
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY IN PRAGUE

22nd THEORIETAG

AUTOMATA AND FORMAL LANGUAGES
OCTOBER 3–5, 2012, PRAGUE

PROCEEDINGS

František Mráz (Ed.)

matfyzpress
PRAGUE 2012

All rights are reserved. no part of this publication may be reproduced or transmitted in any
form or by any means, electronic, photocopying otherwise, without the prior written
permission of the publisher.

c© František Mráz (Ed.), 2012
c© MATFYZPRESS, publishing house of the Faculty of Mathematics And Physics,

Charles University in Prague, 2012

ISBN 978-80-7378-221-4

Preface
Theorietag is an annual meeting of the special interest group Automata and Formal Lan-
guages of German Informatics Society (die Fachgruppe Automaten und Formale Sprachen
der Gesellschaft für Informatik). These meetings started 21 years ago. Theorietags were
organized by members of the special interest group in the following places:

1991 Magdeburg 1992 Kiel
1993 Schloß Dagstuhl 1994 Herrsching near Munich
1995 Schloß Rauischholzhausen 1996 Cunnersdorf in Saxon Switzerland
1997 Barnstorf near Bremen 1998 Riveris near Trier
1999 Schauenburg-Elmshagen near Kassel 2000 Vienna (Austria)
2001 Wendgräben near Magdeburg 2002 Lutherstadt Wittenberg
2003 Herrsching near Munich 2004 Caputh near Potsdam
2005 Lauterbad near Freudenstadt 2006 Viennna (Austria)
2007 Leipzig 2008 Wettenberg-Launsbach near Gießen
2009 Lutherstadt Wittenberg 2010 Baunatal near Kassel
2011 Alrode in Harz

Already two times Theorietag took place outside of Germany – 2000 and 2006 both times in
Vienna. This year Theorietag left Germany again – it was held in Prague (Czech Republic)
during October 3-5, 2012. The reason was that Prague formal languages group tightly coop-
erates with several German colleagues and people from Prague visited several Theorietags.

The 22nd Theorietag was organized by a group from the Faculty of Mathematics and
Physics, Charles University in Prague. The members of this group work mainly in the field
of formal languages, automata theory and linguistics. This fact influenced also the selection
of speakers invited for an accompanying workshop on October 3, 2012:

• Jan Holub (Czech Technical University, Prague),

• Petr Jančar (Technical University of Ostrava, Ostrava),

• Karel Oliva (Academy of Sciences of the Czech republic, Prague),

• Heiko Vogler (Technische Universität Dresden, Dresden), and

• Zdeněk Žabokrtský (Charles University, Prague).

These proceedings comprise extended abstracts of 5 invited lectures and 21 contributed
talks. The authors of the papers submitted to Theorietag 2012 are from 7 countries including
Germany, Austria, Czech Republic, Moldova, France, United Kingdom and USA. We appre-
ciate the contribution of all the participants to the scientific program of Theorietag 2012 as
well as their preparation of the submitted up-to date high quality manuscripts.

Finally, the organizers would like to thank the German Informatics Society, the Faculty
of Mathematics and Physics of Charles University in Prague and the Czech Science Foun-
dation (grant projects No. P103/10/0783 and P202/10/1333) for their support. We would
like to express our thanks also to Anna Kotěšovcová (Conforg) for local arrangements and
organization of Theorietag 2012.

Prague, September 2012 Markéta Lopatková, František Mráz and Martin Plátek

Table of Contents

Workshop “Application of Formal Languages”
JAN HOLUB:

The Finite Automata Approaches for Bioinformatics . 1

PETR JANČAR:
Language Equivalence of Deterministic Pushdown Automata via First-Order
Grammars . 3

KAREL OLIVA:
Grammars of Ungrammatical Strings . 15

HEIKO VOGLER:
Weighted Tree Automata and Tree Transducers can help in Statistical Machine
Translation of Natural Languages . 17

ZDENĚK ŽABOKRTSKÝ:
Machine Translation using Dependency Trees . 21

Theorietag “Automata and Formal Languages”
ARTIOM ALHAZOV, RUDOLF FREUND, HILBERT HEIKENWÄLDER,
MARION OSWALD, YURII ROGOZHIN, SERGEY VERLAN:

Time-Varying Sequential P Systems . 27

STEPHAN BARTH:
Representation of ω-regular Languages by finite Automata . 33

FABIENNE BRAUNE, NINA SEEMANN, DANIEL QUERNHEIM,
ANDREAS MALETTI:

Machine Translation with Multi Bottom-up Tree Transducers . 37

MATTHIAS BÜCHSE:
As Easy As Vanda, Two, Three: Components for Machine Translation
Based on Formal Grammars . 41

JÜRGEN DASSOW, FLORIN MANEA, ROBERT MERCAŞ:

Connecting Partial Words and Regular Languages . 45

DOMINIK D. FREYDENBERGER, TIMO KÖTZING:

Fast Descriptive Generalization of Restricted Regular Expressions and DTDs 51

PAWEŁ GAWRYCHOWSKI, FLORIN MANEA, ROBERT MERCAŞ,
DIRK NOWOTKA, CĂTĂLIN TISEANU:

Finding Pseudo-Repetitions . 57

MARKUS HOLZER, SEBASTIAN JAKOBI:

From Equivalence to Almost-Equivalence, and Beyond—Minimizing
Automata With Errors . 61

MARKUS HOLZER, SEBASTIAN JAKOBI:

State Complexity of Chop Operations on Unary and Finite Languages 65

VLADISLAV KUBOŇ, MARKÉTA LOPATKOVÁ, MARTIN PLÁTEK:

How to Measure Word Order Freedom for Natural Languages? 71

DIETRICH KUSKE:
Isomorphisms of Linear Orders Given by Automata .77

MARTIN KUTRIB, ANDREAS MALCHER, MATTHIAS WENDLANDT:

States and Heads Do Count For Unary Multi-Head Finite Automata 79

MARTIN KUTRIB, KATJA MECKEL, MATTHIAS WENDLANDT:

Manipulation of Finite Automata A Small Leak Will Sink a Great Ship 85

GERHARD LISCHKE:
Lohmann Words and More Clusters of Words . 91

FLORIN MANEA, MIKE MÜLLER, DIRK NOWOTKA:

Avoidability of Cubes under Morphic Permutations . 97

FLORIN MANEA, BIANCA TRUTHE:

On Internal Contextual Grammars with Subregular Selection Languages 103

FRIEDRICH OTTO, PETER ČERNO, FRANTIŠEK MRÁZ:

Limited Context Restarting Automata and McNaughton Families of Languages . . . 109

MARTIN PROCHÁZKA, MARTIN PLÁTEK:

On Localization of (Post)Prefix (In)Consistencies . 115

DANIEL PRŮŠA, FRANTIŠEK MRÁZ:

New Model for Picture Languages Recognition: Two-dimensional
Sgraffito Automaton . 121

MARKUS L. SCHMID:
Inside the Class of REGEX Languages . 127

MARCEL VOLLWEILER:
Closure Properties of Parallel Communicating Restarting Automata Systems 133

FRANZ JAHN, MANFRED KUFLEITNER, ALEXANDER LAUSER:

Regular Ideal Languages and Their Boolean Combinations . 139

Author Index . 143

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 1 – 2

The Finite Automata Approaches for Bioinformatics
Jan Holub

The Prague Stringology Club
Department of Theoretical Computer Science

Faculty of Information Technology
Czech Technical University in Prague, Czech Republic

e-mail: Jan.Holub@fit.cvut.cz

Stringology is a part of computer science on string and sequence processing. Finite au-
tomata can solve efficiently many tasks in stringology. An overview of four approaches of
the finite automata use in stringology as well as handling complex alphabets is presented on
various bioinformatic tasks.

Deterministic Finite Automaton Deterministic finite automaton (DFA) can be directly
used. Given a text t of size n and a pattern p of size m, one can build a DFA from p. The
DFA runs over the t and searches for all locations p in t. This is called forward matching. In
case of backward matching, the DFA is aligned to the first m symbols of t and reads symbols
of t backwards (i.e., t[m], t[m−1], . . .). When a mismatch is found the DFA is aligned one or
more positions to the right than the previous alignment. One can also build a DFA from t (so
called indexing automaton: suffix trie, suffix tree, suffix automaton, compact suffix automa-
ton, factor automaton, oracle automaton) which provides the full index of t. The indexing
automaton gets p on input and answers if p is in t in time linear with the size of pattern p.

Each depth of automaton represents a position in pattern or text. In approximate pattern
matching where the found occurrences of p can be within a limited edit distance k,1≤ k <m,
from p one level of states is inserted for each value of edit distance allowed (0,1, . . . ,k).
Various kinds of distances can be used: Hamming, Levenshtein, Damerau, Indel, . . .

Deterministic Simulation of Nondeterministic Finite Automaton Nondeterministic fi-
nite automaton (NFA) cannot be directly used. It can be transformed to DFA or NFA run can
be deterministically simulated. While the determinisation can lead up to very large automata,
the simulation may be used in the case when the resulting DFA is too big for practical use.
In simulation techniques one can control memory used at the expense of the running time.
The basic simulation method is general and can be used for any NFA. Simulation techniques
dynamic programming and bit parallelism improve the complexities of simulation but require
some regular structure of the NFA used.

Finite Automaton as a Model of Computation Some tasks can be solved just by construc-
tion of finite automaton without the need to run it. It is even not necessary to build the whole
automaton. For example letMp be an NFA for approximate pattern matching for pattern p
(i.e., language Lp accepted byMp contains all patterns within a given edit distance from p)

2 Jan Holub

andMt be the suffix automaton for t (i.e., language Lt accepted byMt contains all factors
of t). Reaching final states during construction of intersection automaton accepting Lp∩Lt

gives answer to approximate string matching.

Compositions of Finite Automata Solutions More complex tasks can be divided into sev-
eral subtasks and their solutions put together. Parallel, serial, and cascade compositions are
recognized.

Complex Alphabet The way the finite automata can process strings build over more com-
plex alphabet than just single symbols (degenerate symbols, strings, variables) is also shown.

Bioinformatics Those approaches and complex alphabet use are demonstrated in various
tasks of bioinformatics. The tasks work with sequences on various alphabets: DNA, RNA,
amino acids. The searched patterns may be explicitly defined or may be defined by their
properties. Some patterns may allow errors some must match exactly. Some pattern symbols
may match exactly one symbol, some may match a subset of alphabet as they were not read
exactly or their practical behaviour is the same.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 3 – 13

Language Equivalence of Deterministic Pushdown
Automata via First-Order Grammars

Petr Jančar

Techn. Univ. Ostrava
petr.jancar@vsb.cz

Abstract

Decidability of language equivalence of deterministic pushdown automata was estab-
lished by G. Sénizergues (1997), who thus solved a famous long-standing open problem.
A simplified proof, also providing a primitive recursive complexity upper bound, was
given by C. Stirling (2002). This text is an introduction to the talk at Theorietag 2012
which is based on [Jančar, LiCS 2012] and aims to explain the decidability in the frame-
work of first-order terms and grammars. The proof is based on the abstract ideas used
in the previous proofs, but the chosen framework seems to be more natural for the prob-
lem and allows a short presentation which should be transparent for a general computer
science audience.

1. Introduction
Language equivalence of deterministic pushdown automata (DPDA) is a famous problem in
language theory. The decidability question for this problem was posed in the 1960s [5], then a
series of works solving various subcases followed, until the question was answered positively
by Sénizergues in 1997, with the full journal version [10]. G. Sénizergues was awarded the
Gödel prize in 2002 for this significant achievement.

Later Stirling [14] and also Sénizergues [11] provided simpler proofs than the original
proof. A modified version, showing also a (nonelementary) primitive recursive complexity
upper bound, appeared as a conference paper by Stirling in 2002 [15]; Sénizergues showed
a “more reasonable” upper bound for a subclass in [12]. Sénizergues also generalised the
decidability result to bisimulation equivalence over a class of nondeterministic pushdown
automata [13]. Unfortunately, even the simpler proofs seem rather long and technical, which
does not ease further research regarding, e.g., the complexity. (DPDA language equivalence
is only known to be PTime-hard; the general bisimilarity problem is ExpTime-hard [8].)

The algorithms are based on the following key points. If two configurations are nonequiv-
alent then there is a shortest word witnessing this fact, an sw-word for short. If two configu-
rations are equivalent then any attempt to (stepwise) build a potential sw-word can be contra-
dicted: an (algorithmically verifiable) proof of a contradiction is produced after a (sufficiently
long) prefix of the potential sw-word has been constructed.

The work was supported by the European Regional Development Fund in the IT4Innovations Centre of Excel-
lence project (CZ.1.05/1.1.00/02.0070), and by the Czech Grant Agency (GAČR:P202/11/0340).

4 Petr Jančar

One reason why the DPDA problem turned out so intricate seems to be the lack of struc-
ture of configurations (strings of symbols), which calls for a richer framework. This is also
discussed by Stirling [14] who refers to the algebraic theory of linear combinations of boolean
rational series built by Sénizergues, and replaces it by a process calculus whose processes are
derived from determinising strict grammars. Another difficulty is that providing a proof of
equivalence for a given pair of states (i.e. structured objects representing configurations)
seems to require some measures and conditional rules in the respective logical systems, to
keep their soundness. Stirling used (simpler) bisimulation approximants instead of Sénizer-
gues’s system of weights.

We can view the transformations TB , TC in [10] as two main means for contradicting
that a particular word is a prefix of an sw-word; Stirling [14] uses the rules BAL and CUT.
BAL (“balancing”) aims at making the (structured) states in the pairs along the supposed sw-
word close to each other, i.e. having “bounded (different) heads” and the same (maybe large)
“tails.” CUT aims at “cutting away” large tails soundly.

Here we re-prove the decidability of DPDA language equivalence in the framework of
(deterministic) first-order grammars, i.e. systems of first-order terms with finitely many root-
rewriting rules. The framework of regular terms (possibly infinite terms with only finitely
many different subterms), completed with substitutions, seems to be a more natural and sim-
pler substitute of the algebraic structures in the previous works. In fact, close relations be-
tween the frameworks of (D)PDA, strict deterministic grammars and first-order schemes were
recognized long ago (see, e.g., references in [3] and [10]).

The strategy of the presented proof is not new, it is close to [14] in particular, but the
proof is not just a translation of a previous proof into another framework. Instead of the
previous logical systems we use a Prover-Refuter game whose soundness is obvious. The
CUT rule is replaced with a finite basis, generating the equivalence relation in a certain sense.
The chosen framework and the new ingredients allow to present a direct, short, and easily
understandable proof. Moreover, the presentation is tailored so that the complexity result [15]
and the generalization to bisimilarity [13] can be added smoothly.

There are comprehensive references in Sénizergues’s and Stirling’s papers to the prior
research; recent related research (on complexity and on higher-order schemes) can be found,
e.g., in [1], [2], [4], [7], [9] and the references therein.

The informal text below gives a flavour of the proof. Full details are in the paper [6] (as
well as in the version on the author’s web-page www.cs.vsb.cz/jancar).

2. Informal sketch of the decidability proof
Labelled Transition Systems (LTSs) and Trace Equivalence

Fig. 1 shows a (finite) deterministic labelled transition system L = (S,A,(a−→)a∈A). E.g.,
we have s1

bab−→, i.e. the trace bab is enabled in the state s1, since s1
bab−→ s3 (such s3 is unique

since L is deterministic); on the other hand, ¬(s1
baa−→). We are interested in the following

form of language equivalence. Trace equivalence ∼ on S, and its “strata” ∼0, ∼1, ∼2, . . . ,
are defined as follows:

s∼ t if ∀w ∈ A∗ : s w−→⇔ t
w−→ ; for k ∈ N: s∼k t if ∀w ∈ A≤k : s w−→⇔ t

w−→ ,

Language Equivalence of Deterministic Pushdown Automata via First-Order Grammars 5

Figure 1: A (finite) deterministic labelled transition system

whereA≤k = {w∈A∗ | |w| ≤ k}. We note that S×S =∼0⊇∼1⊇∼2⊇ ·· · , and∩k∈N∼k=∼.
We attach the equivalence-level (eq-level) to each pair of states; e.g., EQLV(s1,s2) = 0,

EQLV(s1,s5) = 2 (since s1 ∼2 s5 and s1 6∼3 s5), EQLV(s1,s4) = ω (i.e. s1 ∼ s4). We note:

Proposition 2.1 If EQLV(s, t)=k and EQLV(s,s′)≥k+1 then EQLV(s′, t) = k
(since s′ ∼k s∼k t and s′ ∼k+1 s 6∼k+1 t).

Proposition 2.2 Given a deterministic LTS:
(1) If s w−→ s′, t w−→ t′ then EQLV(s′, t′)≥ EQLV(s, t)−|w|.
(2) If EQLV(s, t) = k ∈N then there is w= a1a2 . . .ak such that s

a1−→ s1
a2−→ s2

a3−→ ·· · ak−→
sk and t

a1−→ t1
a2−→ t2

a3−→ ·· · ak−→ tk where EQLV(sj , tj) = k− j for j = 1,2, . . . ,k.

