes that are currently considered for expansion, i.e.,

next nodes to check.

<mark>Jorithms</mark> ectional) - Vocabulary

Algorithm template

make open-list 1. push start into open-list 2. while open-list not empty 3. extract node from open-4. **list** according to "strategy" **if** node is target 5. return path to node 6. else 7. expand node by 8. checking its direct neighbors possibly adding them to open-list move expanded node to 9. closed-list

<mark>gorithms</mark> rectional) - Vocabulary


```
make open-list
1.
   push start into open-list
2.
   while open-list not empty
3.
     extract node from open-
4.
       list according to
       "strategy"
     if node is target
5.
6.
       return path to node
     else
7.
       expand node by
8.
         checking its direct
         neighbors possibly
         adding them
         to open-list
       move expanded node to
9.
         closed-list
10. return no-path
```

Graph search algorithms The Skeleton (unidirectional) - Vocabulary


```
make open-list
1.
   push start into open-list
2.
   while open-list not empty
3.
     extract node from open-
4.
       list according to
       "strategy"
     if node is target
5.
6.
       return path to node
     else
7.
       expand node by
8.
         checking its direct
         neighbors possibly
         adding them
         to open-list
       move expanded node to
9.
         closed-list
10. return no-path
```

Graph search algorithms The Skeleton (unidirectional)

- More complex open-list or strategy is, more time it requires to compute one step of the search
- ⇒ Trade-offs
 - Path quality vs. Path optimality vs. Terrain vs. First move delay vs. Computation time vs. Precomputations

```
make open-list
1.
   push start into open-list
2.
   while open-list not empty
3.
     extract node from open-
4.
       list according to
       "strategy"
     if node is target
5.
       return path to node
6.
     else
7.
       expand node by
8.
         checking its direct
         neighbors possibly
         adding them
         to open-list
       move expanded node to
9.
         closed-list
10. return no-path
```

Pathfinding The Algorithms

How to find the path?

Graph search algorithms *(instances)*

Graph search algorithms Breadth-first search (BFS)

Strategy

To select the first node in the queue

- ? Expands nodes uniformly around
 - the origin without checking its terrain cost
- Expands a lot of nodes
- Good for "checking what is around"

Graph search algorithms Dijkstra's algorithm

Open-list

A prioritized queue (first-in first-out); nodes are sorted according to their path-distance from the start

Strategy

To select the first node from the queue

- + Takes terrain into account
- Does not assume anything about the topology of the environment (works with, e.g., teleports)
 Expands a lot of nodes
- Good for "checking what is \Rightarrow around in certain path-distance"

Graph search algo Best-first search

Open-list

A prioritized queue; nodes sorted according to the estimated cost to the target

Strategy

To select the node that seems to be the closest to target (according to heuristic function), i.e., the first node from the queue

- ! Requires a heuristic function h: $node \rightarrow R$
- + Computes fast in open-space
- Does not guarantee the shortest path
- Does not take terrain into account

Graph search algorithms A* search

Open-list

A prioritized queue; nodes sorted according to the (path cost from start + estimated cost to target)

Strategy

To select the node that seems to be the most promising, i.e., the first node from the queue

- ! Requires a heuristic function h: $node \rightarrow R$
- + Computes faster than Dijkstra
- + Guarantee the shortest path if heuristic is done right
- + Takes terrain into account

Graph search algorithms A* search

A prioritized queue; nodes sorted according to the:

$$f(x) = g(x) + h(x)$$

g(x) ... path cost from start h(x) ... estimated cost to target the heuristic function

A* Search Properties

Open-list

A prioritized queue; nodes sorted according to the: f(x) = g(x) + h(x) g(x) ... path cost from start h(x) ... estimated cost to target the heuristic function

- **Pef.**: If $h(x) \le$ real-path-cost to target, h(x) is called **admissible**.
- **Theorem:** A* admissibility If graph costs are non-negative and h(x) is admissible, A* finds an optimal (the cost-shortest) path in the finite number of steps if it exists or terminates.
- **Def.**: If for every edge $(a \rightarrow b)$: $h(a) \le cost(a \rightarrow b) + h(b)$, h(x) is called **monotone** or **consistent**.
- **Theorem:** A* optimality If graph costs are non-negative and h(x) is consistent, A* does not reopen nodes in the closed list.
- **Def.**: h(x) that is both admissible and consistent is called **feasible**.

A* Search Heuristic functions

- Defined as h(x), but in reality implemented as h(x, t), where t is target node we are finding the path to
- Depending on the environment and move actions we typically use following feasible functions

Regular grid, 4-way cells: $h(x, t) = |x_x - t_x| + |x_y - t_y|$ Regular grid, 8-way cells: $h(x, t) = max(|x_x - t_x|, |x_y - t_y|)$

2D:
$$h(x,t) = \sqrt{(x_x - t_x)^2 + (x_y - t_y)^2}$$

3D: $h(x,t) = \sqrt{(x_x - t_x)^2 + (x_y - t_y)^2 + (x_z - t_z)^2}$

- Cannot be used if there are teleports on the map!
- For teleports $r_1(a_1 \rightarrow b_1), \dots, r_n(a_n \rightarrow b_n)$ on the map, we need following modification

$$h'(x,t) = \min\{h(x,t), \min_{i=1..n} (h(x,r_i.a_i) + h(r_i.b_i,t))\}$$

Quite costly though! And not complete as it assumes use of single teleport

A* Search Relation to other searches

- A* strategy is ordering nodes in open-list according to f(x, s, t) = g(s, x) + h(x, t)
 - x ... node in open-list; s ... start node; t ... target node
 - g(s, x) ... current shortest-path known between s and x
 - h(x, t) ... estimation of the path cost between x and t
 - More on the properties of f and strategies for combining g a h: Dechter, R., & Pearl, J. (1985). <u>Generalized best-first search strategies and</u> <u>the optimality of A*</u>. *Journal of the ACM (JACM)*, 32(3), 505-536.
- Simulating other algorithms
 - BFS: g(s, x) = least # edges between s and xh(x, t) = 0
 - Dijkstra: h(x,t) = 0
 - Best-first: g(s, x) = 0

