
Local Navigation (continued)
Grid-Based Pathfinding

Artificial Intelligence for Computer Games

Faculty of Mathematics and Physics
Charles University
October 22, 2024

Adam Dingle

Steering Behaviors
As part of navigation

1. Action-Selection
Strategy => Goals

3. Path-determination or
Path-following

What path to take exactly

4. Animating
Animation sequencing

2. Path-planning
List of path-points

Steering Behaviors
Vehicle Model

1. accel = steering.calculate(args)

2. accel = truncate(accel, max_accel)

3. velocity = velocity + accel * timeDelta

4. velocity = truncate(velocity, max_speed)

5. position += velocity * timeDelta

6. look-direction = velocity.normalized

Steering Behaviors
List of Reynolds steerings
 Simple behaviors for individuals and pairs:

– Seek and Flee (static target)

– Pursue and Evade (moving target)

– Wander

– Arrive

– Path Following

– Wall Following

– Containment

– Obstacle Avoidance

 Combined behaviors and groups:
– Flocking (combining: separation, alignment, cohesion)

– Leader Following

– Crowd Path Following

– Unaligned Collision Avoidance

Craig Reynolds, "Steering Behaviors For Autonomous Characters" (1999)

Wall Following
Containment

Obstacle Avoidance

• Goal: keep empty cylinder ahead
• Detect nearest obstacle that will collide
• Accelerate laterally away

Leader Following

• Agents are steered to follow a leader
• Steering force consists of:

• Arrival – the target is slightly behind leader
• Separation – to prevent collisions with other followers
• A follower in a rectangular region in front of the leader will steer away from

the leader’s path

Crowd Path Following

• Path Following + Separation

Unaligned Collision Avoidance

• Predict next potential collision
• Steer laterally to turn away
• Can also accelerate or decelerate

Steering Behaviors
Combining Behaviors

 Can add behaviors
– possibly with weighting factor

 Can prioritize behaviors, e.g.
1. avoid obstacle if nearby
2. evade enemy if nearby
3. seek to goal

Steering Behaviors
Context Steering
● Problem: sum of steering behaviors is not always ideal

Andrew Fray, "Context steering: Behavior-driven steering at the macro scale" (2015)

Steering Behaviors
Context Steering

● Solution: generate context maps
● Map directions to slots

Steering Behaviors
Context Steering

Store chase behavior in interest map Store avoid behavior in danger map

Steering Behaviors
Context Steering

● Find slots with lowest danger
● From those, choose slot with highest interest

Velocity Obstacles

● Goal: avoid collisions more reliably than we
can achieve with steering behaviors

● Invented in robotics (and elsewhere)

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles” (1998)

Velocity Obstacles

● Agents A, B are at positions pA, pB

● B is travelling at a fixed velocity vB

● Which velocities vA will allow A to avoid colliding with B?

Velocity Obstacles

● B ⊕ −A is the set of positions where A would collide with B
● S ⊕ T = { s + t | s ∈ S, t ∈ T } (Minkowski sum)
● If A and B are circles, B ⊕ −A is a circle whose radius is the sum of the

radii of A and B

Velocity Obstacles

● The left cone shows velocities vA for which A would not
collide with B if B were not moving

● But B is moving at vB, so we must consider the relative
velocity vA - vB

Velocity Obstacles
● λ(p, v) = { p + tv | t ≥ 0 }

– ray starting at p, heading in direction v
● VOA

B(vB) = { vA | λ(pA, vA − vB) ∩ (B ⊕ −A) ≠ ∅ }
– velocity obstacle of B to A
– set of velocities vA for which A will collide with B!

Velocity Obstacles
● VOA

B is a cone with apex at vB

● If vA ∈VOA
B, A will collide with B

● If vA is the apex velocity vB, they will not collide
● If vA is in the left or right half-plane outside VOA

B, A will pass B on the
left or right

Reciprocal Velocity Obstacles
Extension of Velocity Obstacles

• Suppose A and B have velocities vA and vB, and are on a
collision course

• They choose new velocities v'A ∉ VOA
B(vB), v'B VO∉ B

A(vA)
– They must choose to pass on the same side (or may still

collide)

B

• The old velocities vA and vB will be outside the new velocity
obstacles VOA

B(v'B) and VOB
A(v'A)

• So the agents may immediately switch back to vA and vB if they
prefer those velocities

• The velocities will oscillate!