In Point (2) we have sk 6∼1 tk, hence there is a∈A such that sk
a−→, ¬(tk

a−→) or vice versa;
the word wa is then a shortest nonequivalence-witness word for the pair s, t.

First-Order Regular Terms and Substitutions

Figure 2: Graph presentations of terms (left); creating GPEσ from GPE and GPσ (right)

Imagine that the black dots (states) in Fig. 1 are, in fact, regular first-order terms, and we
can have infinitely many such states. Fig. 2 (left) recalls the standard notion of first-order
terms over a ranked alphabet F = {f1,f2, . . . ,fk}, with variables VAR = {x1,x2,x3, . . .}.
By terms comprised in the set TERMSF we mean regular terms; they can be infinite but have
finite presentations (i.e., each regular term has finitely many subterms). Fig. 2 (right) presents
a finite-support substitution σ : VAR→ TERMSF (where the support SUPP(σ) = {i | σ(xi) 6=
xi} is finite), and makes clear how a graph presentation of the term Eσ arises from graph

6 Petr Jančar

presentations of E and σ. Fig. 2 also illustrates that the (infinite regular) term E3 arises from
E = f2(x1,f3(x5,x7),x1) by applying the substitution σ = {(x7,E)} repeatedly forever:
E3 =Eσσσ

(Deterministic) First-Order Grammars as Generators of (Deterministic) LTSs

r1 :Ax1
a−→ABx1 r2 :Ax1

b−→ x1 r3 :Bx1
a−→BAx1 r4 :Bx1

b−→ x1

Figure 3: A det-first-order grammar G = ({A,B},{a,b},{r1, r2, r3, r4})

Fig. 3 gives an example of a (deterministic) first-order grammar, i.e. of a structure G =
(N ,A,R) whereN is a finite set of ranked nonterminals (or function symbols), A is a finite
set of actions (or terminals), andR is a finite set of (root rewriting) rules r of the form

r : Y x1x2 . . .xm
a−→ E (1)

where Y ∈N , arity(Y) =m, a ∈ A, and E is a finite term over N in which each occurring
variable is from the set {x1,x2, . . . ,xm}. (E = xi, where 1≤ i≤m, is an example.)
G = (N ,A,R) is deterministic, a det-first-order grammar, if there is at most one rule (1) for
each pair Y ∈N , a ∈ A.
G = (N ,A,R) generates (the rule based) LTS LR

G = (TERMSN ,R,(
r−→)r∈R): for each

rule r : Y x1x2 . . .xm
a−→ E we have

F
r−→H if there is a substitution σ such that F = (Y x1 . . .xm)σ and H =Eσ.

In (the action-based) LTS LA
G = (TERMSN ,A,(

a−→)a∈A) we have F a−→H if F r−→H for
some r ∈R in the form ..

a−→ ...
Convention. We use Y to range over N , and we might also use A,B for nonterminals, but
E,F,G,H and T,U,V,W will always range over TERMSN . We implicitly assume a special
nonterminal ⊥ with arity(⊥) = 0 which is dead (not enabling any transition). In LR

G the

variables xi are also dead terms but in LA
G we implicitly assume xi

axi−→ xi for a special action
unique to xi. In fact, we do not use these special actions, we just use the corollary that
xi 6∼1 H if H 6= xi (in particular if H = xj for j 6= i).

In our example in Fig. 3 we have arity(A)= arity(B)= 1. Ax1
a−→ABx1,Bx5

b−→x5,
ABx2

a−→ ABBx2, BA⊥ b−→ A⊥ are examples of transitions in LA
G . Fig. 4 can be viewed

as a proof of the fact AB⊥∼2 BA⊥ (we have performed all enabled traces of length ≤ 2 on
both sides simultaneously, and we have not found a nonequivalence witness).

Fig. 5 illustrates how (rewriting) rules are applied in the general case. Fig. 6 shows a path
in LA

G ; note that we can start from a regular term F but the changes consist in adding and
removing finite “portions”, and the path can “sink back into F ” after a while. If root(F) =A
and the depicted root-successor in F is the second one then a1a2 . . .a6 is an (A,2)-sink word
(we haveAx1x2 . . .xm

a1a2...a6−→ x2). Later we use the fact that for G we can compute a number
M0 bigger than the length of the shortest (Y,j)-sink words for all pairs (Y,j).

Language Equivalence of Deterministic Pushdown Automata via First-Order Grammars 7

Figure 4: The 2-distance region REG(T,U,2) for (T,U) = (AB⊥,BA⊥)

Figure 5: Applying rules Y x1x2x3
a−→ x1 and Y x1x2x3

b−→ E to GPF

Figure 6: A path in LA
G

(D)PDA from a First-Order Term Perspective

Fig. 7 assumes a (D)PDA with the control state set Q = {q1, q2, q3}, and shows how any
configuration (control state and stack content) and any (push or pop) (D)PDA-rule can be
naturally presented in the term-framework. The dotted arc shows that we can elegantly get
rid of ε-steps in the case of DPDA: the dotted arc “swallows” the future possible step by the
rule q2C

ε−→ q3; recall that ε-steps can be assumed popping, and other steps are not available
if an ε-step is enabled in a DPDA-configuration.

It is thus a simple technical routine to reduce the DPDA language equivalence problem to
the following problem:

Problem TRACE-EQ-DET-G
Input: a det-first-order grammar G = (N ,A,R), and two input (regular) terms Tin,Uin.
Question: is Tin ∼ Uin in LA

G?

8 Petr Jančar

Figure 7: Term-presentations of PDA-configurations (q2ABA) and rules (q2A
a−→ q1BC, q2A

b−→ q2)

Semidecidability of Trace Non-Equivalence

When discussing Fig. 4, we have implicitly touched on the following obvious fact:

Lemma 2.3 There is an algorithm with the following property:
it (halts and) computes EQLV(Tin,Uin) for an instance G,Tin,Uin of TRACE-EQ-DET-G iff
Tin 6∼ Uin in LA

G . Thus the complement of TRACE-EQ-DET-G is semidecidable.

An Algorithm (Semi)Deciding TRACE-EQ-DET-G

We first (easily) note the congruence properties in Prop. 2.4 (recall Fig. 2, 5, 6 and the fact
that xi 6∼1 H if H 6= xi). For two substitutions σ,σ′ : VAR→ TERMSN we define

σ ∼k σ′ if σ(xi)∼k σ′(xi) for all xi ∈ VAR.

Proposition 2.4 (1) If E ∼k F then Eσ ∼k Fσ. Hence EQLV(E,F)≤ EQLV(Eσ,Fσ).
(2) If σ ∼k σ′ then Eσ ∼k Eσ′. Hence EQLV(σ,σ′)≤ EQLV(Eσ,Eσ′).

Imagine now a game between Prover (P, she) and Refuter (R, he), given our example-
grammar G in Fig. 3 and (Tin,Uin) = (AB⊥,BA⊥). Refuter claims Tin 6∼ Uin but Prover
aims to derive some consequences which contradict Refuter’s claim. (Prover defends the
claim Tin ∼ Uin.) A particular play can run as follows.

Prover adds a finite set {(x1,x1), (Ax1,Bx1)}, which she somehow cleverly guesses and
calls a BASIS, and claims that the eq-level of each pair (AB⊥,BA⊥), (x1,x1), (Ax1,Bx1)
is ω. Refuter must now choose a pair which he claims to have the least (and finite) eq-level;
suppose he chooses (T0,U0) = (AB⊥,BA⊥). Prover now chooses k > 0, say k = 2, and
shows that T0 ∼k U0, by constructing REG(T0,U0,k) as in Fig. 4.

Refuter then must choose a pair (T ′0,U
′
0) in REG(T0,U0,k) for which he claims the least

eq-level. This pair must be in the “bottom-row”, in REG(T0,U0,k)rREG(T0,U0,k−1) (re-
call Prop. 2.2); suppose he chooses (T ′0,U

′
0) = (ABBB⊥,BAAA⊥).

Prover can then adjust (T ′0,U
′
0), using a sound subterm replacement, to get a pair

(T1,U1) such that EQLV(T1,U1) = EQLV(T ′0,U
′
0) if Refuter’s claims are true. E.g.

she can say: by Refuter’s claims and Prop. 2.2, we must have EQLV(B⊥,A⊥) >

Language Equivalence of Deterministic Pushdown Automata via First-Order Grammars 9

EQLV(T ′0,U
′
0) since the pair (B⊥,A⊥) is in REG(T0,U0,k−1) (we find it above the bottom-

row). Hence EQLV(ABBB⊥,ABBA⊥) > EQLV(T ′0,U
′
0) (recall Prop. 2.4(2)), and thus

EQLV(ABBA⊥,BAAA⊥) = EQLV(ABBB⊥,BAAA⊥) (recall Prop. 2.1).
If Prover wishes, after creating (T1,U1) she can start a new phase: she chooses k >

0, shows T1 ∼k U1 by constructing REG(T1,U1,k), and lets Refuter choose (T ′1,U
′
1) ∈

REG(T1,U1,k)rREG(T1,U1,k−1) (in the new bottom row), for which he claims the least
eq-level; Prover then possibly modifies (T ′1,U

′
1) to get (T2,U2) and can start a new phase.

(Fig. 10 shows schematically two consecutive phases.)
A play can be infinite but Prover is anytime allowed to contradict Refuter’s

claims by providing a verifiable proof. In our case, she can immediately continue
using subterm replacements in (T ′0,U

′
0), using the pairs (A⊥,B⊥), (AB⊥,BA⊥),

(ABB⊥,BAA⊥), so that she gets (AAAA⊥,BAAA⊥). By Refuter’s claims
EQLV(AAAA⊥,BAAA⊥) = EQLV(T ′0,U

′
0) and this is smaller than EQLV(Ax1,Bx1) in

particular. But (AAAA⊥,BAAA⊥) = ((Ax1)σ,(Bx1)σ) where σ(x1) = AAA⊥, and thus
EQLV(AAAA⊥,BAAA⊥) ≥ EQLV(Ax1,Bx1) by Prop. 2.4(1). Prover has thus won this
play: she has contradicted Refuter’s claims; in particular, she was able to create a basis-
instance (a pair (T,U) = (Eσ,Fσ) where (E,F) ∈ BASIS) which has the same eq-level as
(Ti,Ui) for some i > 0, according to Refuter’s claims.

In general the game is defined as follows:

PROVER-REFUTER GAME (P-R GAME)

1. A det-first-order grammar G = (N ,A,R) is given.

2. Prover produces (by “guessing”, say) a finite set BASIS of pairs of (graph presentations
of regular) terms.

3. An input pair (Tin,Uin) is given.

4. Refuter chooses (T0,U0) ∈ STARTSET = {(Tin,Uin)}∪BASIS and claims that
EQLV(T0,U0) = MINEL(STARTSET)< ω. (MINEL gives the least eq-level.)

5. For i= 0,1,2, . . . , Phase i is performed, i.e.:

(a) Prover chooses k > 0, and REG(Ti,Ui,k) is constructed; if Ti 6∼k Ui then Prover
loses (the play ends).

(b) Refuter chooses (T ′i ,U
′
i) ∈ REG(Ti,Ui,k)rREG(Ti,Ui,k−1) and wi, |wi|= k,

such that Ti
wi−→ T ′i , Ui

wi−→ U ′i ; if there is no such T ′i ,U
′
i ,wi (due to dead

terms, hence Ti ∼ Ui), Prover wins. Refuter claims that EQLV(T ′i ,U
′
i) =

MINEL(REG(Ti,Ui,k)).

(c) Prover produces (Ti+1,Ui+1) from (T ′i ,U
′
i) as follows:

• either she puts Ti+1 = T ′i , Ui+1 = U ′i (no change),
• or she balances (see Fig. 8): if she finds σ,σ′ such that (σ(xi),σ′(xi)) ∈

REG(T,U,k−1) for all xi ∈ SUPP(σ)= SUPP(σ′), and she presents T ′i asGσ
then she can (do a left-balancing, namely) put Ti+1 =Gσ′, and Ui+1 = U ′i ;
symmetrically, if U ′i is Gσ′ then she can (do a right-balancing, namely) put
Ti+1 = T ′i , and Ui+1 =Gσ.

10 Petr Jančar

Figure 8: Left: a simplest case of left-balancing; right: another case, when no simplest exists

(Thus EQLV(Ti+1,Ui+1) = EQLV(T ′i ,U
′
i) if Refuter’s claim in 5.b is true. We

have Ti+1 ∼ Ui+1 if Ti ∼ Ui.)

(d) Prover either derives a contradiction from Refuter’s claims in 4 and 5.b, by pre-
senting a proof, i.e. a finite algorithmically verifiable sequence of deductions
based on proved facts (like Propositions 2.1, 2.2, 2.4), in which case Prover wins,
or lets the play proceed with Phase i+1.

By switching Points 2) and 3) we get the weaker form of the game; a play then starts
with a given instance G,Tin,Uin of TRACE-EQ-DET-G. We use the above (stronger) form to
stress that BASIS is related to the grammar G (and is independent of Tin,Uin).

If {(Tin,Uin)}∪BASIS contains a pair of nonequivalent terms then Refuter can be choos-
ing so that his “least eq-level claims” (in 4. and 5.b) are true; then he must win eventually
(Prover cannot show Ti ∼k Ui for some i and k > 0). Since BASIS is finite and Refuter al-
ways has finitely many choices when there is his turn, there is an obvious algorithmic aspect
which we also capture in the next (soundness) lemma.

Lemma 2.5 There is an algorithm with the following property: given a det-first order gram-
mar G and Tin,Uin, it halts iff there is some BASIS such that Prover can force her win for
G, Tin,Uin by using BASIS (in the weaker form of the game), in which case T ∼ U for all
(T,U) ∈ {(Tin,Uin)}∪BASIS.

Hence the next theorem will be proved once we show (strong) completeness, i.e., that there
is some BASIS for each det-first-order grammar G such that Prover has a winning strategy for
any Tin ∼ Uin when using BASIS.

Theorem 2.6 Trace equivalence of det-first-order grammars (i.e., the problem TRACE-EQ-
DET-G) is decidable.

Language Equivalence of Deterministic Pushdown Automata via First-Order Grammars 11

Figure 9: An (n,g)-(sub)sequence (left); decreasing SUPP(σ) by {(xi,H ′)}

Completeness of the Prover-Refuter Game

There are two steps, the first step captured by Lemma 2.7, the second by Lemma 2.9.
For n ∈ N and a (nondecreasing) function g : N→ N, a sequence of pairs of terms is

an (n,g)-sequence if it can be presented as (E1σ,F1σ), (E2σ,F2σ), (E3σ,F3σ), . . . where
the “heads” satisfy PRESSIZE(Ej ,Fj) ≤ g(j) (for j = 1,2,3, . . .) and the cardinality of
the support of σ satisfies CARD(SUPP(σ)) ≤ n. (See the left column in Fig. 9.) Here
PRESSIZE(Ej ,Fj) can be defined as a standard size of the smallest graph presentation of
(regular terms) Ej ,Fj .

We say that Prover has an (n,g)-strategy for G if she can force that the sequence
(T1,U1),(T2,U2),(T3,U3), . . . arising in the phases of the P-R game has an infinite subse-
quence which is an (n,g)-sequence, in each play where T0 ∼ U0 and the play does not finish
with Prover’s win in Point 5b or with a repeat. (The basis is irrelevant.) Here by a repeat we
mean that (Tj ,Uj) = (Ti,Ui) for some j > i (which clearly contradicts Refuter’s claims).

Lemma 2.7 If Prover has an (n,g)-strategy for a det-first-order grammar G then there is
some BASIS for G which is sufficient for Prover to force her win for all Tin ∼ Uin.

Fig. 9 sketches the idea. When Prover has an (n,g)-strategy, she can guess a (large) bound
B ∈ N, depending on G,n,g, and choose BASIS = {(E,F) | E ∼ F,PRESSIZE(E,F)≤ B}.
(Prover guesses all equivalent pairs upto the chosen presentation-size bound.)

Suppose Prover uses the (n,g)-strategy from T0 ∼ U0 (thus we also have Ti ∼ Ui for
all i), and a large prefix of an (n,g)-sequence has already arisen (Fig. 9-left). If E1 ∼ F1
(which must be the case when n = 0, so when CARD(SUPP(σ)) = 0) then (E1σ,F1σ) is a
basis-instance, when B has been chosen so that B ≥ g(1).

For the case E1 6∼ F1 (while E1σ ∼ F1σ) we use the next easily derivable proposition:

12 Petr Jančar

Proposition 2.8 If EQLV(E,F)= k < `= EQLV(Eσ,Fσ) (`∈N∪{ω}) then there are some
xi ∈ SUPP(σ), H 6= xi, and a word w, |w| = k, such that E w−→ xi, F

w−→H or E w−→H ,
F

w−→ xi; moreover, σ(xi)∼`−k Hσ (by Prop. 2.2(1)).

