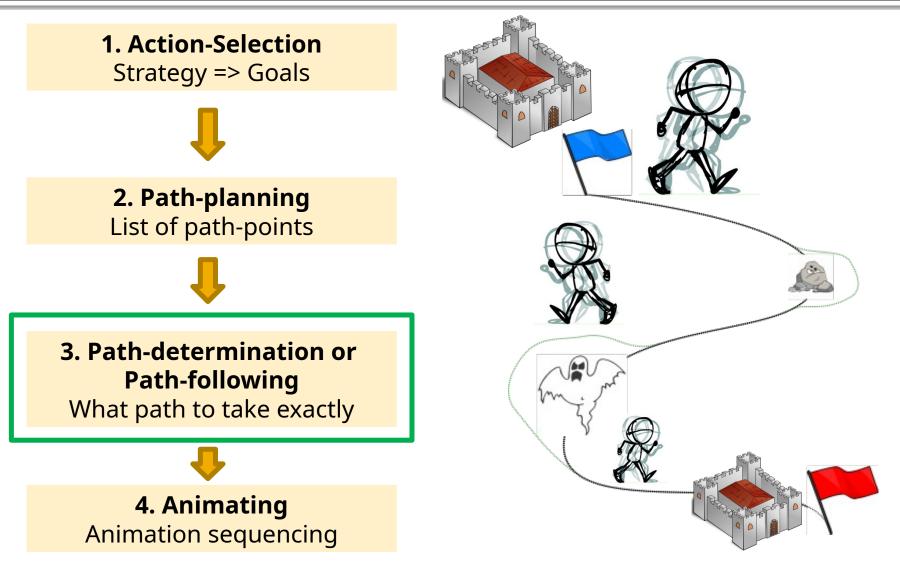

Faculty of Mathematics and Physics Charles University October 15, 2024

Artificial Intelligence for Computer Games

Local Navigation Adam Dingle


Moving around smoothly

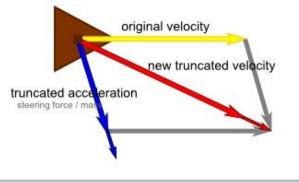
https://www.red3d.com/cwr/steer/

Steering Behaviors As part of navigation

Steering Behaviors What are they?

- A framework for controlling low-level movement of autonomous agents == means of locomotion
 - Works with <u>forces that are adjusted every frame</u>
 - Can be easily combined
 - Computationally cheap (sum of vectors) wrt. planning
 - Produces smooth paths
 - Sometimes hard to parametrize
 - Local technique; does not plan, does not foresee procedurally, just projecting current velocity
 - But can be combined with path planning
 - Works per agent but <u>exhibit emergent group</u> <u>behaviors</u>

Steering Behaviors Where do they come from?



- Invented by Craig Reynolds around 1983
- Flocks, herds and schools: A distributed behavior model (SIGGRAPH, 1987)

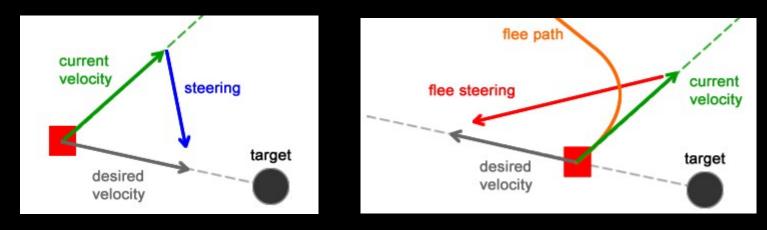
>9000 citations!

