Write a generic method sort() that can sort an array of elements of any type T that implements the IComparable<T> interface. You may use any sorting algorithm that you like.
In the lecture we began to write a class holding a set of values in a binary search tree:
class TreeSet<T> where T: IComparable<T> {
class Node {
public T val;
public Node? left, right;
public Node(T val) { this.val = val; }
}
Node? root;
public bool contains(T x) {
Node? p = root;
while (p != null) {
int c = x.CompareTo(p.val);
if (c == 0)
return true;
else if (c < 0)
p = p.left;
else
p = p.right;
}
return false;
}
// more methods here: insert(), delete(), ...
}a) Write an insert() method, giving it an appropriate type.
b) Add a constructor TreeSet(T[] a)
that builds a TreeSet from an array a. The resulting tree should be
balanced. Do not modify the array.
c) Add a method T[] range(T a, T b)
that returns a sorted array of all values x such that a ≤ x ≤
b.
d) Add a method void validate() that
verifies that the structure satisfies the ordering requirements of a
binary tree. If the structure is invalid, throw an exception with the
message "invalid".
In the lecture we began to write a generic class Dictionary<K, V>:
class Dictionary<K, V> where K : IComparable<K> {
class Node {
public K key;
public V val;
public Node? next;
public Node(K key, V val) {
this.key = key; this.val = val;
}
}
Node?[] a; // array of hash chains
...
}Complete the implementation of this class, including an indexer that lets the caller assign and lookup key/value pairs conveniently.