Fig. 9 sketches that in this case (E1 6∼ F1) Prover can soundly use the limit of replacing
subterm σ(xi) withHσ forever (recallE3 =Eσσ . . . in Fig. 2) so that she transforms a suffix
(Ejσ,Fjσ), (Ej+1σ,Fj+1σ), . . . of the (n,g)-sequence to (E′1σ

′,F ′1σ
′), (E′2σ

′,F ′2σ
′), . . .

without changing the eq-levels according to Refuter’s claims. This is an (n−1,g′)-sequence
since xi has been removed from the support of the substitution, and g′ is clearly determined by
G,n,g (being independent of Tin,Uin). Now an inductive reasoning establishes Lemma 2.7.

Lemma 2.9 For any det-first-order grammar G, Prover has an (n,g)-strategy (n, g being
determined by G).

The proof of this final lemma is a bit technical though the idea is not much complicated. In
a simplest case of left-balancing, as in Fig. 8-left, both terms in the balancing result (V,U) are
reachable by at most k moves from U , which is called the (balancing) pivot of this concrete
balancing step. In fact, we let Prover choose k =M1 in each phase, where M1 is a number
sufficiently bigger than M0 which was introduced with (shortest) (Y,j)-sink words. In the
more complicated case on the right of Fig. 8, the balancing result is composed from the
terms which are “shortly” (i.e., by at most M1 moves) reachable from the pivot U , using a
“resthead” G.

Figure 10: A left balancing phase i followed by a no-change phase i+1

We let Prover balance by using only bounded finite rest-heads G. If she makes a left-
balancing in Phase i, she will not do any right-balancing in Phase i+1 but she tries to do a
left-balancing here as well. If no left-balancing in Phase i+1 is possible, it must mean (the
bound on G and M1 have been chosen so) that the rest-head G gets “erased”, i.e. a term
which is shortly reachable from the last pivot is exposed (see Fig. 10); in Phase i+2 Prover
can then balance on any side. (The situation with a right-balancing in Phase i is symmetrical.)

Language Equivalence of Deterministic Pushdown Automata via First-Order Grammars 13

(On the right of Fig. 8, SSW(A,2) means a shortest (A,2)-sink word. Using the figure,
we could argue for the above “erasing G” claim; the depicted situation cannot arise in the
above Phase i+1 when no left-balancing was possible.)

We can thus see that the pivot of each balancing step, except of the first one, is reachable
from the pivot of the previous balancing step (no matter on which side it was). It can be
also easily verified (for M1 and the bound on G) that if only finitely many balancings happen
when Prover uses the described strategy for T0 ∼ U0 then a repeat must arise. Otherwise the
pivots are on a special infinite path in LA

G (recall Fig. 6), and it is a routine to show that either
there is a repeat or a suffix of the sequence of balancing results is an (n,g)-sequence, where
n,g can be computed from G.

References
[1] S. BÖHM, S. GÖLLER, Language Equivalence of Deterministic Real-Time One-Counter Au-

tomata Is NL-Complete. In: MFCS 2011. LNCS 6907, Springer, 2011, 194–205.

[2] C. H. BROADBENT, A. CARAYOL, C.-H. L. ONG, O. SERRE, Recursion Schemes and Logical
Reflection. In: LICS 2010. IEEE Computer Society, 2010, 120–129.

[3] B. COURCELLE, Recursive applicative program schemes. In: J. VAN LEEUWEN (ed.), Handbook
of Theoretical Computer Science, vol. B. Elsevier, MIT Press, 1990, 459–492.

[4] W. CZERWIŃSKI, S. LASOTA, Fast equivalence-checking for normed context-free processes. In:
Proc. FSTTCS’10. LIPIcs 8, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[5] S. GINSBURG, S. A. GREIBACH, Deterministic Context Free Languages. Information and Con-
trol 9 (1966) 6, 620–648.

[6] P. JANČAR, Decidability of DPDA Language Equivalence via First-Order Grammars. In: Proc. of
Logic in Computer Science (LiCS). IEEE Computer Society, 2012.

[7] S. KIEFER, A. S. MURAWSKI, J. OUAKNINE, B. WACHTER, J. WORRELL, On the Complexity
of the Equivalence Problem for Probabilistic Automata. In: FoSSaCS’12. LNCS 7213, Springer,
2012, 467–481.

[8] A. KUČERA, R. MAYR, On the complexity of checking semantic equivalences between pushdown
processes and finite-state processes. Inf. Comput. 208 (2010) 7, 772–796.

[9] S. SALVATI, I. WALUKIEWICZ, Krivine Machines and Higher-Order Schemes. In: ICALP(2)’11.
LNCS 6756, Springer, 2011, 162–173.

[10] G. SÉNIZERGUES, L(A)=L(B)? Decidability Results from Complete Formal Systems. Theoretical
Computer Science 251 (2001) 1–2, 1–166. (a preliminary version appeared at ICALP’97).

[11] G. SÉNIZERGUES, L(A)=L(B)? a Simplified Decidability Proof. Theoretical Computer Science
281 (2002) 1–2, 555–608.

[12] G. SÉNIZERGUES, The Equivalence Problem for t-Turn DPDA Is Co-NP. In: ICALP’03. LNCS
2719, Springer, 2003, 478–489.

[13] G. SÉNIZERGUES, The Bisimulation Problem for Equational Graphs of Finite Out-Degree. SIAM
J.Comput. 34 (2005) 5, 1025–1106. (a preliminary version appeared at FOCS’98).

[14] C. STIRLING, Decidability of DPDA Equivalence. Theoretical Computer Science 255 (2001) 1–2,
1–31.

[15] C. STIRLING, Deciding DPDA Equivalence Is Primitive Recursive. In: Proc. ICALP’02. LNCS
2380, Springer, 2002, 821–832.

14

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 15 – 15

Grammars of Ungrammatical Strings
Karel Oliva

Institute of the Czech Language ASCR, v. v. i.
Letenská 123/4, Praha 1 – Malá Strana, CZ – 118 51, Czech Republic

oliva@ujc.cas.cz

Abstract

A natural language is usually modelled as a subset of the set T ∗ of strings (over some
set T of terminals) generated by some grammar G. Thus, T ∗ is divided into two disjoint
classes: into grammatical and ungrammatical strings (any string not generated by G is
considered ungrammatical). This approach brings along the following problems:

• on the theoretical side, it is impossible to rule out clearly unacceptable yet “theo-
retically grammatical” strings (e.g., strings with multiple centre self-embeddings,
cf. The cheese the lady the mouse the cat the dog chased caught frightened bought
cost 10 £),

• on the practical side, it impedes systematic build-up of such computational linguis-
tics applications as, e.g., grammar-checkers.

In an attempt to lay a theoretical fundament enabling the solution of these problems, the
paper first proposes a tripartition of the stringset into:

• clearly grammatical strings,

• clearly ungrammatical strings,

• strings with unclear (“on the verge”-) grammaticality status

and, based on this, concentrates on

• techniques for systematic discovery and description of clearly ungrammatical strings,

• the impact of the approach onto the theory of grammaticality,

• an overview of simple ideas about applications of the above in building grammar-
checkers and rule-based part-of-speech taggers.

16

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 17 – 20

Weighted Tree Automata and Tree Transducers
can help in Statistical Machine Translation

of Natural Languages
Heiko Vogler(A)

(A)Faculty of Computer Science
Technische Universität Dresden, Germany

Heiko.Vogler@tu-dresden.de

Abstract

In this talk I try to illustrate that the concepts of weighted tree automata and weighted
tree transducers can be useful in statistical machine translation of natural languages. My
apologies: I will not provide a survey on natural language processing (NLP); also, the
selection of the references is strongly biased by my personal taste and abilities.

1. Natural Languages, CF Grammars, and Tree Automata
Although N. Chomsky did not succeed to specify the complete English language by means
of a formal grammar, he came up with the wonderful formal models which are known as the
Chomsky grammars. Among them, the Type-2 Chomsky grammar, or context-free grammar,
plays an important role in the formalization of natural languages, albeit that a context-free
grammar for English can only be a rough approximation of the perfect English; but this
works quite well, in particular, if the domain of discourse is restricted.

There is an old result which connects the world of strings (here: sentences of a natural
language) and trees (cf. [29]): (1) the set of derivation trees of a context-free grammar is
recognizable, i.e., a tree language which can be recognized by a finite-state tree automaton
[8, 28], and (2) a recognizable tree language is the relabeling of the set of derivation trees of
a context-free grammar. Via this connection, techniques and results from the theory of tree
automata (and tree transducers) [11, 12, 7] can be employed in NLP.

2. Ambiguity and Weighted Tree Automata
Natural languages are ambiguous. Consider the sentence w = I saw her duck. One can
identify several meanings of w, a harmless one involving an animal, one which might bring
pain to her back, and another cruel one. Since each meaning leads to a different derivation
tree, we might view the set of all derivation trees as a representation of the meanings of w.

How to handle such ambiguities? The trick is to associate a probability with each of
the possible meanings, i.e., derivation trees; then, “understanding” or: parsing the sentence I

18 Heiko Vogler

saw her duck yields a function (called weighted tree language) which maps every derivation
tree to its probability. And, if the sentence is generated by a context-free grammar, then the
weighted tree language is recognizable by a weighted tree automaton [4, 1]. In other words,
such a weighted tree automaton is a finite representation of the set of all weighted meanings
of the given sentence. This way of modelling languages is remarkable, because

• due to the finiteness of the representation, we can now algorithmically manipulate,
transform, or process the set of meanings of sentences, e.g.,

(a) we can apply parsing algorithms based on tree automata [23] or
(b) we might select the n best (most probable) of them [14], and

• there is a rich theory of recognizable weighted tree languages [5, 10] which can be
exploited or adapted appropriately, e.g., using the input and output products, see later.

3. Translation of Natural Languages
Imagine that you want to translate I saw her duck into French. For a long time, string- or
phrase-based approaches where dominant when dealing with this problem (cf. e.g. [6, 25,
24]). It was advocated in [30] to exploit the (derivation) tree structure of the given sentence
for this task, and in [17, 16] top-down finite-state tree transducers were suggested as formal
model for the specification of this tree-to-tree transformation. Clearly, the transformation pro-
cess usually also leads to different translations of one given derivation tree. Again we can use
probabilities to disambiguate. This is captured by the concept of weighted tree transducers
[18, 9]. Also for weighted tree transducers there is a rich theory [20, 21, 10].

4. Statistical Machine Translation
Assume that we already have a tree automaton which specifies the set of derivation trees of all
English sentences. How do we obtain the probabilities for the transitions of that automaton?
Or: assume that we have already a top-down tree transducer. How to obtain the probabilities
for its rules? One technology which can help is statistical machine translation (SMT).

“Statistical machine translation (SMT) treats the translation of natural languages
as a machine learning problem. By examining many samples of human-produced
translations, SMT algorithms automatically learn how to translate.” [19]

A huge source of high-level quality samples are the Hansards of parliament speeches
(e.g., of the Canadian parliament with English-French, or those of the European Union).
Such samples are called (string or tree) corpora.

5. Rule Extraction
But how to get the transitions for the tree automaton and the rules for the tree transducers?
Well, this is done by “reading off ”context-free grammar rules from large corpora of deriva-
tion trees. The latter are either given in the form of a manually created Treebank (such as

Weighted Tree Automata and Tree Transducers can help in Machine Translation 19

the Penn Treebank for English or the Tiger Treebank for German), or they are obtained by
applying a parser to English sentences (Berkeley parser [26, 27], Stanford parser [15]); from
these context-free grammars rules one can construct a finite-state tree automaton. The rules
of a top-down tree transducer can be obtained by the rule extraction algorithm shown in [13].

6. Decoding using Input and Output Product
We now have a language model of English (in the form of a weighted tree automaton A),
a translation model from English to French (in the form of a weighted tree transducerM),
and an English sentence (w =I saw her duck.). How can we translate or: decode this into
French? Here we can exploit the technical results from the theory of weighted tree automata
and weighted tree transducers:

1. We parse w according to A by using the approach of [23] (the latter is based on the
technique of [3, Sect.8]); this yields a weighted tree automaton A′ which recognizes
exactly the set of all derivation trees of w with their probabilites,

2. we construct the input product of A′ and M using a construction of [22] (the latter
is based on [2, p.195]); this yields essentially a weighted tree automaton B′ which
recognizes exactly the set of all derivations trees of all the translations of w, and

3. we might wish to apply the n best algorithm [14] to B′ in order to obtain the n best
translations of w (in the form of derivation trees), and finally consider the frontier of
these derivation trees.

References
[1] A. ALEXANDRAKIS, S. BOZAPALIDIS, Weighted grammars and Kleene’s theorem. Inform. Pro-

cess. Lett. 24 (1987) 1, 1–4.

[2] B. BAKER, Composition of top-down and bottom-up tree transductions. Inform. and Control 41
(1979) 2, 186–213.

[3] Y. BAR–HILLEL, M. PERLES, E. SHAMIR, On formal properties of simple phrase structure gram-
mars. Z. Phonetik. Sprach. Komm. 14 (1961), 143–172.

[4] J. BERSTEL, C. REUTENAUER, Recognizable formal power series on trees. Theoret. Comput. Sci.
18 (1982) 2, 115–148.

[5] B. BORCHARDT, The Theory of Recognizable Tree Series. Verlag für Wissenschaft und
Forschung, 2005. (Ph.D. thesis, 2004, TU Dresden, Germany).

[6] P. BROWN, V. D. PIETRA, S. D. PIETRA, R. MERCER, The mathematics of statistical machine
translation: parameter estimation. Comput. Linguist. 19 (1993) 2, 263–311.

[7] H. COMON, M. DAUCHET, R. GILLERON, C. LÖDING, F. JACQUEMARD, D. LUGIEZ, S. TI-
SON, M. TOMMASI, Tree Automata Techniques and Applications. Available on: http://www.
grappa.univ-lille3.fr/tata, 2007.

[8] J. DONER, Tree Acceptors and Some of Their Applications. J. Comput. System Sci. 4 (1970),
406–451.

20 Heiko Vogler

[9] J. ENGELFRIET, Z. FÜLÖP, H. VOGLER, Bottom-up and Top-down Tree Series Transformations.
J. Autom. Lang. Comb. 7 (2002), 11–70.

[10] Z. FÜLÖP, H. VOGLER, Weighted tree automata and tree transducers. In: M. DROSTE,
W. KUICH, H. VOGLER (eds.), Handbook of Weighted Automata. chapter 9, Springer-Verlag,
2009.

[11] F. GÉCSEG, M. STEINBY, Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[12] F. GÉCSEG, M. STEINBY, Tree Languages. In: G. ROZENBERG, A. SALOMAA (eds.), Handbook
of Formal Languages. 3. chapter 1, Springer-Verlag, 1997, 1–68.

[13] J. GRAEHL, K. KNIGHT, Training tree transducers. In: HLT-NAACL 2004, Boston, Mas-
sachusetts, USA, May 2 - 7. Association for Computational Linguistics. 2004, 105–112.

[14] L. HUANG, D. CHIANG, Better k-best Parsing. In: Proceedings of the Ninth International
Workshop on Parsing Technology. Association for Computational Linguistics, Vancouver, British
Columbia, 2005, 53–64.

[15] D. KLEIN, C. MANNING, Accurate Unlexicalized Parsing. In: ACL. 2003.

[16] K. KNIGHT, Capturing practical natural language transformations. Machine Translation 21
(2007), 121–133.

[17] K. KNIGHT, J. GRAEHL, An overview of probabilistic tree transducers for natural language pro-
cessing. In: Computational Linguistics and Intelligent Text Processing, CICLing 2006. Lecture
Notes in Comput. Sci. 3406, Springer-Verlag, 2005, 1–24.

[18] W. KUICH, Tree Transducers and Formal Tree Series. Acta Cybernet. 14 (1999), 135–149.

[19] A. LOPEZ, Statistical Machine Translation. ACM Computing Surveys 40(3) (2008), 8:1–8:9.

[20] A. MALETTI, The Power of Tree Series Transducers. Der Andere Verlag, Tönning, Lübeck und
Marburg, 2006. (Ph.D. thesis, 2006, TU Dresden, Germany).

[21] A. MALETTI, Compositions of Extended Top-down Tree Transducers. Inf. Comput. 206 (2008)
9–10, 1187–1196.

[22] A. MALETTI, Input and output products for weighted extended top-down tree transducers. In:
Y. GAO, S. YU (eds.), Proc. Developments in Language Theory. Lecture Notes in Comput. Sci.
6224, Springer-Verlag, 2010, 316–327.

[23] A. MALETTI, G. SATTA, Parsing Algorithms based on Tree Automata. In: Proc. 11th Int. Conf.
Parsing Technologies. Association for Computational Linguistics, 2009, 1–12.

[24] M. MOHRI, Weighted automata algorithms. In: M. DROSTE, W. KUICH, H. VOGLER (eds.),
Handbook of Weighted Automata. chapter 6, Springer-Verlag, 2009, 213–254.

[25] M. MOHRI, F. PEREIRA, M. RILEY, Weighted Automata in Text and Speech Processing. In:
W. WAHLSTER (ed.), ECAI 96. 12th European Conference on Artificial Intelligence. John Wiley
& Sons, Ltd., 1996, 1–5.

[26] S. PETROV, L. BARRETT, R. THIBAUX, D. KLEIN, Learning Accurate, Compact, and Inter-
pretable Tree Annotation. In: COLING-ACL. 2006.