A* Search Optimization

- When A* hits obstacle, it expands a lot of unnecessary nodes
- We can use non-admissible heuristic to force A* to expand the promising nodes faster => does not always return the optimal path then
 Can be used in open environments, elsewhere value between 1.5 and 2.0 is typically used

A* Search More notes

- Requires a heuristic function h: $node \rightarrow R$
- + Computes faster than Dijkstra; optimal path found if exists and the heuristic is admissible
- Takes terrain into account
- + Easy to implement
- + Can be tweaked
- If path does not exist, searches through the whole space
- "Big" first move delay (search has to finish first)
- Does not cope with dynamic environment
- Works only for individuals, does not take other agents into account

"AI research often focuses in a direction that is less useful for games. A* is the most successful technique that AI research has come up with—and nearly the only one applied in computer games." (A. Nareyek, **2004**)

Actually the negatives holds for all graph search algorithms seen so far...

Pathfinding The Algorithms

How to find a path? Speed-ups for regular grid

Harabor, D. D., & Grastien, A. (2011, August). Online graph pruning for pathfinding on grid maps. In *Twenty-Fifth AAAI Conference on Artificial Intelligence*. Improved A* on regular grids

A* expands lots of nodes on grid-based maps
 Jump Point Search (JPS) performs "jump" lookaheads improving A* running time by about 10x

A* using JPS

JPS Improved A* on regular grids

Traditional A*

A* using JPS

Images from: https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html

JPS Improved A* on regular grids

- Works on an undirected uniform-cost grid
- Straight moves cost 1, diagonal moves cost sqrt(2)
- Traditional A* will check many paths with equivalent cost!

JPS Improved A* on regular grids

JPS prunes most successor nodes
 In open space, only searches in directions seen here

JPS Improved A* on regular grids

A jump point is an "important" node we must add to the open list
Below, dashed lines do not yield any jump point successors

JPS Pruning rules

Straight moves: prune neighbors that could be reached from the parent by another path of **shorter or equal** length
Diagonal moves: prune neighbors that could be reached from the parent by another path of **strictly shorter** length

JPS Forced and natural neighbors

- When there are no obstacles nearby, all neighbors are natural
- Obstacles produce additional *forced* neighbors

JPS Jump point: definition

- Node y is the *jump point* from node x, heading in direction \vec{d} , if y minimizes k such that $y = x + k\vec{d}$ and one of:
 - 1. y is the goal node
 - 2. y has at least one forced neighbor
 - 3. \vec{d} is a diagonal move and there exists $z = y + k_i \vec{d_i}$ where $\vec{d_i} \in {\{\vec{d_1}, \vec{d_2}\}}$ and z is a jump point from y by condition 1 or 2
- $\{\vec{d_1}, \vec{d_2}\}$ are the straight directions at 45 degrees to d

JPS Algorithm

Algorithm 1 Identify Successors

Require: *x*: current node, *s*: start, *g*: goal

- 1: $successors(x) \leftarrow \emptyset$
- 2: $neighbours(x) \leftarrow prune(x, neighbours(x))$
- 3: for all $n \in neighbours(x)$ do
- 4: $n \leftarrow jump(x, direction(x, n), s, g)$
- 5: add *n* to successors(x)
- 6: end for
- 7: return successors(x)

JPS Algorithm

Algorithm 2 Function *jump* **Require:** *x*: initial node, \vec{d} : direction, *s*: start, *g*: goal 1: $n \leftarrow step(x, \vec{d})$ 2: **if** *n* is an obstacle or is outside the grid **then** return null 3: 4: end if 5: if n = g then return n 6: 7: end if 8: if $\exists n' \in neighbours(n)$ s.t. n' is forced then return n 9: 10: end if 11: **if** \vec{d} is diagonal **then** for all $i \in \{1, 2\}$ do 12: if $jump(n, \vec{d}_i, s, g)$ is not null then 13: return n 14:end if 15: end for 16: 17: end if 18: return jump(n, d, s, g)

Rabin, S., & Silva, F. (2015). An Extreme A* Speed Optimization for Static Uniform Cost Grids [J]. Game AI Pro 2: Collected Wisdom of Game AI Professionals, 131. Baking JPS into the grid

- We can use precomputation to make JPS even faster!
- For each node, precompute jump points in all 8 directions
- Below, jump points 1-3 are ordinary
- Jump points 4-8 are sterile and would normally be discarded, but we keep them anyway

JPS+ Baking JPS into the grid

- For each direction, store the distance to the next jump point
 - or a value \leq 0 for a distance to a sterile jump point
- A 16-bit integer is enough

JPS+ Finding the target node

- Precomputed jump points are independent of the target!
- At run time, check whether the path to each sterile successor crosses the row or column of the target T at some point J
 - If so, add a new jump point at J if there is a direct path from J to T