B

Reciprocal Velocity Obstacles

• Reciprocal velocity obstacles will let the agents pass each
other naturally without oscillation

B

Van den Berg et al, "Reciprocal velocity obstacles for real-time multi-agent navigation" (2008)

Reciprocal Velocity Obstacles

• Basic idea: each agent will choose a velocity that goes
only halfway toward resolving the collision

• So v'A = (vA + v) / 2 for some v ∉ VOA
B(vB)

– and so 2v'A – vA ∉ VOA
B(vB)

• Definition (Reciprocal Velocity Obstacle):
– RVOA

B(vB, vA) = {v'A | 2v'A – vA ∈ VOA
B(vB) }

B

Reciprocal Velocity Obstacles

• RVOA
B(vB, vA) = {v'A | 2v'A – vA ∈ VOA

B(vB) }
• A cone with apex (vA + vB) / 2
• If both A and B choose the apex velocity, they will move at

the same speed and won't collide

B

Reciprocal Velocity Obstacles

• Theorem 1: If A and B choose new velocities v'A and v'B outside each other's
RVO, they will not collide, as long as they choose to pass on the same side

– v'A ∉⃗ RVOA
B(vB, vA) ∧ v'B ∉⃗ RVOB

A(vA, vB) ⇒ v'A ∉⃗ VOA
B(v'B) ∧ v'B ∉⃗ VOB

A(v'A)
– Proof: easy algebra

B

Reciprocal Velocity Obstacles

• Theorem 2: Suppose that A chooses a new velocity v'A that is outside B's RVO and
as close as possible to vA, and B similarly chooses v'B. Then

1. A and B will choose the same side to pass each other.

2. vA ∈ RVOA
B(v'B, v'A) (and similarly for vB).

3. RVOA
B(v'B, v'A) = RVOA

B(vB, vA) : the RVO does not change (and similarly for
RVOB

A(v'A, v'B)).
• By (2), A cannot switch back to vA (and similarly for B). No oscillations will occur.

B

Reciprocal Velocity Obstacles

B

Reciprocal Velocity Obstacles

• Can also be used to avoid collisions among many agents!
• The combined RVO for an agent A is the union of the individual

RVOs of all other agents to agent A.
• On each tick, each agent is assigned a velocity outside its

combined RVO.

B

Reciprocal Velocity Obstacles
• The space may become so crowded that all admissible velocities for an agent

are inside the combined RVO
• Then we choose a velocity v' in the combined RVO that minimizes the penalty

w / tc(v') + ‖vpref – v'‖, where
– vpref is the agent's preferred velocity
– tc(v') is the expected time to collision with any other agent
– w is a weighting factor

B

Reciprocal Velocity Obstacles

• Combining RVOs had some problems in the original RVO paper
(2008)

– Agents couldn't agree which side to pass on

• Improved using hybrid reciprocal velocity obstacles (2011)

Snape et al, The Hybrid Reciprocal Velocity Obstacle (2011)

B

Reciprocal Velocity Obstacles
● Implemented in Godot (and probably other game engines)
● Videos at

– http://gamma.cs.unc.edu/RVO

Pathfinding
Definition of the problem

Given an environment abstraction find a good
path between given start and end points for an
agent.
Environment
abstraction
 Tiles
 Navigation graph
 Navmesh
 Hierarchies

A path
 List of cells to go through
 Straight lines (list of points)
 Curves

A “good” path
 Shortest
 Cheapest
 Safest
 Believable
 …

Start/Endpoints
 1:1, 1:N, N:1, N:M
 Position
 Graph node

Environment abstraction
 Complete / Incomplete
 Navigation graph
 Tiles
 Navmesh
 Hierarchies

A path
 Straight lines (list of points)
 Curves

A “good” path
 Shortest
 Cheapest
 Safest
 Believable
 Most desirable
 Different then
 …

Start/Endpoints
 1:1, 1:N, N:1, N:M
 Position
 Graph node
 Procedurally described

Pathfinding
Definition

Given the environment abstraction find a good
path between given start and endpoints for IVA.