[27] S. PETROV, D. KLEIN, Improved Inference for Unlexicalized Parsing. In: HLT-NAACL. 2007.

[28] J. THATCHER, J. WRIGHT, Generalized finite automata theory with an application to a decision
problem of second-order logic. Math. Syst. Theory 2 (1968) 1, 57–81.

[29] J. W. THATCHER, Characterizing derivation trees of context-free grammars through a generaliza-
tion of finite automata theory. J. Comput. Syst. Sci. 1 (1967) 4, 317–322.

[30] K. YAMADA, K. KNIGHT, A syntax-based statistical translation model. In: Proc. of 39th Annual
Meeting of the Assoc. Computational Linguistics. 2001, 523–530.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 21 – 26

Machine Translation using Dependency Trees
Zdeněk Žabokrtský

Charles University in Prague, Faculty of Mathematics and Physics,
Institute of Formal and Applied Linguistics, Malostranské náměstí 25, 118 00, Praha 1

zabokrtsky@ufal.mff.cuni.cz

Abstract

The present work focuses on using tree-shaped syntactic structures as an intermediate
sentence representation in an experimental English-Czech machine translation system.

1. Introduction
Natural Language Processing (NLP) is a multidisciplinary field combining computer science,
mathematics and linguistics, whose main aim is to allow computers to work with information
expressed in human (natural) language.

The history of NLP goes back to 1950s. Early NLP systems were based on hand-written
rules founded by linguistic intuitions. However, roughly two decades ago the growing avail-
ability of language data (especially textual corpora) and increasing capabilities of computer
systems lead to a revolution in NLP: the field became dominated by data-driven approaches,
often based on probabilistic modeling and machine learning.

In such data-driven scenario, the role of human experts was moved from designing rules
rather to (i) preparing training data enriched with linguistically relevant information (usually
by manual annotation), (ii) choice of an adequate probabilistic model, proposing features
(various indicators potentially useful for making the desired predictions), and (iii) specifying
an objective (evaluation) function. Optimization of the decision process (such as searching
for optimal feature weights) is then entirely left to the learning algorithm.

Nowadays, researched NLP tasks range from relatively simple ones (like sentence seg-
mentation, language identification), through tasks which already need a higher level of ab-
straction (such as morphological analysis, part-of-speech tagging, parsing, named entity
recognition, coreference resolution, word sense disambiguation, sentiment analysis, natural
language generation), to highly complex systems (machine translation (MT), automatic sum-
marization, or question answering). The importance of (and demand for) such tasks increases
along with the rapidly growing amount of textual information available on the Internet.

Our experiments with MT are implemented within an in-house modular software frame-
work for developing NLP applications, which is called Treex (formerly TectoMT, [14]) and
which is being developed at our institute since 2005. The framework allows flexible integra-
tion and pipelining of NLP tools (for various purposes), as will be illustrated below on the
application of MT.

22 Zdeněk Žabokrtský

1.1. Linguistic Background
Natural language is an immensely complicated phenomenon. Modeling the language in its
entirety would be extremely complex, therefore its description is often decomposed into sev-
eral subsequent layers (levels). There is no broadly accepted consensus on details concerning
the individual levels, however, the layers typically roughly correspond to the following scale:
phonetics, phonology, morphology, syntax, semantics, and pragmatics.

One of such stratificational hypotheses is Functional Generative Description (FGD), de-
veloped by Petr Sgall and his colleagues in Prague since the 1960s [11]. FGD was used with
certain modifications as the theoretical framework underlying the Prague Dependency Tree-
bank [3], which is a manually annotated corpus of Czech newspaper texts from the 1990s.
PDT in version 2.0 adds three layers of linguistic annotation to the original texts:

1. morphological layer (m-layer) – each sentence is tokenized and each token is anno-
tated with a lemma (e.g., nominative singular for nouns) and morphological tag (de-
scribing morphological categories such as part of speech, number, and tense).

2. analytical layer (a-layer) – each sentence is represented as a shallow-syntax depen-
dency tree (a-tree). There is one-to-one correspondence between m-layer tokens and
a-layer nodes (a-nodes). Each a-node is annotated with the so-called analytical func-
tion, which represents basic dependency roles such as subject or attribute.

3. tectogrammatical layer (t-layer) - each sentence is represented as a deep-syntax de-
pendency tree (t-tree). Autosemantic (meaningful) words are represented as t-layer
nodes (t-nodes). Information conveyed by functional words (such as auxiliary verbs,
prepositions and subordinating conjunctions) is represented by attributes of t-nodes.
Most important attributes of t-nodes are: tectogrammatical lemma, functor (which rep-
resents the semantic value of syntactic dependency relation) and a set of grammatemes
(e.g. tense, number, verb modality, deontic modality, negation). Edges in t-trees repre-
sent semantic dependencies, except for special cases such as coordination.

This annotation scheme has been adopted and further modified in Treex. Treex also profits
from the technology developed during the PDT project, especially from the existence of the
highly customizable tree editor TrEd, which is used as the main visualization tool in Treex,
and from the XML-based file format PML (Prague Markup Language, [10]), which is used
as the main data format in Treex.

1.2. Contemporary Machine Translation
MT is a notoriously hard problem and it is studied by a broad research field nowadays: ev-
ery year there are several conferences, workshops and tutorials dedicated to it (or even to
its subfields). It goes beyond the scope of this work even to mention all the contemporary
approaches to MT, but several elaborate surveys of current approaches to MT are already
available to the reader elsewhere, e.g. in [7].

A distinction is usually made between two MT paradigms: rule-based MT (RBMT) and
statistical MT (SMT). RBMT systems are dependent on the availability of linguistic knowl-
edge (such as grammar rules and dictionaries), while SMT systems require human-translated
parallel text, from which they extract the translation knowledge automatically.

Machine Translation using Dependency Trees 23

Figure 1: Analysis-transfer-synthesis translation scenario in Treex applied on the English sentence
“However, this very week, he tried to find refuge in Brazil.”, leading to the Czech translation “Přesto
se tento právě týden snažil najít útočiště v Brazílii.”. Thick edges indicate functional and autosemantic
a-nodes to be merged.

Nowadays, the most popular representatives of the second group are phrase-based sys-
tems (in which the term ‘phrase’ stands simply for a sequence of words, not necessarily
corresponding to phrases in constituent syntax), e.g. [5], derived from the IBM models [2].

Even if phrase-based systems have more or less dominated the field in the recent years,
their translation quality is still far from perfect. Therefore we believe it makes sense to
investigate also alternative approaches.

MT implemented in Treex lies somewhere between the two main paradigms. Like in
RBMS, sentence representations used in Treex are linguistically interpretable. However, the
most important decisions during the translation process are made by statistical models like in
SMT, not by rules.

2. English-Czech Translation Step-by-Step
The translation scenario implemented in Treex composes of three steps: (1) analysis of the
input sentences up to tectogrammatical layer of abstraction, (2) transfer of the abstract rep-
resentation to the target language, and (3) synthesis (generating) of sentences in the target
language. See an example in Figure 1.

Analysis. The analysis step can be decomposed into three phases corresponding to mor-
phological, analytical and tectogrammatical analysis.

In the morphological phase, a text to be translated is segmented into sentences and each
sentence is tokenized (segmented into words and punctuation marks). Tokens are tagged with

24 Zdeněk Žabokrtský

part of speech and other morphological categories by the Morce tagger [12], and lemmatized.
In the analytical phase, each sentence is parsed using the dependency parser [9] based

on Maximum Spanning Tree algorithm, which results in an analytical tree for each sentence.
Then the analytical trees are converted to the tectogrammatical trees. Each autosemantic
word with its associated functional words is collapsed into a single tectogrammatical node,
labeled with lemma, functor (semantic role), formeme,1 and semantically indispensable mor-
phologically categories (such as tense with verbs and number with nouns, but not number
with verbs as it is only imposed by subject-predicate agreement). Coreference of pronouns
is also resolved and tectogrammatical nodes are enriched with information on named entities
(such as the distinction between location, person and organization).

Transfer. The transfer phase follows, whose most difficult part consists in labeling the tree
with target-language lemmas and formemes. Changes of tree topology and of other attributes2

are required relatively infrequently.
Our model for choosing the right target-language lemmas and formemes in inspired by

Noisy Channel Model which is the standard approach in the contemporary SMT and which
combines a translation model and a language model of the target language. In other words,
one should not rely only on the information on how faithfully the meaning is transfered by
some translation equivalent, but also the additional model can be used which estimates how
well some translation equivalent fits to the surrounding context.

Unlike in the mainstream SMT, in tectogrammatical transfer we do not use this idea for
linear structures, but for tectogrammatical trees.3 So the translation model estimates the
probability of source and target lemma pair, while the language tree model estimates the
probability of a lemma given its parent. The globally optimal tree labelling is then revealed
by the tree-modified Viterbi algorithm [13].

Originally, we estimated the translation model simply by using pair frequencies extracted
from English-Czech parallel data. A significant improvement was reached after replacing
such model by Maximum Entropy model. In the model, we employed a wide range of features
resulting from the source-side analysis. The weights were optimized using training data
extracted from the CzEng parallel treebank [1], which contains roughly 6 million English-
Czech pairs of analyzed and aligned sentences.

1Formemes specify how tectogrammatical nodes are realized in the surface sentence shape. For instance, n:subj
stands for semantic noun in the subject position, n:for+X for semantic noun with preposition for, v:because+fin
for semantic verb in a subordinating clause introduced by the conjunction because, adj:attr for semantic adjective
in attributive position. Formemes do not constitute a genuine tectogrammatical component as they are not oriented
semantically (but rather morphologically and syntactically). However, they have been added to t-trees in Treex as
they facilitate the transfer.

2For instance, number of nouns must be changed to plural if the selected target Czech lemma is a plurale tantum.
Similarly, verb tense must be predicted if an English infinitive or gerund verb form is translated to a finite verb form.

3We believe that the potential contribution of tectogrammatical layer of language representation for MT is the
following: it abstracts from many language-specific phenomena (which could reduce the notorious data-sparsity
problem) and offers a natural factorization of the translation task (which could be useful for formulating indepen-
dence assumptions when building probabilistic models). Of course, it is not clear whether these properties can ever
outbalance the disadvantages, especially cumulation and interference of errors made on different layers, considerable
technical complexity, and the need for detailed linguistic insight. In our opinion, this question still remains open.

Machine Translation using Dependency Trees 25

��������	
��	���
�
���
	���
��	
��	���
�
���

����
�����������������
�������������
���������������

����������������������������������� ������

!������������
"����������������
!����!����#

���� ����

���������������
�������������
�������$%&���
�����������������

���������������

�	
�'��

Figure 2: Tectogrammatical transfer implemented as Hidden Markov Tree Model.

Synthesis. Finally, surface sentence shape is synthesized from the tectogrammatical tree,
which is basically a reverse operation for the analysis: adding punctuation and functional
words, spreading morphological categories according to grammatical agreement, performing
inflection (using Czech morphology database [4]), arranging word order etc.

3. Final Remarks

As for evaluating MT quality, there are two general methods: (1) the quality can be judged by
humans (either using a set of criteria such as grammaticality and intelligibility, or relatively
by comparing outputs of different MT systems), or (2) the quality can be estimated by au-
tomatic metrics, which usually measure some form of string-wise overlap with one or more
reference (human-made) translations. Both types of evaluation are used regularly during the
development of our MT system and confirm that performance increases every year.

Even if tectogrammatical translation is considered as the main application of Treex, Treex
has been used for a number of other research purposes as well. For instance, it has been used
for developing alternative MT quality measures in [6], for improving outputs of other MT
systems by grammatical post-processing in [8], and for building linguistic data resources
such as the Czech-English parallel corpus CzEng [1].

Last but not least, Treex is used for teaching purposes in our institute. Undergraduate
students are supposed to develop their own modules for morphological and syntactic analysis
for foreign languages of their choice. Not only that the existence of Treex enables the students
to make very fast progress, but their contributions are accumulated in the Treex Subversion
repository too, which enlarges the repertory of languages treatable by Treex.

When thinking about a more distant future of MT, an exciting question arises about the
future relationship of linguistically interpretable approaches (like that of Treex) and purely
statistical phrase-based approaches. Promising results of [8], which uses Treex for improving
the output of a phrase-based system and reaches the state-of-the-art MT quality in English-
Czech MT, show that combinations of both approaches might be viable.

26 Zdeněk Žabokrtský

References
[1] O. BOJAR, M. JANÍČEK, Z. ŽABOKRTSKÝ, P. ČEŠKA, P. BEŇA, CzEng 0.7: Parallel Corpus

with Community-Supplied Translations. In: Proceedings of the Sixth International Language Re-
sources and Evaluation. ELRA, Marrakech, Morocco, 2008.

[2] P. E. BROWN, V. J. DELLA PIETRA, S. A. DELLA PIETRA, R. L. MERCER, The Mathematics
of Statistical Machine Translation: Parameter Estimation. Computational Linguistics (1993).

[3] J. HAJIČ, E. HAJIČOVÁ, J. PANEVOVÁ, P. SGALL, P. PAJAS, J. ŠTĚPÁNEK, J. HAVELKA,
M. MIKULOVÁ, Prague Dependency Treebank 2.0. Linguistic Data Consortium, LDC Catalog
No.: LDC2006T01, Philadelphia, 2006.

[4] J. HAJIČ, Disambiguation of Rich Inflection – Computational Morphology of Czech. Charles Uni-
versity – The Karolinum Press, Prague, 2004.

[5] P. KOEHN, et al., Moses: Open Source Toolkit for Statistical Machine Translation. In: Proceed-
ings of the Demo and Poster Sessions, 45th Annual Meeting of ACL. Association for Computa-
tional Linguistics, Prague, Czech Republic, 2007, 177–180.

[6] K. KOS, O. BOJAR, Evaluation of Machine Translation Metrics for Czech as the Target Language.
Prague Bulletin of Mathematical Linguistics 92 (2009).

[7] A. LOPEZ, A Survey of Statistical Machine Translation. Technical report, Institute for Advanced
Computer Studies, University of Maryland, 2007.

[8] D. MAREČEK, R. ROSA, P. GALUŠČÁKOVÁ, O. BOJAR, Two-step translation with grammatical
post-processing. In: Proceedings of the 6th Workshop on Statistical Machine Translation. Associ-
ation for Computational Linguistics, Edinburgh, Scotland, 2011, 426–432.

[9] R. MCDONALD, F. PEREIRA, K. RIBAROV, J. HAJIČ, Non-Projective Dependency Parsing us-
ing Spanning Tree Algorithms. In: Proceedings of Human Langauge Technology Conference and
Conference on Empirical Methods in Natural Language Processing. Vancouver, BC, Canada,
2005, 523–530.

[10] P. PAJAS, J. ŠTĚPÁNEK, Recent Advances in a Feature-Rich Framework for Treebank Annota-
tion. In: Proceedings of The 22nd International Conference on Computational Linguistics. 2,
Manchester, UK, 2008, 673–680.

[11] P. SGALL, E. HAJIČOVÁ, J. PANEVOVÁ, The Meaning of the Sentence in Its Semantic and Prag-
matic Aspects. D. Reidel Publishing Company, Dordrecht, 1986.

[12] D. SPOUSTOVÁ, J. HAJIČ, J. VOTRUBEC, P. KRBEC, P. KVĚTOŇ, The Best of Two Worlds:
Cooperation of Statistical and Rule-Based Taggers for Czech. In: Proceedings of the Workshop on
Balto-Slavonic Natural Language Processing, ACL 2007. Praha, 2007, 67–74.

[13] Z. ŽABOKRTSKÝ, M. POPEL, Hidden Markov Tree Model in Dependency-based Machine Trans-
lation. In: Proceedings of the 47th Annual Meeting of the Association for Computational Linguis-
tics. 2009.

[14] Z. ŽABOKRTSKÝ, J. PTÁČEK, P. PAJAS, TectoMT: Highly Modular MT System with Tectogram-
matics Used as Transfer Layer. In: Proceedings of the 3rd Workshop on Statistical Machine Trans-
lation, ACL. 2008.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 27 – 32

Time-Varying Sequential P Systems
A. Alhazov(B) R. Freund(A) H. Heikenwälder(A) M. Oswald(A)

Yu. Rogozhin(B) S. Verlan(C)

(A) Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
{rudi,hilbert,marion}@emcc.at

(B) Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028, Moldova

{artiom,rogozhin}@math.md

(C) LACL, Département Informatique, Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France

verlan@univ-paris12.fr

Abstract

In this article we introduce the regulating mechanism of control languages for the
application of rules assigned to the membranes of a sequential P system. Computational
completeness can only be achieved when allowing the system to have no rules applicable
for a bounded number of steps; in this case we only need one membrane and periodically
available sets of non-cooperative rules, i.e., time-varying sequential P systems. Only
Parikh sets of matrix languages can be obtained if the terminal result has to be taken as
soon as the system cannot apply any rule anymore.

1. Introduction
P systems are formal models derived from the functioning of living cells, closely related to
multiset rewriting. We refer to [11], [12], and to the web page [16] for more details on P
systems. In this article, we investigate the power of controlling the availability of the sets
of rules assigned to the membranes of a (static) P system by a regular control language L,
especially for languages L of the form {w}∗, which leads to the notion of a time-varying P
system where the set of rules available at each membrane varies periodically with time.