- Steering behaviors for autonomous characters (GDC, 1999)
 - https://www.red3d.com/cwr/papers/1999/gdc99steer.pdf
 - A classic source now
- https://www.red3d.com/cwr/steer/
 - Java applets demonstrating steering behaviors

Steering Behaviors Vehicle model

- 1. accel = steering.calculate(args)
- 2. accel = clampLen(accel, MAX_ACCEL)
- 3. **velocity** = **velocity** + accel * timeDelta
- 4. velocity = clampLen(velocity, MAX_VELOCITY)
- 5. position += velocity * timeDelta
- 6. look-direction = normalize(velocity)

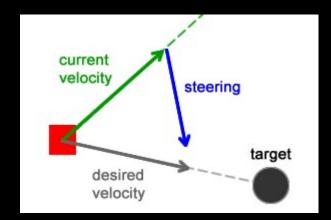
Steering Behaviors List of Reynold steerings

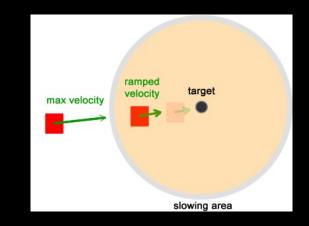

1. accel = steering.calculate(args)

- Many different steering behaviors may take place here
- Simple behaviors for individuals and pairs:
 - Seek and Flee
 - Pursue and Evade
 - Wander
 - Arrival
 - Obstacle Avoidance
 - <u>Containment</u>
 - Wall Following
 - Path Following
- Combined behaviors and groups:
 - <u>Flocking</u> (combining separation, alignment, cohesion)
 - Crowd Path Following
 - Leader Following
 - <u>Unaligned Collision Avoidance</u>

Seek & Flee

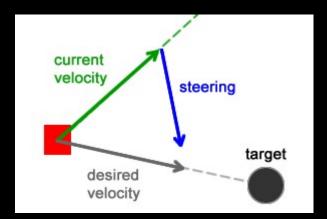
- Seek
 - steers agent towards a <u>static</u> target
- Flee
 - steers agent away from a <u>static</u> target

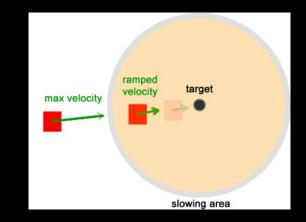

Seek steering force computation


- 1. to_target = target_position my_position
- 2. desired_velocity = normalize(to_target) * MAX_SPEED
- 3. accel = (desired_velocity velocity) * MAX_ACCEL

Arrival

- Like Seek, except the agent slows down as it approaches a <u>static</u> target
- Agent starts decelerating once it enters the slowing area
- Slowing distance d is the distance to decelerate to a full stop
- Let v_{max} , a_{max} be maximum velocity, acceleration
 - Time to decelerate = v_{max} / a_{max}
 - Average speed during deceleration = v_{max} / 2
 - so $d = (v_{max} / a_{max})(v_{max} / 2) = v_{max}^2 / (2 a_{max})$

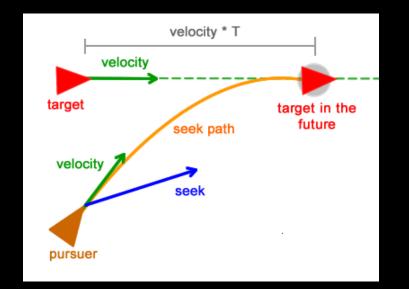



Arrival

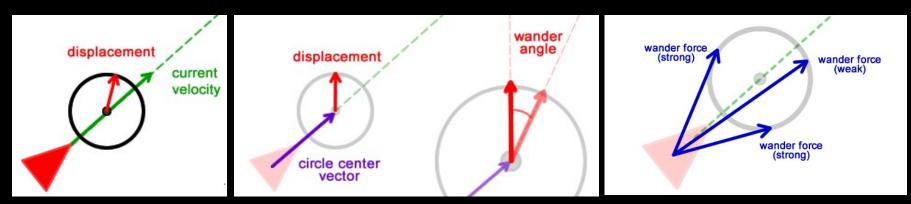
• Like Seek, except the agent slows down as it approaches a <u>static</u> target