A “good” path can be quite complex…
In a dungeon complex within an asteroid,
fly to enemy base
 - as fast as possible
 - while using as less fuel as possible
 - avoid too narrow passages
 - not looking mechanical
 - pick as many items along the way as
possible
 - and avoid guard routes of the enemy.

Solution of the pathfinding problem
Is…

Environment abstraction
+

Search algorithm
that

may require additional precomputed data to
work.

Pathfinding
Environment Abstractions

No abstraction Rect. tiles Navigation
graph

Navmesh Quad-tree tiles Potential fields

Pathfinding
Solution quality metrics

Given a pathfinding solution (an environment
abstraction + a pathfinding algorithm), we may
consider its

Time complexity

Space complexity

Path optimality

First move delay

Precomputation requirements

Implementation complexity

Pathfinding
Environment Abstractions

Tile-based Approaches

Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 Games started of

with grid base
environments

Rogue (1980)

Dwarf Fortress (2006)

http://fightingkitten.webcindario.com/?p=850

Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 Some games are

already grid-based
 Space is represented

as a grid of regular
(square or hex) tiles

 Tiles are as big as the
smallest character in
a game (~ smallest
sprite dimension)

http://fightingkitten.webcindario.com/?p=850

Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles

as non-walkable

http://fightingkitten.webcindario.com/?p=850

Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles

as non-walkable
 And create a graph

out of walkable tiles

http://fightingkitten.webcindario.com/?p=850

Environment abstraction
Regular tiles

http://fightingkitten.webcindario.com/?p=850

Regular tiles
 We mark some tiles

as non-walkable
 And create a graph

out of walkable tiles
 Which provides us

with mechanical
paths

http://fightingkitten.webcindario.com/?p=850

Environment abstraction
Regular tiles

Warcraft III, editor. Blizzard Entertainment (2002).

Dune II (1993)

Warcraft II (1995)

Environment abstraction
Regular tiles

Regular tiles
 Can be used for

terrain in 3D as well
 With the same trick

(non-walkable,
graph, paths)

Warcraft III, editor. Blizzard Entertainment (2002).

Environment abstraction
Regular tiles

Regular tiles
 Can be used for

terrain in 3D as well
 With the same trick

(non-walkable,
graph, paths)

 Notice that pictured
paths are of the
same length! :-/

Warcraft III, editor. Blizzard Entertainment (2002).

Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can

create a different
graph (twice as
large)

Warcraft III, editor. Blizzard Entertainment (2002).

Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can

create a different
graph (twice as
large)

 Which gives rise to
more natural paths

Warcraft III, editor. Blizzard Entertainment (2002).

Environment abstraction
Regular tiles

Regular tiles
 Alternatively, we can

create a different
graph (twice as
large)

 Which gives rise to
more natural paths

 And we can smooth
it with a funnel
algorithm

Warcraft III, editor. Blizzard Entertainment (2002).

Pathfinding
Environment Abstractions

Modelling terrain with a weighted graph

Pathfinding
Tiles and Costs

Terrain is often
associated with a
“travel cost”.
When turning tiles
(or anything else
in graph) we have
two options how
to model it
1. Associate the

cost with nodes
2. Associate the

cost with links
(allows for
different costs
for traveling
up/down the hill)

Road:
1

Grass:
2

Stairs up: 10
Stairs down:

5

Climbing the
wall up: 100

Rock: 5

Auto-makes the path more
believable if tweaked

correctly.

Pathfinding
The Algorithms

How to find a path?

Graph search algorithms
(the skeleton)

Graph search algorithms
The Skeleton (unidirectional)

Idea
 Start from origin
 Incrementally push newly

touched nodes into the
open-list (the frontier or the
fringe)

 Select next nodes from the
open-list according to a
strategy

Plug-ins
 Open-list implementation
 Strategy of extraction
 (Closed-list

implementation)

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4. extract node from open-

 list according to
 “strategy”

5. if node is target
6. return path to node
7. else
8. expand node by

 checking its direct
 neighbors possibly
 adding them
 to open-list

9. move expanded node to
 closed-list

Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4. extract node from open-

 list according to
 “strategy”

5. if node is target
6. return path to node
7. else
8. expand node by

 checking its direct
 neighbors possibly
 adding them
 to open-list

9. move expanded node to
 closed-list

The open-list, also called
fringe or frontier, contains

nodes that are currently
considered for expansion, i.e.,

next nodes to check.