The notion of the time-varying controlled application of rules comes from the area of
regulated rewriting; comprehensive overviews of this area can be found in [3], [5], and [6]);
periodically time-varying grammars were already mentioned in [15] following the work on
time-varying automata [14]. This notion was also considered in the area of Lindenmayer
systems, corresponding to controlled tabled Lindenmayer systems, with the tables being used
periodically (see [9]). We can also interpret these systems as counterparts of cooperating
distributed grammar systems ([2, 4]) with the order of enabling the components controlled by
a graph having the shape of a ring. In the field of DNA computing several models using the
variation in time of the set of available rules were considered, e.g., see [10] and [8].

28 A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan

2. Preliminary Definitions and Well-Known Results
For details of formal language theory the reader is referred to the monographs and handbooks
in this area as [3] and [13].

A grammar G of type X is a construct (O,OT ,A,P,=⇒G) where O is a set of objects,
OT ⊆O is a set of terminal objects, A ∈O is the axiom, and P is a finite set of rules of type
X . Each rule p∈P induces a relation =⇒p⊆O×O; p is called applicable to an object x∈O
if and only if there exists at least one object y ∈ O such that (x,y) ∈ =⇒p; we also write
x=⇒p y. The derivation relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The
reflexive and transitive closure of =⇒G is denoted by ∗

=⇒G. The language generated byG is
the set of all terminal objects derivable from the axiom, i.e., L(G) =

{
v ∈OT |A

∗
=⇒G v

}
.

The family of languages generated by grammars of type X is denoted by L(X).
A string grammar GS is represented as

(
(N ∪T)∗ ,T ∗,w,P,=⇒GS

)
where N is the

alphabet of non-terminal symbols, T is the alphabet of terminal symbols, N ∩T = ∅, w ∈
(N ∪T)+, P is a finite set of rules of the form u→ v with u ∈ V + and v ∈ V ∗, with V :=
N ∪T ; the derivation relation for u→ v ∈ P is defined by xuy =⇒u→v xvy for all x,y ∈
V ∗, thus yielding the well-known derivation relation =⇒GS

for the string grammar GS . As
special types of string grammars we consider string grammars with arbitrary rules, context-
free rules of the form A→ v with A ∈ N and v ∈ V ∗, and (right-)regular rules of the form
A→ v with A ∈ N and v ∈ TN ∪ {λ}. In the following, we shall also use the common
notation GS = (N,T,w,P) instead, too. The corresponding types of grammars are denoted
by ARB, CF , and REG, thus yielding the families of languages L(ARB), i.e., the family
of recursively enumerable languages RE, as well as L(CF), and L(REG), i.e., the families
of context-free, and regular languages (also denoted by REG), respectively.

The subfamily ofREG only consisting of 1-star languages of the formW ∗ for some finite
set of strings W is denoted by REG1∗; to be more specific, we also consider REG1∗ (k,p)
consisting of all 1-star languages of the form W ∗ with k being the maximum number of
strings in W and p being the maximum lengths of the strings in W . If W = {w} for a
singleton w, we call the set {w}∗ periodic and |w| its period; thus, REG1∗ (1,p) denotes
the family of all periodic sets with period at most p. If any of the numbers k or p may be
arbitrarily large, we replace it by ∗.

A multiset grammar [7] Gm is of the form
(
(N ∪T)◦ ,T ◦,w,P,=⇒Gm

)
where N is the

alphabet of non-terminal symbols, T is the alphabet of terminal symbols, N ∩T = ∅, w is
a non-empty multiset over V , V := N ∪T , and P is a (finite) set of multiset rules yielding
a derivation relation =⇒Gm on the multisets over V ; the application of the rule u→ v to a
multiset x has the effect of replacing the multiset u contained in x by the multiset v. For the
multiset grammar Gm we also write (N,T,w,P,=⇒Gm).

As special types of multiset grammars we consider multiset grammars with arbitrary
rules, context-free rules of the form A→ v with A ∈N and v ∈ V ◦, and regular rules of the
formA→ v withA∈N and v ∈ T ◦N ∪T ◦; the corresponding typesX of multiset grammars
are denoted by mARB, mCF , and mREG, thus yielding the families of multiset languages
L(X). Even with arbitrary multiset rules, it is not possible to get Ps(L(ARB)) [7]:

Ps(L(REG)) = L(mREG) = L(mCF) = Ps(L(CF))
$ L(mARB)$ Ps(L(ARB)) .

Time-Varying Sequential P Systems 29

A graph-controlled grammar of type X is a construct GGC = (G,g,Hi,Hf ,=⇒GC)
where G = (O,OT ,w,P,=⇒G) is a grammar of type X; g = (H,E,K) is a labeled graph
where H is the set of node labels identifying the nodes of the graph in a one-to-one manner,
E ⊆ H ×{Y,N}×H is the set of edges labeled by Y or N , K : H → 2P is a function
assigning a subset of P to each node of g; Hi ⊆H is the set of initial labels, and Hf ⊆H
is the set of final labels. The derivation relation =⇒GC is defined based on =⇒G and the
control graph g: For any i, j ∈H and any u,v ∈O, (u,i) =⇒GC (v,j) if and only if either

• u=⇒p v by some rule p ∈K (i) and (i,Y,j) ∈ E (success case), or

• u= v, no p ∈K (i) is applicable to u, and (i,N,j) ∈ E (failure case).

The language generated by GGC is defined by

L(GGC) =
{
v ∈OT | (w,i) =⇒∗GGC

(v,j) , i ∈Hi, j ∈Hf

}
.

IfHi=Hf =H , thenGGC is called a programmed grammar. The families of languages gen-
erated by graph-controlled and programmed grammars of typeX are denoted byL(X-GCac)
and L(X-Pac), respectively. If the set E contains no edges of the form (i,N,j), then the
graph-controlled grammarGGC is said to be without appearance checking; the corresponding
families of languages are denoted by L(X-GC) and L(X-P), respectively. If (i,Y,j)∈E if
and only if (i,N,j)∈E for all i, j ∈H , thenGGC is said to be a graph-controlled grammar or
programmed grammar with unconditional transfer, the corresponding families of languages
are denoted by L(X-GCut) and L(X-Put), respectively.

A matrix grammar of type X is a construct GM =
(
G,M,F,=⇒GM

)
where G =

(O,OT ,w,P,=⇒G) is a grammar of type X , M is a finite set of sequences of the form
(p1, . . . ,pn), n≥ 1, of rules in P , and F ⊆ P . For w,z ∈O we write w =⇒GM

z if there are
a matrix (p1, . . . ,pn) in M and objects wi ∈ O, 1≤ i≤ n+1, such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either wi =⇒G wi+1 or wi = wi+1, pi is not applicable to wi, and
pi ∈ F .

L(GM) =
{
v ∈OT | w =⇒∗GM

v
}

is the language generated by GM . The family of
languages generated by matrix grammars of type X is denoted by L(X-MATac). If the set
F is empty (or if F = P), then the grammar is said to be without appearance checking (with
unconditional control); the corresponding family of languages is denoted by L(X-MAT)
(L(X-MATut)).

A grammar with regular control and appearance checking is a construct GC =
(G,HC ,L,F) where G = (O,OT ,w,P,=⇒G) is a grammar of type X and L is a regu-
lar language over HC , where HC is the set of labels identifying the subsets of productions
from P in a one-to-one manner (HC is a bijective function on 2P), and F ⊆ HC . The
language generated by GC consists of all terminal objects z such that there exist a string
HC (P1) · · ·HC (Pn) ∈ L as well as objects wi ∈ O, 1 ≤ i ≤ n+ 1, such that w = w1,
z = wn+1, and, for all 1≤ i≤ n, either

• wi =⇒G wi+1 by some production from Pi or

• wi = wi+1, no production from Pi is applicable to wi, and HC (Pi) ∈ F .

30 A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan

The model of grammars with regular control is closely related with the model of graph-
controlled grammars in the sense that the control graph corresponds to the deterministic finite
automaton accepting L. Hence, we may also speak of a grammar with regular control and
without appearance checking if F = ∅, and if F = HC then GC is said to be a grammar
with regular control and unconditional transfer. The corresponding families of languages are
denoted by L(X-C (REG)ac), L(X-C (REG)), and L(X-C (REG)ut).

Obviously, the control languages can also be taken from another family of languages Y ,
e.g., L(CF), thus yielding the families L(X-C (Y)ac), etc., but in this paper we shall re-
strict ourselves to the cases Y =REG and Y =REG1∗ (k,p). For Y =REG1∗ (1,p), these
grammars are also known as (periodically) time-varying grammars, as a control language
{HC (P1) · · ·HC (Pp)}∗ means that the set of productions available at a time t in a derivation
is Pi if t= kp+ i, k ≥ 0; p is called the period of the time-varying system. The correspond-
ing families of languages generated by time-varying grammars with appearance checking,
without appearance checking, with unconditional transfer and with period p are denoted by
L(X-TVac (p)), L(X-TV (p)), and L(X-TVut (p)), respectively; if p may be arbitrarily
large, p is replaced by ∗ in these notions.

In many cases it is not necessary to insist that the control string HC (P1) · · ·HC (Pn) of
a derivation is in L, it usually also is sufficient that HC (P1) · · ·HC (Pn) is a prefix of some
string in L. We call this control weak and replace C by wC and TV by wTV in the notions
of the families of languages. We should like to mention that in the case of wTV the control
words are just prefices of the ω-word (HC (P1) · · ·HC (Pp))

ω .
In the case of string grammars, for α ∈ {λ,w} we know (e.g., [6]:

RE = L(CF -GCac) = L(CF -Pac) = L(CF -MATac)
= L(CF -GCut) = L(CF -Put)
= L(CF -αC (REG)ac) = L(CF -αC (REG)ut)
= L(CF -αTVac) = L(CF -αTVut)
' L(CF -GC) = L(CF -P) = L(CF -MAT) .

3. Time-Varying P Systems – Definitions and Results
A (sequential) P system of typeX with nmembranes is a construct Π= (G,µ,R,A,f) where
G= (O,OT ,A

′,P,=⇒G) is a grammar of type X and

• µ is the membrane (tree) structure of the system with n membranes (µ usually is rep-
resented by a string containing correctly nested marked parentheses); we assume the
membranes, i.e., the nodes of the tree representing µ, being uniquely labeled by labels
from a set H;

• R is a set of rules of the form (h,r, tar) where h ∈ H , r ∈ P , and tar, called the
target indicator, is taken from the set {here, in,out} ∪ {inj | 1≤ j ≤ n}; the rules
assigned to membrane h form the set Rh = {(r, tar) | (h,r, tar) ∈R}, i.e., R can also
be represented by the vector (Rh)h∈H ; for the systems considered in this paper, we
do not consider communication with the environment, i.e., no objects may be sent out
from the skin membrane (the outermost membrane) or taken into the skin membrane
from the environment;

Time-Varying Sequential P Systems 31

• A is the initial configuration specifying the objects from O assigned to each membrane
at the beginning of a computation, i.e., A= {(h,Ah) | h ∈H};

• f is the final membrane from where the results are taken at the end of a computation.

A configurationC of the P system Π can be represented as a set {(h,wh) | h ∈H}, where
wh is the current contents of objects contained in the membrane labeled by h. In a transition
step, one rule from R is applied to the objects in the current configuration in order to obtain
the next configuration. A sequence of transitions between configurations of Π, starting from
the initial configuration A, is called a computation of Π. A halting computation is a compu-
tation ending with a configuration {(h,wh) | h ∈H} such that no from R can be applied to
the objects wh, h ∈H , anymore, and the object w from (f,w) then is called the result of this
halting computation if w ∈OT .

In a similar way as for grammars themselves, we are able to consider various control
mechanisms as defined in the previous section for P systems, too, e.g., using a control graph.
In this paper, we are going to investigate the power of regular control.

A (sequential) P system of type X with n membranes and regular control is a construct
ΠC = (Π,HC ,L,F) where Π = (G,µ,R,A,f) is a (sequential) P system of type X , L is a
regular language overHC , whereHC is the set of labels identifying the subsets of productions
from R in a one-to-one manner, and F ⊆ HC . The language generated by ΠC consists of
all terminal objects z obtained in membrane region f as results of a halting computation in
Π. Observe that as in the case of normal grammars, the sequence of computation steps must
correspond to a string HC (R1) · · ·HC (Rm) ∈ L with R1, · · · ,Rm being subsets of R. The
corresponding families of languages generated by P systems with regular control ΠC (with at
most n membranes) are denoted by L

(
X-αC (REG)βOPn

)
, α ∈ {λ,w}, β ∈ {λ,ac,ut}.

Yet in contrast to the previous case, appearance checking and unconditional transfer have
a special effect, as we cannot make a derivation step without applying a rule, but the derivation
thus will halt immediately. In order to cope with this problem specific for P systems, we allow
the system to be inactive for a bounded number of steps before it really “dies”, i.e., halts. We
call this specific way of terminating a computation halting with delay d, i.e., a computation
halts if for a whole sequence of length d of production sets in a control word no rule has
become applicable. In that way we obtain the language classes L

(
X-αC (REG)βOPn,d

)
,

α ∈ {λ,w}, β ∈ {λ,ac,ut}. The case k = 0 describes the situation with normal halting.

In the P systems area we often deal with multisets, i.e., the underlying grammar is a
multiset grammar. In the following, the results obtained in [1] are listed; the types describing
(non-)cooperative rules are abbreviated by coo (ncoo).

Theorem 3.1 For all α ∈ {λ,w}, β ∈ {ac,ut}, p≥ 12, as well as n≥ 1 and d≥ 2,

L(mCF -αTVβ (p)) = L(ncoo-αTVβOPn (p) ,d) = PsRE.

Theorem 3.2 For all X ∈ {ncoo,coo}, α ∈ {λ,w}, β ∈ {λ,ac,ut}, and n≥ 1,

L
(
ncoo-αC (REG)βOPn

)
⊆ PsL(CF -MAT) .

32 A. Alhazov, R. Freund, H. Heikenwälder, M. Oswald, Yu. Rogozhin, S. Verlan

Theorem 3.3 For all α ∈ {λ,w}, β ∈ {λ,ac,ut}, and k,n,p≥ 1,

L(mARB-MAT) = L(mCF -MAT)
= PsL(CF -MAT)
= L(mARB)
= L(coo-TV (p)OPn)

= L
(
coo-αC (REG)βOPn

)
= L

(
ncoo-αC

(
REG1∗ (∗,p+1)

)
β
OPn

)
= L

(
ncoo-αC (REG)βOPn

)
.

References
[1] A. ALHAZOV, R. FREUND, H. HEIKENWÄLDER, M. OSWALD, YURII ROGOZHIN, S. VERLAN,

Time-Varying Sequential P Systems. In: Proceedings CMC 13. 2012.
[2] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, G. PĂUN, Grammar Systems: A Grammatical

Approach to Distribution and Cooperation. Gordon and Breac, 1994.
[3] J. DASSOW, G. PĂUN, Regulated Rewriting in Formal Language Theory. Springer-Verlag, 1989.
[4] J. DASSOW, G. PĂUN, G. ROZENBERG, Handbook of Formal Languages, 2, chapter Grammar

Systems, Springer-Verlag, 1997, 155–172.
[5] J. DASSOW, G. PĂUN, A. SALOMAA, Handbook of Formal Languages, 2, chapter Grammars

with Controlled Derivations, Springer-Verlag, 1997, 101–154.
[6] H. FERNAU, Unconditional Transfer in Regulated Rewriting. Acta Informatica 34 (1997) 11,

837–857.
[7] M. KUDLEK, C. MARTÍN-VIDE, G. PĂUN, Toward a formal macroset theory. In: C. S. CALUDE,

G. PĂUN, G. ROZENBERG, A. SALOMA (eds.), Multiset Processing – Mathematical, Computer
Science and Molecular Computing Points of View. LNCS 2054, Springer-Verlag, 2001, 123–134.

[8] M. MARGENSTERN, Y. ROGOZHIN, About time-varying distributed H systems. In: A. CONDON,
G. ROZENBERG (eds.), DNA Computing: 6th International Workshop on DNA-Based Computers,
DNA 2000. LNCS 2054, Springer-Verlag, 2000, 53–62.

[9] M. NIELSEN, OL systems with control devices. Acta Informatica 4 (1975) 4, 373–386.
[10] G. PĂUN, DNA computing: Distributed splicing systems. In: J. MYCIELSKI, G. ROZENBERG,

A. SALOMAA (eds.), Structures in Logic and Computer Science. A Selection of Essays in Honor
of A. Ehrenfeucht. LNCS 1261, Springer-Verlag Berlin, 1997, 353–370.

[11] G. PĂUN, Membrane Computing. An Introduction. Springer-Verlag, 2002.
[12] G. PĂUN, G. ROZENBERG, A. SALOMAA, The Oxford Handbook of Membrane Computing.