Arrival steering force computation

- 1. to_target = target_position my_position
- 2. distance = length(to_target)
- 3. ramped_speed = max_speed * (distance / slowing_distance)
- 4. clipped_speed = min(ramped_speed, max_speed)
- 5. desired_velocity = to_target * (clipped_speed / distance)
- 6. accel = normalize(desired_velocity velocity) * MAX_ACCEL



Pursue & Evade


- As seek & flee, except the target moves target is dynamic this time
- Agent predicts the location of the target in the future
- Prediction based on target velocity & time *T* to reach target
 - How to calculate T?
 - Possible approximation: time to reach current target pos at max velocity

Wander

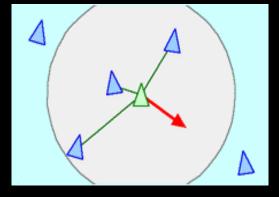
- Type of random steering: the steering direction on one frame **is related** to the steering direction on the next frame
- More believable than totally random steering forces
- Steering force:
 - At each time step a random offset is added to the wander direction
 - The modified wander direction is constrained to lie on the big circle
- Constriction of the offset: small circle
- Constriction of the steering: big circle

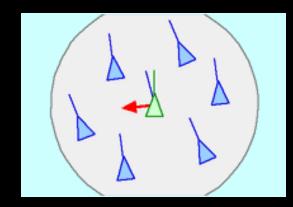
Steering Behavio

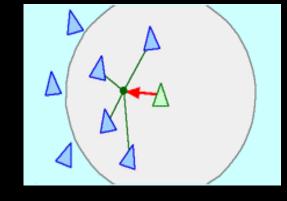
Flocking Model of Boids

• Bird like object (Boid); 3 steering rules to combine

Separation

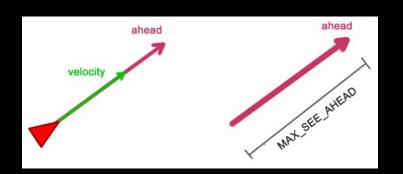

- Do not get too close to nearby flockmates, so steer away from them
- Separation force inversely proportional to distance

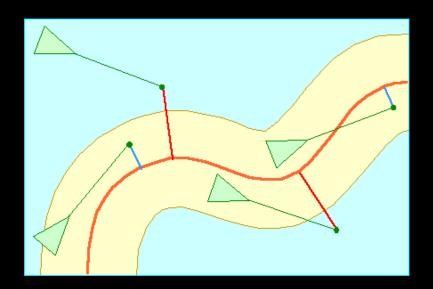

<u>Alignment</u>


- Try to move at the same speed and direction (velocity) as nearby flockmates
- Steers boid to have the same velocity as the average of velocities of nearby flockmates

<u>Cohesion</u>

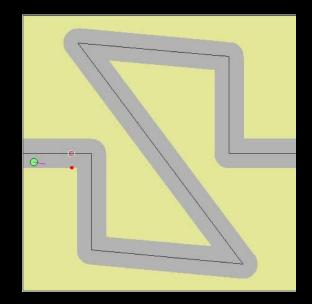
- Prefer to be at the center of the local flockmates
- Steers agent toward the center of nearby flockmates





Path Following

- Agent is steered to follow the path; we have relaxing corridor an agent is allowed to steer away from the concrete path
- Agent projects its future position **given its velocity** and then finds the nearest point of the path
- If distances between predicted point and the point on path is
 - A] smaller than the allowed distance from path => do nothing
 - B] greater => perform SEEK steering towards projected point



Path Following

- Agent is steered to follow the path; we have relaxing corridor an agent is allowed to steer away from the concrete path; Agent projects its future position given its velocity
- If distances between predicted point and the point on path is
 - A] smaller than the allowed distance from path => do nothing
 - B] greater => perform SEEK steering towards projected point

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Material has been produced within and supported by the project "Zvýšení kvality vzdělávání na UK a jeho relevance pro potřeby trhu práce" kept under number CZ.02.2.69/0.0/0.0/16_015/0002362.