Closed-list, nodes we have
already expanded; if the

strategy is optimal, those
nodes will not need to be

moved back to the open-list
(referred to as reopened).

Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Target
node we’re
finding the

path to.

Node selected for
the expansion

according to the
algorithm
“strategy”.

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4. extract node from open-

 list according to
 “strategy”

5. if node is target
6. return path to node
7. else
8. expand node by

 checking its direct
 neighbors possibly
 adding them
 to open-list

9. move expanded node to
 closed-list

10. return no-path

Graph search algorithms
The Skeleton (unidirectional) - Vocabulary

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4. extract node from open-

 list according to
 “strategy”

5. if node is target
6. return path to node
7. else
8. expand node by

 checking its direct
 neighbors possibly
 adding them
 to open-list

9. move expanded node to
 closed-list

10. return no-path

Expanded node was moved
to the closed-list and it’s

neighbors, which were not in
either lists, were moved into

the open-list.

Graph search algorithms
The Skeleton (unidirectional)

Notes
 More complex open-list

or strategy is, more time
it requires to compute
one step of the search

 Trade-offs
Path quality vs.
Path optimality vs.
Terrain vs.
First move delay vs.
Computation time vs.
Precomputations

Algorithm template
1. make open-list
2. push start into open-list
3. while open-list not empty
4. extract node from open-

 list according to
 “strategy”

5. if node is target
6. return path to node
7. else
8. expand node by

 checking its direct
 neighbors possibly
 adding them
 to open-list

9. move expanded node to
 closed-list

10. return no-path

Pathfinding
The Algorithms

How to find the path?

Graph search algorithms
(instances)

Graph search algorithms
Breadth-first search (BFS)

Open-list
A queue (first-in first-out)

Strategy
To select the first node in the queue

Notes
? Expands nodes uniformly
around
 the origin without checking
 its terrain cost
- Expands a lot of nodes

 Good for “checking what is
around”

Graph search algorithms
Dijkstra’s algorithm
Open-list
A prioritized queue (first-in first-
out); nodes are sorted according to
their path-distance from the start
Strategy
To select the first node from the
queue
Notes
+ Takes terrain into account
+ Does not assume anything about
 the topology of the environment
 (works with, e.g., teleports)
- Expands a lot of nodes
 Good for “checking what is

around in certain path-distance”

Graph search algos
Best-first search



Graph search algorithms
A* search



Graph search algorithms
A* search



smallest smallest

A* Search
Properties



smalle
st

A* Search
Heuristic functions

smallest

A* Search
Relation to other searches

smallest



A* Search
Optimization

 When A* hits obstacle, it expands a lot of unnecessary
nodes

 We can use non-admissible heuristic to force A* to expand
the promising nodes faster => does not always return the
optimal path then

 Can be used in open environments, elsewhere value
between 1.5 and 2.0 is typically used

A* Search
More notes



Actually the negatives
holds for all graph search
algorithms seen so far…

„AI research often focuses in a direction that is less useful for games. A* is the most successful technique that AI
research has come up with—and nearly the only one applied in computer games.“ (A. Nareyek, 2004)

Pathfinding
The Algorithms

How to find a path?

Speed-ups for regular grid

JPS
Improved A* on regular grids

 A* expands lots of nodes on grid-based maps
 Jump Point Search (JPS) performs “jump” lookaheads

improving A* running time by about 10x

Harabor, D. D., & Grastien, A. (2011, August). Online graph pruning for pathfinding
on grid maps. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

Traditional A* A* using JPS

JPS
Improved A* on regular grids

 Another example

Images from: https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html

Traditional A* A* using JPS

https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html
https://zerowidth.com/2013/a-visual-explanation-of-jump-point-search.html

JPS
Improved A* on regular grids

 Works on an undirected uniform-cost grid
 Straight moves cost 1, diagonal moves cost sqrt(2)
 Traditional A* will check many paths with equivalent cost!