Oxford University Press, 2010.
[13] G. ROZENBERG, A. SALOMAA, Handbook of Formal Languages, 3 volumes. Springer-Verlag,

1997.
[14] A. SALOMAA, On finite automata with a time-variant structure. Information and Control 13

(1968) 2, 85–98.
[15] A. SALOMAA, Periodically time-variant context-free grammars. Information and Control 17

(1970), 294–311.
[16] THE P SYSTEMS WEB PAGE. http://ppage.psystems.eu/.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 33 – 36

Representation of ω-regular Languages by finite
Automata
Stephan Barth

Ludwig-Maximilians-Universität München, Germany

stephan.barth@ifi.lmu.de

Abstract

Hugues Calbrix, Maurice Nivat and Andreas Podelski showed how to utilize finite
automata for describing ω-regular languages [1].

However they developed just transformations between Büchi and finite automata.
I will present a deeper analysis of this method. New algorithms for handling these

DFA allow for performing various operations directly.
Furthermore some more transformations between this kind of DFA and classic models

for ω-regular lanugages have been developed.

1. Introduction
Finite automata have various advantages over the most used automata models for ω-regular
languages. Most notably, DFA can be minimized in n · logn whereas minimization of deter-
ministic Büchi, parity, Muller, Rabin, Streett automata is NP-complete, minimization of the
nondeterministic variants is PSPACE-complete.

Due to the fact that DFA can not be used directly for describing ω-regular languages
the other automata models are used. However, Hugues Calbrix, Maurice Nivat and Andreas
Podelski detected a way to do so [1]:

If L is an ω-regular language then Lϕ := {u$v|uvω ∈L}where $ is a new letter is regular
and contains all information about the language L. Transformations between this model and
Büchi automata had been given as well.

In my ongoing thesis work I am studying the regular languages of the form Lϕ and the
corresponding DFA. For reference, I call these “loop languages” and “loop automata”. In the
talk, I will present some further transformations and automata-theoretic operations on loop
languages and automata.

34 Stephan Barth

ω-regular expression (a|b)∗bω (a|b)∗(ab)ω

Büchi automaton

b

a,b

b a

a,b

b

a

Loop automaton
a,b b

$,a,b

$ b

$,a
$,a

a,b

$,a,b
$

b

a

$

$,b $,a
a

b

$,a $,b

b

a

Table 1: Some examples of loop languages in comparison with Büchi automata and ω-regular expres-
sions for the same languages

2. Properties of loop languages

As every word u$v in Lϕ represents the word uvω in L it is clear that if uvω = u′v′ω then
u$v ∈ Lϕ ⇐⇒ u′$v′ ∈ Lϕ. Together with the condition that every word in Lϕ has to
represent a valid word in L this leads to the following properties that every loop language
fulfills:

• wellformed: L⊂ Σ∗$Σ+

• duplication: u$v ∈ L⇒∀i ∈N.u$vi ∈ L

• deduplication: (∃i ∈N.u$vi ∈ L)⇒ u$v ∈ L

• uprotation: u$av ∈ L⇒ ua$va ∈ L

• downrotation: ua$va ∈ L⇒ u$av ∈ L

These properties are sufficient for loopness and therefore the latter property can be algo-
rithmically tested.

For a regular language L violating some of these properties, called partial loop language,
it is possible that the language {u$v |∃u′$v′ ∈ L.uvω = u′v′ω} is not regular thus a DFA for
this language can not be constructed.

Reconstruction of wellformed can be achieved by intersection with Σ∗$Σ+; the words
excluded by this do not define an ω-regular word.

Representation of ω-regular Languages by finite Automata 35

Reconstruction of de-/duplication does not lead to a regular language in general.
For example the regular language $ab∗ would lead to the language {$(abi)∗ | i ∈ N}

which is not regular.
Nevertheless extending the language only by those words that are needed for deduplica-

tion leads to a regular language, call this closure operator Cdedup.
As deduplication and duplication are dual to each other, that means L fulfills duplica-

tion ⇐⇒ ¬L fulfills deduplication, one can also define a co-closure operator CdupL =
¬Cdedup¬L that enforces duplication by shrinking the language as little as necessary; well-
formed has to be reconstructed in every step.

Note that all words that miss some bigger representative will be dropped; thus the lan-
guage $ab∗ would be converted to the empty language when Cdup is applied.

Reconstruction of up-/downrotation also does not lead to a regular language in general.
It is possible in both directions to rotate by any finite count of letters.
Arbitrary uprotation of the language $ab∗ would lead to a not regular language; even when

de-/duplication holds as for example ($ab∗)+ this can happen; in both cases the intersection
with ab∗$ab∗ would be {abi$abi | i ∈N} which is not regular.

When a language fulfills uprotation it is possible to extend it by only words that have
other representatives of the same ω-regular words already in the language such that it also
fulfills downroation, call this operator Cdown.

Similar to the situation with de-/duplication up- and downrotation are again dual to each
other. CupL = ¬Cdown¬L shrinks the language as little as necessary for reconstruction of
uprotation.

$ab∗ as well as ($ab∗)+ would return an empty language when reconstructing uprotation
with this method.

3. Operations on loop languages
Various operations can be performed directly on loop languages. The necessary blowup varies
on the kind of operation.

For intersection and union it is sufficient to use the corresponding constructions for de-
terministic finite automata.

Complementation will destroy wellformed; thus this property has to be restored.
Projection can destroy both deduplication and downrotation. After repairing these prop-

erties by increasing the language to the minimal loop language the projection is correctly
performed.

4. Transformation from and to other automata models
In the original paper introducing this model [1] transformations between loop DFA and Büchi
automata were given.

A. Farzan, Y. Chen et al. introduced a more efficient transformation from NBA to DFA
[2]. It is done by learning a partial loop automaton.

36 Stephan Barth

I was able to develop new transformations, for example from DPA to a partial loop DFA,
and will describe them.

5. Applications
Longer chains of operations on ω-regular languages could profit from this new model as after
every operation a cheap minimization can be performed.

When applying the transformations DPA → partial loop DFA → NBA the blowup can
be limited to n ·k which is the same as when transforming DPA→ NBA. Using partial loop
DFA as intermediate automata has the advantage that the DFA can be minimized.

References
[1] H. CALBRIX, M. NIVAT, A. PODELSKI, Ultimately periodic words of rational omega-

languages. In: S. BROOKES, M. MAIN, A. MELTON, M. MISLOVE, D. SCHMIDT (eds.),
Mathematical Foundations of Programming Semantics. Lecture Notes in Computer Sci-
ence 802, Springer Berlin / Heidelberg, 1994, 554–566. 10.1007/3-540-58027-1_27.

[2] A. FARZAN, Y.-F. CHEN, E. CLARKE, Y.-K. TSAY, B.-Y. WANG, Extending Auto-
mated Compositional Verification to the Full Class of Omega-Regular Languages. In:
C. RAMAKRISHNAN, J. REHOF (eds.), Tools and Algorithms for the Construction and
Analysis of Systems. Lecture Notes in Computer Science 4963, Springer Berlin / Heidel-
berg, 2008, 2–17. 10.1007/978-3-540-78800-3_2.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 37 – 39

Machine Translation with
Multi Bottom-up Tree Transducers

Fabienne Braune(A) Nina Seemann(A) Daniel Quernheim(A)

Andreas Maletti(A)

(A)Universität Stuttgart, Institute for Natural Language Processing,
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

{braunefe, seemanna, daniel, maletti}@ims.uni-stuttgart.de

Several tree-based formalisms such as Synchronous Context-Free Grammars [2, 8], Syn-
chronous Tree-Substitution Grammars [5], Synchronous Tree-Adjoining Grammars [4] or
Synchronous Tree-Sequence-Substitution Grammars [11] have been explored and imple-
mented into Machine Translation systems. Furthermore, [4] and [11] show that the inte-
gration of powerful formalisms such as Synchronous Tree Adjoining Grammars (STAG) or
Synchronous Tree Sequence Substitution Grammars (STSSG) lead to improvements in trans-
lation quality over systems based on less powerful models like Synchronous Context-Free
Grammars (SCFG).

In the same spirit we propose to build an MT system integrating a recently developed
grammar formalism, the weighted multi bottom-up tree transducer [6, 9]. Our weights cur-
rently represent probabilities. The main advantage of this formalism is its ability to model dis-
contiguous grammar rules. This allows, first, better rule extraction, as shown in [10] as well
as better translation between language pairs involving discontinuities. We expect forward
application of MBOT rules to capture discontinuities on the target language side. Backward
application, on the other hand, is intended to capture discontinuities on the source language
side.

We implemented weighted multi bottom-up tree transducers (MBOTs) into MOSES [8]
and run the standard machine translation pipeline using an MBOT as translation model. Our
pipeline includes the following components:

Rule Extraction The MBOT rules that we use are obtained with the help of external tools.
First, the rules are extracted from an aligned bi-parsed corpus of sentence pairs using the
method of [10]. Second, a standard input and output restriction generates the regular deriva-
tion tree language for each sentence pair, which is used to determine the inside weights used
in EM training [1]. The training step delivers the rule weights that best explain the training
data. The obtained weighted rules are first transformed into trees of depth one and output in
a format that is readable by MOSES.

All authors were financially supported by the German Research Foundation (DFG) grant MA 4959/1-1.

38 Fabienne Braune, Nina Seemann, Daniel Quernheim, Andreas Maletti

Translation System Several parts of the MOSES translation system have been extended in
order to operate with MBOT rules. For now, only forward application has been integrated but
in the long run we plan to integrate backward application as well. Our extensions include
the implementation of a new rule loading procedure. The representation of grammar rules
internal to the MT system has also been extended to work with MBOT rules. Because we
use only forward application, the core parsing algorithm remains unchanged. However, the
construction of the output translation given a derivation has been adjusted to deal with rules
containing discontinuities on the target language side.

Language Model In syntax-based systems without discontinuities, language model scores
are computed by memorizing partial derivations and computing n-gram scores of adjacent
words. When dealing with discontinuities, this is no longer possible. We overcome this prob-
lem by considering discontiguous target sides as being independent. Hence, for each target
unit, we compute the corresponding n-gram score. All obtained scores are then multiplied.
Furthermore, each used rule must contain a smaller amount of discontiguous phrases as its
antecedent in the derivation tree.

We will recall MBOT as the main theoretical model and then present a detailed overview
of all steps (both theoretical as well as practical) that are used to obtain our final translation
system. Whenever feasible this will be illustrated on examples.

We will also demonstrate the implementation and present a comparison and evaluation of
our translation system using the typical synchronous context-free grammars [3] used in [7] as
a baseline. We expect that MBOTs allow us to model target side discontinuities much better
than SCFG based tree formalisms.

References
[1] D. B. R. A. P. DEMPSTER, N. M. LAIRD, Maximum Likelihood from Incomplete Data via the

EM Algorithm. Journal of the Royal Statistical Society. Series B 39 (1977) 1, 1–38.

[2] D. CHIANG, A hierarchical phrase-based model for statistical machine translation. In: Proc. ACL.
ACL, 2005, 263–270.

[3] D. CHIANG, An Introduction to Synchronous Grammars. In: Proc. 44th Annual Meeting of the
Association for Computational Linguistics. ACL, 2006. Part of a tutorial given with Kevin Knight.

[4] S. DENEEFE, K. KNIGHT, Synchronous Tree Adjoining Machine Translation. In: In Proceedings
of EMNLP. 2009.

[5] J. EISNER, Learning Non-Isomorphic Tree Mappings for Machine Translation. In: Proc. 41st
Ann. Meeting ACL. ACL, 2003, 205–208.

[6] J. ENGELFRIET, E. LILIN, A. MALETTI, Composition and Decomposition of Extended Multi
Bottom-up Tree Transducers. Acta Inform. 46 (2009) 8, 561–590.

[7] H. HOANG, P. KOEHN, Improved Translation with Source Syntax Labels. In: Proc. 5th Workshop
Statistical Machine Translation and MetricsMATR. ACL, 2010, 409–417.

[8] P. KOEHN, H. HOANG, A. BIRCH, C. CALLISON-BURCH, M. FEDERICO, N. BERTOLDI,
B. COWAN, W. SHEN, C. MORAN, R. ZENS, C. DYER, O. BOJAR, A. CONSTANTIN,

Machine Translation with Multi Bottom-up Tree Transducers 39

E. HERBST, MOSES: Open Source Toolkit for Statistical Machine Translation. In: Proc. 45th
Annual Meeting of the Association for Computational Linguistics. ACL, 2007, 177–180.

[9] A. MALETTI, An Alternative to Synchronous Tree Substitution Grammars. Journal of Natural
Language Engineering 17 (2011) 2, 221–242.

[10] A. MALETTI, How to Train Your Multi Bottom-up Tree Transducer. In: Proc. 49th Annual Meet-
ing Association for Computational Linguistics. ACL, 2011, 825–834.

[11] J. SUN, M. ZHANG, C. L. TAN, A non-contiguous Tree Sequence Alignment-based Model for
Statistical Machine Translation. In: ACL 2009, Proceedings of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, 2-7 August 2009, Singapore. The Association for Computer
Linguistics, 2009, 914–922.

40

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 41 – 44

As Easy As Vanda, Two, Three: Components for
Machine Translation Based on Formal Grammars

Matthias Büchse(A)

Chair of Foundations of Programming
Technische Universität Dresden

01062 Dresden, Germany
Matthias.Buechse@tu-dresden.de

Machine Translation is the task of enabling computers to translate text from one language
into another. Statistical Machine Translation (SMT), in particular, applies methods from
Statistics and Machine Learning to automatically select a translation function that performs
well on existing translations, with the hope that it will also perform well on new sentences.

In recent years a lot of research has focused on using formal grammars and related for-
malisms for specifying translation functions. Among those are synchronous context-free
grammars [1, 5], synchronous tree-substitution grammars [10], synchronous tree-adjoining
grammars [27, 8], synchronous tree-sequence-substitution grammars [30], extended top-down
tree-to-string transducers [16, 14, 12], and multi-bottom-up tree transducers [11, 22].

In principle, these formalisms are amenable to formal treatment, just like weighted string
automata and weighted string transducers. The latter possess a rich theory with results about
closure properties, characterizations, complexity and decidability. Building on that strong
foundation, there is a versatile algorithmic toolbox, as witnessed by [24, 25, 2]. In conjunc-
tion, the theory and the toolbox allow for effective algebraic specification and subsequent
implementation of tasks in areas such as speech recognition [26] and morphology [15].

However, in the SMT realm, this kind of comprehensive formal treatment has yet to
happen. Most of the formalisms named above have been defined ad-hoc, so as to build a
translation system which can be evaluated.1 Core algorithms employed in those systems are
often monolithic, and they are implemented in thousands of lines of code, as witnessed by
open-source systems such as Moses [19], Joshua [21], or cdec [9]. The source code of most
research systems, including Hiero [6], is not available.

Being aware of weighted string automata and weighted string transducers, the community
does indeed express a desire for algebraic specification [18]. In fact, it has been shown
that the string devices can be employed for central algorithms [17, 7]. Moreover, May and
Knight made an effort to develop a toolkit, named Tiburon [23], for extended top-down tree
transducers. However, it has not been employed for building research SMT systems.

In the long run, we intend to provide components for (partial) algebraic specification of
research SMT systems with our system Vanda, which shall rest on three columns:

(A)financially supported by DFG VO 1011/6-1.
1This is an enormous feat by itself, one that requires immense engineering skill, and one we do not intend to

devalue.

42 Matthias Büchse

Figure 1: Representation of the decoding task as a workflow in Vanda Studio.

1. A theory and an algorithmic toolbox based on a versatile formal framework, namely
interpreted regular tree grammars, or IRTGs [20]. This framework is based on the ideas
of bimorphism semantics [3] and initial-algebra semantics [13], and it subsumes all of
the formalisms mentioned initially.

2. Vanda Toolbox, a Haskell library that implements the algorithmic toolbox. Haskell is
a clean and concise modern high-level language that is compiled into native code via
the Glasgow Haskell Compiler. It features a powerful static type system, yet it can still
be used for rapid prototyping because of automatic type inference at compile time.

3. Vanda Studio, a graphical (hyper)workflow management system that greatly facilitates
conducting experiments by providing both a standardized, well-documented interface
and the ability to specify alternatives within a single hyperworkflow. A prototype of
Vanda Studio has been implemented [4].

As a proof of our concept, we2 have implemented in Vanda Toolbox an IRTG-inspired
representation of extended top-down tree-to-string transducers, along with suitable algo-
rithms, e.g., for left/right product with regular weighted string/tree languages, binarization
of rules, determining n best derivations, rule extraction, and inside-outside EM training. This
implementation allows us to accomplish the following three tasks from the area of SMT:

Extraction Rule extraction from any given parallel corpus. To this end, we parse the target
(English) side using the Berkeley parser [29], and we use GIZA++ [28] to obtain a
word alignment for each sentence pair. We extract all rules that correspond to minimal
fragments [12].

Training Estimating rule weights.

Decoding Translating any given sentence (so far without language model).

Each of the tasks can be carried out from within Vanda Studio; as an example, Figure 1
shows the workflow representation of the translation task. Each box in the outer (shaded)
region corresponds to a part of a shell script to be run in a Unix environment, while the box
labeled “Decoder” represents a Haskell program, and the inner boxes are Haskell functions.

2The author had help from his colleagues Toni Dietze, Johannes Osterholzer, and Linda Leuschner.

As Easy As Vanda, Two, Three: Components for Machine Translation 43

In my presentation, I will show how the three aforementioned tasks can be accomplished
in a component-based manner using Vanda Toolbox and Vanda Studio, and I will report on
the performance on medium-scale data.

References
[1] A. V. AHO, J. D. ULLMAN, Syntax directed translations and the pushdown assembler. J. Comput.

System Sci. 3 (1969), 37–56.

[2] C. ALLAUZEN, M. RILEY, J. SCHALKWYK, W. SKUT, M. MOHRI, OpenFst: a general and effi-
cient weighted finite-state transducer library. In: Proceedings of the 12th international conference
on Implementation and application of automata. CIAA’07, Springer, 2007, 11–23.

[3] A. ARNOLD, M. DAUCHET, Bi-transduction de forêts. In: Proc. 3rd Int. Coll. Automata, Lan-
guages and Programming. Edinburgh University Press, 1976, 74–86.

[4] M. BÜCHSE, T. DIETZE, J. OSTERHOLZER, A. FISCHER, L. LEUSCHNER, Vanda: A Statistical
Machine Translation Toolkit. In: M. DROSTE, H. VOGLER (eds.), Proceedings of the Workshop
Weighted Automata: Theory and Applications 2012. 2012, 36–38.

[5] D. CHIANG, Hierarchical Phrase-Based Translation. Comp. Ling. 33 (2007) 2, 201–228.

[6] D. CHIANG, A. LOPEZ, N. MADNANI, C. MONZ, P. RESNIK, M. SUBOTIN, The Hiero machine
translation system: extensions, evaluation, and analysis. In: HLT ’05: Proceedings of the confer-
ence on Human Language Technology and Empirical Methods in Natural Language Processing.
ACL, Morristown, NJ, USA, 2005, 779–786.

[7] A. DE GISPERT, G. IGLESIAS, G. BLACKWOOD, E. R. BANGA, W. BYRNE, Hierarchical
Phrase-Based Translation with Weighted Finite-State Transducers and Shallow-n Grammars.
Computational Linguistics 36 (2010) 3, 505–533.

[8] S. DENEEFE, K. KNIGHT, Synchronous Tree-Adjoining Machine Translation. In: EMNLP ’09:
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing.
ACL, Morristown, NJ, USA, 2009, 727–736.

[9] C. DYER, A. LOPEZ, J. GANITKEVITCH, J. WEESE, F. TURE, P. BLUNSOM, H. SETIAWAN,
V. EIDELMAN, P. RESNIK, cdec: A Decoder, Alignment, and Learning Framework for Finite-
State and Context-Free Translation Models. In: Proceedings of the ACL 2010 System Demonstra-
tions. ACL, Uppsala, Sweden, 2010, 7–12.

[10] J. EISNER, Learning non-isomorphic tree mappings for machine translation. In: Proceedings of
the 41st Annual Meeting on Association for Computational Linguistics - Volume 2. ACL ’03, ACL,
Stroudsburg, PA, USA, 2003, 205–208.

[11] J. ENGELFRIET, E. LILIN, A. MALETTI, Extended Multi Bottom-up Tree Transducers. In:
M. ITO, F. M. TOYAMA (eds.), Proc. 12th Int. Conf. Developments in Language Theory. LNCS
5257, Springer, 2008, 289–300.

[12] M. GALLEY, M. HOPKINS, K. KNIGHT, D. MARCU, What’s in a translation rule? In: S. DU-
MAIS, D. MARCU, S. ROUKOS (eds.), HLT-NAACL 2004: Main Proceedings. ACL, Boston,
Massachusetts, USA, 2004, 273–280.

[13] J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, J. B. WRIGHT, Initial algebra semantics and
continuous algebras. J. ACM 24 (1977), 68–95.

[14] J. GRAEHL, K. KNIGHT, J. MAY, Training Tree Transducers. Comp. Ling. 34 (2008) 3, 391–427.

44 Matthias Büchse

[15] T. HANNEFORTH, fsm2 - A Scripting Language for Creating Weighted Finite-State Morphologies.
In: C. MAHLOW, M. PIOTROWSKI (eds.), SFCM. Communications in Computer and Information
Science 41, Springer, 2009, 48–63.

[16] L. HUANG, K. KNIGHT, A. JOSHI, A syntax-directed translator with extended domain of local-
ity. In: Proceedings of the Workshop on Computationally Hard Problems and Joint Inference in
Speech and Language Processing. CHSLP ’06, ACL, Stroudsburg, PA, USA, 2006, 1–8.

[17] G. IGLESIAS, A. DE GISPERT, E. R. BANGA, W. BYRNE, Hierarchical Phrase-Based Translation
with Weighted Finite State Transducers. In: Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational
Linguistics. ACL, Boulder, Colorado, 2009, 433–441.

[18] K. KNIGHT, Capturing practical natural language transformations. Machine Translation 21 (2007)
2, 121–133.

[19] P. KOEHN, H. HOANG, A. BIRCH, C. CALLISON-BURCH, M. FEDERICO, N. BERTOLDI,
B. COWAN, W. SHEN, C. MORAN, R. ZENS, C. DYER, O. BOJAR, A. CONSTANTIN,
E. HERBST, Moses: open source toolkit for statistical machine translation. In: Proceedings of
the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions. ACL ’07,
ACL, Stroudsburg, PA, USA, 2007, 177–180.

[20] A. KOLLER, M. KUHLMANN, A Generalized View on Parsing and Translation. In: Proceedings
of the 12th International Conference on Parsing Technologies. ACL, Dublin, Ireland, 2011, 2–13.

[21] Z. LI, C. CALLISON-BURCH, C. DYER, J. GANITKEVITCH, S. KHUDANPUR, L. SCHWARTZ,
W. N. G. THORNTON, J. WEESE, O. F. ZAIDAN, Joshua: an open source toolkit for parsing-
based machine translation. In: Proceedings of the Fourth Workshop on Statistical Machine Trans-
lation. StatMT ’09, ACL, Stroudsburg, PA, USA, 2009, 135–139.

[22] A. MALETTI, Why Synchronous Tree Substitution Grammars? In: Human Language Technolo-
gies: The 2010 Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics. ACL, Los Angeles, California, 2010, 876–884.

[23] J. MAY, K. KNIGHT, Tiburon: a weighted tree automata toolkit. In: O. IBARRA, H. YEN (eds.),
CIAA 2006. Lecture Notes in Comput. Sci. 4094, Springer, 2006, 102–113.

[24] M. MOHRI, Weighted automata algorithms. In: M. DROSTE, W. KUICH, H. VOGLER (eds.),
Handbook of Weighted Automata. chapter 6, Springer, 2009, 213–254.

[25] M. MOHRI, F. C. N. PEREIRA, M. RILEY, The design principles of a weighted finite-state trans-
ducer library. Theoret. Comp. Science 231 (2000), 17–32.

[26] M. MOHRI, F. C. N. PEREIRA, M. RILEY, Weighted Finite-State Transducers in Speech Recog-
nition. Computer Speech and Language 16 (2002) 1, 69–88.

[27] R. NESSON, S. M. SHIEBER, A. RUSH, Induction of Probabilistic Synchronous Tree-Insertion
Grammars for Machine Translation. In: Proceedings of the 7th Conference of the Association for
Machine Translation in the Americas (AMTA 2006). Boston, Massachusetts, 2006, 128–137.

[28] F. J. OCH, H. NEY, A systematic comparison of various statistical alignment models. Computa-
tional Linguistics 29 (2003) 1, 19–51.

[29] S. PETROV, L. BARRETT, R. THIBAUX, D. KLEIN, Learning Accurate, Compact, and Inter-
pretable Tree Annotation. In: Proceedings of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics. ACL, Syd-
ney, Australia, 2006, 433–440.

[30] M. ZHANG, H. JIANG, A. AW, H. LI, C. L. TAN, S. LI, A Tree Sequence Alignment-based
Tree-to-Tree Translation Model. In: Proceedings of ACL-08: HLT . ACL, Columbus, Ohio, 2008,
559–567.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 45 – 50

Connecting Partial Words and Regular Languages
Jürgen Dassow(A) Florin Manea(B) Robert Mercaş(A)

(A)Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany,

dassow@iws.cs.uni-magdeburg.de, robertmercas@gmail.com

(B)Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany, flm@informatik.uni-kiel.de

Abstract

We initiate a study of languages of partial words related to regular languages of full
words. First, we study the possibility of expressing a regular language of full words as
the image of a partial-words-language through a substitution that only replaces the hole
symbols of the partial words with a finite set of letters. Results regarding the structure,
uniqueness and succinctness of such a representation, as well as a series of related decid-
ability and computational-hardness results, are presented. Finally, we define a hierarchy
of classes of languages of partial words, by grouping together languages that can be con-
nected in strong ways to regular languages, and derive their closure properties.

1. Introduction
Partial words are words that beside regular letters contain an extra “joker” symbol, also called
“hole” or “do-not-know” symbol, that matches all symbols of the original alphabet, which
were investigated already in the 1970s [2]. In the last decade a lot of combinatorial and
algorithmic properties of partial words have been investigated (see the survey [1], and the
references therein). Surprisingly, so far, the only study of classes of languages of partial
words (or sets of partial words that have common features) that we are aware of, is [3]. .

In this work, we aim to establish a stronger connection between the attractive notions
mentioned above: partial words, on one side, and regular languages, on the other side. First,
we show how we can (non-trivially) represent every regular language as the image of a regular
language of partial words through a substitution that defines the letters that may replace the
hole (called �-substitution, in the following). We show that such a representation can be use-
ful: for some regular languages, there exist deterministic finite automata accepting languages
of partial words that represent the full-word-language and are exponentially more succinct
than the minimal deterministic finite automaton accepting that language. Unfortunately, it
may also be the case when the minimal non-deterministic finite automaton accepting a lan-
guage is exponentially more succinct than any deterministic automaton accepting a language

(A)Work supported by the Alexander von Humboldt Foundation.
(B)Work supported by the DFG grant 582014.

46 Jürgen Dassow, Florin Manea, Robert Mercaş

of partial words representing the same language. An automata accepting languages of partial
words representing a given full-words language can be seen as intermediate between the de-
terministic finite automata and the non-deterministic automata accepting that language. We
also present a series of algorithmic and complexity results regarding the representation of a
regular language as the image of a language of partial words through a �-substitution.

Motivated by the above results, that connect in a meaningful way languages of partial
words to regular languages of full words, and by the theoretical interest of studying system-
atically such languages, we define a series of classes of languages of partial words. Each of
these classes contains languages that can be placed in a particular strong relation with the
regular languages. Further, we investigate these classes from a language theoretic point of
view, show that they form a hierarchy, and establish their closure properties.1

We begin the paper with a series of basic definitions. For an alphabet V , a full word
(or, simply, word) is a finite sequence of letters from V while a partial word is a finite
sequence of letters from V ∪{�}, the alphabet V extended with the distinguished hole symbol
�. The number of occurrences of a symbol a in a (partial) word w is denoted |w|a. The
empty (partial) word is the sequence of length zero and is denoted by λ. We denote by V ∗

(respectively, (V ∪{�})∗) the set of words (respectively, partial words) over the alphabet V
and by V + (respectively, (V ∪{�})+) the set of non-empty words (respectively, non-empty
partial words) over V . The catenation of two (partial) words u and v is defined as the (partial)
word uv. Recall that V ∗ (where the alphabet V may include the � symbol) is the free monoid
generated by V , under the operation of catenation of words; the unit element in this monoid is
represented by the empty word λ. A language L of full words over an alphabet V is a subset
of V ∗; a language of partial words L over an alphabet V (that does not contain the � symbol)
is a subset of (V ∪{�})∗. Given L we denote by alph(L) (the alphabet of L) the set of all the
letters that occur in the words of L; for the precision of the exposure, we say that a language
L of full (respectively, partial) words is over V , with � /∈ V , if and only if alph(L) = V
(respectively, alph(L) = V ∪ {�}). For instance, L = {abb,ab�} has alph(L) = {a,b,�},
thus, is a language of partial words over {a,b}. The catenation operation can be extended to
languages (for L1,L2 languages over V , we have L1L2 = {w1w2 | w1 ∈ L1,w2 ∈ L2}).

Let u and v be two partial words of equal length. Say that u is contained in v, denoted
by u< v, if u[i] = v[i] for all u[i] ∈ V ; moreover, u and v are compatible, denoted by u ↑ v,
if there exists w such that u < w and v < w. These notions are extended to languages. Let
L and L′ be two languages of partial words with alph(L)∪alph(L′) = V ∪{�} and � /∈ V .
Say that L is contained in L′, denoted L< L′, if, for every w ∈ L, there exists w′ ∈ L′ such
that w < w′. S ay that L is compatible to L′, denoted L ↑ L′, if, for each w ∈ L, there exists
w′ ∈ L′ such that w ↑ w′ and, for each v′ ∈ L′, there exists v ∈ L such that v′ ↑ v.

A substitution is a mapping h : V ∗ → 2U
∗

with h(xy) = h(x)h(y), for x,y ∈ V ∗, and
h(λ) = {λ}. A morphism is a particular type of a substitution for which h(a) contains exactly
one element for all a ∈ V . A �-substitution over V is a substitution with h(a) = {a}, for
a ∈ V , and h(�)⊆ V . Here we assume that � can replace any symbol of V .

In this paper, DFA stands for deterministic finite automaton and NFA stands for non-
deterministic finite automaton; the language accepted by a finite automaton M is denoted
L(M). Also, the set of all the regular languages is denoted by REG; by REGfull, we denote

1A technical appendix containing full proofs: https://www.informatik.uni-kiel.de/zs/pwords.

Connecting Partial Words and Regular Languages 47

the set of all the regular languages of full words. Further definitions regarding finite automata
and regular languages can be found in [5], while partial words are surveyed in [1].

2. Definability by Substitutions
Let us begin our investigation by presenting several results regarding the way regular lan-
guages can be expressed as the image of a language of partial words through a substitution.

Lemma 2.1 Let L⊆ (V ∪{�})∗{�}(V ∪{�})∗ be a language of partial words and let σ be
a �-substitution over V . There exists L′ such that σ(L) = σ(L′) and |w|� = 1 for all w ∈ L′.

Lemma 2.2 LetL be a regular language over V and σ a �-substitution over V . There exists a
maximal (with respect to set inclusion) language L′ ⊆ L that can be written as σ(L′′), where
L′′ is a language of partial words such that any word inL′′ has exactly one hole. Moreover, L′

and L′′ are regular languages and, provided that L is given by a finite automaton accepting
it, one can algorithmically construct a finite automaton accepting L′ and L′′.

The next relations connect partial-words-languages to full-words-languages.

Definition 2.3 Let L ⊆ V ∗ be a language and σ be a �-substitution over V . We say that
L is σ-defined by the language L′, where L′ ⊆ (V ∪{�})∗ is a partial-words-language, if
L= σ(L′). Moreover, we say that L is essentially σ-defined by L′, where L′ ⊆ (V ′∪{�})∗,
if L= σ(L′) and every word in L′ contains at least a �-symbol.

Obviously, for any regular language L over V , there is a regular language L′ of partial
words and a �-substitution σ over V such that σ(L′) = L (in L′ take words from L where a
symbol a ∈ V is replaced by �, and the �-substitution σ that maps � to {a}.) We first charac-
terize the essentially definable languages. Be Lemmas 2.1 and 2.2 we get the following:

Theorem 2.4 For a regular language of full words L over V and σ a �-substitution over V
it is decidable whether L is essentially σ-definable.

We also easily get the following decidability results.

Theorem 2.5 i) Given a regular language L over V and a �-substitution σ over V , it is
decidable whether L is essentially σ-definable.
ii) Given a regular language L over V , one can algorithmically identify all �-substitutions σ
for which L is essentially σ-definable.

The following consequence of Lemma 2.2 is worth noting, as it provides a canonical
non-trivial representation of regular languages.

Theorem 2.6 Given a regular language L ⊆ V ∗ and a �-substitution σ over V , there exists
a unique regular language L� of partial words that fulfils the following three conditions: (i)
L= σ(L�), (ii) for any language L1 with σ(L1) =L we have {w |w ∈ L1, |w|� ≥ 1}< {w |
w ∈ L�, |w|� ≥ 1}, and (iii) (L�∩V ∗)∩σ({w | w ∈ L�, |w|� ≥ 1}) = ∅.

48 Jürgen Dassow, Florin Manea, Robert Mercaş

Motivated by this last result, we now check if there are cases when one can describe in a
more succinct way a regular language via a language of partial words and a substitution that
define it? Can we decide algorithmically whether for a given regular language L there exist a
language of partial words and a substitution providing a more succinct description of L? For
L a regular language of full words over V denote by minDFA(L) (minNFA(L)) the number
of states of the complete minimal DFA (NFA) accepting L. Moreover, for a regular language
L let min�DFA(L) denote the minimum number of states of a (complete) DFA accepting a
regular language L′ ⊆ (V ∪{�})∗ (where � is considered as an input symbol) for which there
exists a �-substitution σ over V such that σ(L′) = L. We get the following relation:

Theorem 2.7 For all regular languages we have minDFA(L)≥min�DFA(L)≥minNFA(L).
Furthermore, there exist regular languages for which the inequalities are strict.