JPS
Improved A* on regular grids

 JPS prunes most successor nodes
 In open space, only searches in directions seen here

JPS
Improved A* on regular grids

 A jump point is an "important" node we must add to the open list
 Below, dashed lines do not yield any jump point successors

JPS
Pruning rules

 Straight moves: prune neighbors that could be reached from the
parent by another path of shorter or equal length

 Diagonal moves: prune neighbors that could be reached from
the parent by another path of strictly shorter length

JPS
Forced and natural neighbors

 When there are no obstacles nearby, all neighbors are
natural

 Obstacles produce additional forced neighbors

JPS
Jump point: definition

 Node y is the jump point from node x, heading in direction d⃗ , if y minimizes k such that y = x + kd⃗ and one
of:

1. y is the goal node

2. y has at least one forced neighbor

3. d⃗ is a diagonal move and there exists z = y + kid⃗ i where d⃗ i ∈ {d⃗ 1, d⃗ 2} and z is a jump point from y by
condition 1 or 2

 {d⃗ 1, d⃗ 2} are the straight directions at 45 degrees to d

JPS
Algorithm

JPS
Algorithm

JPS+
Baking JPS into the grid

● We can use precomputation to make JPS even faster!
● For each node, precompute jump points in all 8 directions
● Below, jump points 1-3 are ordinary
● Jump points 4-8 are sterile and would normally be discarded,

but we keep them anyway

Rabin, S., & Silva, F. (2015). An Extreme A* Speed Optimization for Static
Uniform Cost Grids [J]. Game AI Pro 2: Collected Wisdom of Game AI
Professionals, 131.

JPS+
Baking JPS into the grid

● For each direction, store the distance to the next jump point
– or a value ≤ 0 for a distance to a sterile jump point

● A 16-bit integer is enough

JPS+
Finding the target node

● Precomputed jump points are independent of the target!
● At run time, check whether the path to each sterile successor crosses the

row or column of the target T at some point J
– If so, add a new jump point at J if there is a direct path from J to T

	Steering Behaviors
	Steering Behaviors (2)
	Steering Behaviors Movement algorithm
	Steering Behaviors List of Reynold steerings
	Slide 5
	Slide 6
	Slide 7
	Separation + Path following https://www.red3d.com/cwr/steer/Cro
	Unalligned Collision Avoidance http://www.red3d.com/cwr/steer/U
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Reciprocal Velocity Obstacle Extension of VOs
	Slide 22
	Reciprocal Velocity Obstacle Extension of VOs (2)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Pathfinding Definition of the problem
	Pathfinding Definition
	Solution of the pathfinding problem Is…
	Pathfinding Environment Abstractions
	Slide 36
	Pathfinding Environment Abstractions (3)
	Environment abstraction Regular tiles
	Environment abstraction Regular tiles (2)
	Environment abstraction Regular tiles (3)
	Environment abstraction Regular tiles (4)
	Environment abstraction Regular tiles (5)
	Environment abstraction Regular tiles (6)
	Environment abstraction Regular tiles (7)
	Environment abstraction Regular tiles (8)
	Environment abstraction Regular tiles (9)
	Environment abstraction Regular tiles (10)
	Environment abstraction Regular tiles (11)
	Pathfinding Environment Abstractions (4)
	Pathfinding Tiles and Costs
	Pathfinding The Algorithms (2)
	Graph search algos The Skeleton (unidirectional)
	Graph search algorithms The Skeleton (unidirectional) - Vocabul
	Graph search algorithms The Skeleton (unidirectional) - Vocabul (2)
	Graph search algorithms The Skeleton (unidirectional) - Vocabul (3)
	Graph search algorithms The Skeleton (unidirectional)
	Pathfinding The Algorithms (3)
	Graph search algorithms Breadth-first search (BFS)
	Graph search algorithms Dijkstra’s algorithm
	Graph search algos Best-first search
	Graph search algorithms A* search
	Graph search algorithms A* search (2)
	A* Search Properties
	A* Search Heuristic functions
	A* Search Relation to other searches
	A* Search Optimization
	A* Search More notes
	Pathfinding The Algorithms (4)
	JPS A* on regular grids
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	JPS+ Baking JPS into the grid
	Slide 80
	Slide 81