In fact, one can show that the differences minDFA(L)−min�DFA(L) and min�DFA(L)−
minNFA(L) may have an exponential blow-up with respect to both relations.

Theorem 2.8 Let n be a natural number, n ≥ 3. There exist regular languages L and L′

such that min�DFA(L)≤ n+1 and minDFA(L) = 2n−2n−2 and minNFA(L′)≤ 2n+1 and
min�DFA(L

′)≥ 2n−2n−2.

The following remark provides an algorithmic side of the results stated above.

Remark 2.9 Given a DFA accepting a regular language L we can construct algorithmically
a DFA with min�DFA(L) states, accepting a regular language of partial words L′, and a �-
substitution σ over alph(L), such that L is σ-defined by L′.

We conclude by showing the hardness of a problem related to definability.

Theorem 2.10 Consider the problem P : “Given a DFA accepting a language L of full
words, a DFA accepting a language L′ of partial words, and a �-substitution σ over alph(L),
decide whether σ(L′) 6= L.” This problem is NP-hard.

3. Languages of partial words
In this section we investigate the languages of partial words whose images through a substi-
tution (or all possible substitutions) are regular and those compatible with at least one regular
language (or only with regular languages). The definitions of the first three classes look at
languages of partial words that can be transformed, via substitutions, into regular languages.

Definition 3.1 Let L be a language of partial words over V .
1. We say that L is (∀σ)-regular if σ(L) is regular for all the �-substitutions σ over alphabets
that contain V and do not contain �.
2. We say that L is max-regular if σ(L) is regular, where σ is a �-substitution over V ′ with
σ(�) = V ′, and V ′ = V if V 6= ∅, and V ′ is a singleton with � /∈ V ′, otherwise.
3. We say that L is (∃σ)-regular if there exists a �-substitution σ over a non-empty alphabet
V ′, that contains V and does not contain �, such that σ(L) is regular.

Connecting Partial Words and Regular Languages 49

The classes of all (∀σ)-regular, max-regular, and (∃σ)-regular languages are denoted by
REG(∀σ), REGmax, and, respectively, REG(∃σ).

We consider, in the following, two classes of languages of partial words that are defined
starting from the concept of compatibility.

Definition 3.2 Let L be a language of partial words over V .
4. We say that L is (∃)-regular if exists a regular language L′ of full words such that L ↑ L′.
5. We say that L is (∀)-regular if every language L′ of full words such that L ↑ L′ is regular.
The class of all the (∃)-regular languages is denoted REG(∃), while that of (∀)-regular lan-
guages by REG(∀).

According to the definitions from [3], the (∃)-regular languages are those whose restora-
tion contains at least a regular language, while (∀)-regular languages are those whose restora-
tion contains only regular languages. We start with the following result.

Theorem 3.3 For every non-empty alphabet V with � /∈ V there exist an undecidable lan-
guage L of partial words over V , such that:
i) σ(L) ∈ REG for all substitutions σ over V , and σ′(L) /∈ REG for the �-substitution σ′

with σ′(�) = V ∪{c}, where c /∈ V .
ii) every full-words-language L′ ⊆ V ∗ compatible with L is regular and there is an undecid-
able language L′′ ⊆ (V ′)∗, where V ′ strictly extends V , which is compatible with L.

We can now show a first result regarding the classes previously defined.

Theorem 3.4 REG = REG(∀σ) ⊂ REGmax.

The next result gives some insight on the structure of the class REGmax.

Theorem 3.5 Let L ∈ REGmax be a language of partial words over V 6= ∅ and σ the �-
substitution used in the definition of REGmax. Then there exists a maximal language (with
respect to set inclusion) L0 ∈ REGmax of partial words over V such that σ(L0) = σ(L).
Moreover, given an automaton accepting L, an automaton accepting L0 can be constructed.

It is easy to see that any language from REGmax whose words contain only holes is regular.
The following relation also holds:

Theorem 3.6 REGmax ⊂ REG(∃σ) ⊂ REG(∃).

As already shown, all the languages in REG(∀) are in REG = REG(∀σ); however, not
all the languages in REG are in REG(∀). The following statement characterizes exactly the
regular languages that are in REG(∀).

Theorem 3.7 Let L be a regular partial-words-language over V . Then L ∈ REG(∀) if and
only if the set {w | |w|� ≥ 1,w ∈ L} is finite.

50 Jürgen Dassow, Florin Manea, Robert Mercaş

The previous result provides a simple procedure for deciding whether a regular partial-
words-language is in REG(∀) or not (taking as input a DFA for that language check whether
there are finitely many words that contain � or not).

Theorem 3.7 has also the following consequence.

Theorem 3.8 REG(∀) ⊂ REG.

In [4], partial words were defined by applying the finite transduction defined by a deter-
ministic generalised sequential machine (DGSM) to full words, such that � appears in the
output word. Accordingly, we can define a new class of partial-words-languages, REGgsm,
using this automata-theoretic approach. Let L be a language of partial words over V , with
� ∈ alph(L); L is gsm-regular, and is in REGgsm, if there exists a DGSM M and a regular
language L′ such that L is obtained by applying the finite transduction defined by M to L′.
It is not hard to show that REGgsm = REG\REGfull.

By the Theorems 3.4,3.6,3.7, and 3.8 we get the following hierarchies:

REGfull ⊂ REG(∀) ⊂ REG = REG(∀σ) ⊂ REGmax ⊂ REG(∃σ) ⊂ REG(∃)

REG\REGfull = REGgsm ⊂ REG = REG(∀σ)

Finally, the closure properties of the defined classes are summarized in the following ta-
ble. Note that y (respectively, n) at the intersection of the row associated with the class C and
the column associated with the operation ◦ means that C is closed (respectively, not closed)
under operation ◦. A special case is the closure of REGmax under union and concatenation: in
general this class is not closed under these operations, but when we apply them to languages
of REGmax over the same alphabet we get a language from the same class.

Class ∪ ∩ ∩REG alph(L)∗ \L ∗ · φ φ−1 σ

REG(∀) y y y n n n n n n
REG = REG(∀σ) y y y y y y y y y

REGmax n/y n n n y n/y n n n
REG(∃σ) n n n n y n n n n
REG(∃) y n n y y y n n n

References
[1] F. BLANCHET-SADRI, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press,

2008.

[2] M. J. FISCHER, M. S. PATERSON, String matching and other products. In: Complexity of Compu-
tation, SIAM-AMS Proceedings. 7, 1974, 113–125.

[3] G. LISCHKE, Restoration of punctured languages and similarity of languages. Mathematical Logic
Quarterly 52 (2006) 1, 20–28.

[4] F. MANEA, R. MERCAŞ, Freeness of partial words. Theoretical Computer Science 389 (2007) 1-2,
265–277.

[5] G. ROZENBERG, A. SALOMAA, Handbook of Formal Languages. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 51 – 56

Fast Descriptive Generalization
of Restricted Regular Expressions and DTDs

Dominik D. Freydenberger(A) Timo Kötzing(B)

(A)Institut für Informatik, Goethe-Universität, Frankfurt am Main
freydenberger@em.uni-frankfurt.de

(B)Max-Planck-Institute for Informatics, Saarbrücken
koetzing@mpi-inf.mpg.de

Abstract

We study the problem of generalizing from a finite sample to an infinite language
taken from a predefined language class. The two language classes we consider are subsets
of the regular languages and have significance in the specification of XML documents
(the classes corresponding to so called chain regular expressions, CHAREs, and to single
occurrence regular expressions, SOREs).

The previous literature gave a number of algorithms for generalizing to SOREs pro-
viding a trade off between generalization speed and quality of the solution. Furthermore,
a fast but non-optimal algorithm for generalizing to CHAREs is known.

For each of the two language classes we give an efficient algorithm returning a minimal
generalization from the given finite sample to an element of the fixed language class; such
generalizations are called descriptive. In this sense, both our algorithms are optimal.

1. SOREs, CHAREs, and Descriptive Generalization
The present paper provides a short overview of [5], which refines an approach for XML
schema inference from positive examples that was introduced by Bex et al. [3]. The ba-
sic problem setting is as follows: Given a set of XML documents, generate a schema that
describes these documents, while being compact and preferably human readable.

Bex et al. approach this problem by learning deterministic regular expressions from pos-
itive examples; i. e., they consider the following problem: Given a finite set S of positive
examples from an unknown target language L, find a deterministic regular expression for
L. These regular expressions can immediately be used as DTDs (Document Type Defini-
tions), and while XSDs (XML Schema Documents) require additional effort, algorithms that
infer regular expressions can also be used as a component of XSD inference algorithms (see
[3, 4] for further explanations). In particular, as argued in [3], the results in [11] show that
XSD inference requires deep insights into regular expression inference – as Bex et al. put it,
“one cannot hope to successfully infer XSDs without good algorithms for inferring regular
expressions”.

(A)This work was done while this author was visiting the Max-Planck-Institute for Informatics in Saarbrücken.

52 Dominik D. Freydenberger, Timo Kötzing

Using a classical technique from Gold [9], Bex et al. prove in [2] that even the class
of deterministic regular expressions is too rich to be learnable from positive data. While,
strictly speaking, the learnability criterion of Gold style learning as defined in [9] (which is
also called learning in the limit from positive data or explanatory learning) is different from
the setting in [2, 3],1 its non-learnability results still provide valuable insights into necessary
restrictions.

In particular, Gold style learning shows that, when learning from positive data, one has
to balance the need for generalization (as in most cases, a regular expression that generates
exactly the example is not considered a good hypothesis) with the need to avoid overgeneral-
ization.

While there are numerous papers on restrictions on the class of regular languages that
lead to learnability, apart from a few exceptions (e. g. [6]), most of these restrictions prior
to [3] have been based on properties of automata. As explained in [3], this is problematic, as
even under those restrictions, converting the inferred automaton to a regular expression can
lead to an exponential size increase.

In order to achieve learnability of concise deterministic regular expression, Bex et al.
propose single occurrence regular expressions (short SOREs), regular expressions where each
terminal letter (or element name) occurs at most once.

These SOREs are deterministic by definition, and as an additional benefit, this restriction
ensures that the length of the inferred expressions is at most linear in the number of different
terminal letters.

The corresponding SORE-inference algorithm RWR from [3] works as follows: First, it
constructs a so-called single occurrence automaton (short SOA, as introduced by García and
Vidal [8]).

Basically, SOAs are a subclass of DFAs; namely those DFAs where for each a ∈ Σ, there
exists a characteristic state qa such that δ(q,a) = qa for all states q ∈Q. This is illustrated by
the following example:

Example 1.1 In the picture below, we have a SOA in SOA notation on the left side, and the
corresponding DFA to the right side.

a b

c

a

a

b

b
c

c

c

As every input letter leads to a characteristic successor state, we can represent SOAs more
compactly by moving the letters from the edges into the states. Both automata generate the
same language as the regular expression α = ((ac+?b)((ac+?b) |(c+b))+?)?. Following a
notation from [3] (which is common when working with XML), we use ? to denote |ε.

1Gold style learning uses a growing set of samples and requires that the learner converges toward a correct
hypothesis in finite time, while this setting uses only a single finite set for each inference instance.

Fast Descriptive Generalization of Restricted Regular Expressions and DTDs 53

Note that α is not a SORE. In fact, L(α) is not a SORE-language, but proving this using
elementary techniques requires considerable effort. (The most straightforward way to prove
this is to use the conversion algorithm Soa2Sore from [5] on the SOA, which returns the
SORE (ab?c+?)+?, which is not equivalent to α.)

RWR then attempts to convert the SOA step by step into a SORE. As the class of SORE-
languages is a proper subset of the class of SOA-languages, this conversion is not always
possible. In these cases, RWR attempts to repair the SOA, and constructs a SORE that generates
a generalization of the language of the SOA. In order to generalize as little as possible, [3]
suggests different orderings on the set of repair rules, as well as the variant RWR2

` , which uses
additional heuristics and can have an exponential running time. Nonetheless, these variants
may still infer SOREs that are not inclusion-minimal generalizations of the input sample
(within the class of all SOREs).

In order to deal with insufficient data, Bex et al. proposed a further restriction on SOREs,
the so-called chain regular expressions (short: CHAREs):

Definition 1.2 A chain regular expression (or CHARE) is a SORE is of the form f1 · . . . · fn
(n≥ 0), where each fi is a chain factor, i. e., a SORE of the form (a1 | · · · |ak), (a1 | · · · |ak)?,
(a1 | · · · |ak)+, or (a1 | · · · |ak)+?, where k ≥ 1, and each aj is a terminal letter.

Bex et al. introduced the corresponding inference algorithm CRX. Analogously to RWR,
CRX may infer CHAREs that are not inclusion-minimal generalizations.

The paper [5] focuses on inferring SOREs and CHAREs that are inclusion-minimal gener-
alizations. This approach to regular expression inference is based on a slightly different angle
than Gold style learning, namely on the learning paradigm of descriptive generalization that
was introduced by Freydenberger and Reidenbach [7].

While Gold style learning assumes that an exact representation of the target language
is present in the hypothesis space, and that the learner is provided with sufficient positive
information to correctly recognize the target language, descriptive generalization views the
hypothesis space and the space of target languages as distinct.

Definition 1.3 For a class D of language representation mechanisms (e. g., a class of au-
tomata, regular expressions, or grammars2), a language representation δ ∈ D is called D-
descriptive of a language L if 1. L⊆ L(δ), and 2. there is no γ ∈ D with L⊆ L(γ)⊂ L(δ).

This concept allows us to define D-descriptive generalization as a natural extension of Gold
style learning: Instead of attempting to learn an exact representation of the target language L
from a sample S, the learner has to infer a representation δ ∈D that is D-descriptive of L. In
other words, δ is a generalization of S that is as inclusion-minimal as possible within D.

Descriptive generalization explicitly separates the hypothesis space from the class of tar-
get languages, while still providing a natural quality criterion for generalization from positive
examples. In the approach presented in this paper, we consider the class of SOREs and the

2The canonical class D is the class of NE-patterns, where descriptive patterns were introduced by Angluin [1]
in the context of exact learning from positive data. See [12] for a survey on the influence of pattern languages in this
area.

54 Dominik D. Freydenberger, Timo Kötzing

class of CHAREs as hypothesis spacesD, and examine the problem of inferringD-descriptive
generalizations from finite samples.

We approach this problem by first computing a SOA-descriptive SOA. As proven in [5],
this approach has the advantages that the descriptive SOA is uniquely defined, can be com-
puted efficiently, and its language is included in the language of every descriptive SORE or
CHARE.

The main contribution of [5] are two algorithms, Soa2Sore and Soa2Chare, that can
be used to transform any given SOA A into a SORE (resp. CHARE) that is SORE-descriptive
(resp. CHARE-descriptive) of the language of L(A). That is, given a sample S, these al-
gorithms can be used to compute a generalization of S that is inclusion-minimal (or, in the
terminology of [3], optimal) within the class of SOREs or CHAREs (respectively).

In addition to this, Soa2Chare and Soa2Sore are efficient: Soa2Chare runs in time
O(m) (compared to O(m+n3) for CRX), Soa2Sore in time O(nm) (compared to O(n5) for
RWR), where m is the number of edges and n the number of nodes in the SOA.

In [3], Bex et al. state that their schema inference algorithms “outperform existing algo-
rithms in accuracy, conciseness, and speed”. Considering the results presented in [5], the
authors of the present paper feel confident to suggest that their new strategies outperform the
algorithms from [3] with respect to both accuracy and speed, and are on par with respect to
conciseness. An experimental evaluation of implementations of the algorithms is planned for
the near future.

2. An Exemplary Run of Soa2Sore
This section demonstrates how the algorithm Soa2Sore turns a SOA into a descriptive SORE.
As the algorithm had to be omitted for space reasons, this example can only provide a very
general feel of its behavior. Nonetheless, the reader might find it illuminating (and the pic-
tures are quite elegant). Consider the sample S = {ababc,abcdabc}. The following SOA is
the only SOA that is SOA-descriptive of S.

a

b

c

d

The labeled vertices of this SOA consist of a single strongly connected looped component, an
application of “bend” computes the set W = {a,b}, which leads to the following SOA.

a

b

c

d

After resolving the strongly connected looped component containing a and b (all other are
not “looped”) and contract, we get the following.

Fast Descriptive Generalization of Restricted Regular Expressions and DTDs 55

(ab)+ c

d

We can split off the first node twice now, recursing finally on the remaining SOA as follows.

d

addEpsilon
ε

d

This results in d |ε, or, equivalently, d?. Going back through the recursions, we get

((ab)+cd?)+.

This SORE is SORE-descriptive for the language of the input SOA, and for the sample S.

3. Beyond SOREs and CHAREs
From the authors’ point of view, the following problem is probably the most interesting:
In [2], Bex et al. examine the inference of k-occurence regular expressions (short k-OREs);
regular expressions where each terminal letter occurs at most k times. (Hence, SOREs are
1-OREs). Is it possible to extend Soa2Sore to deterministic k-OREs for some k ≥ 2, or
Soa2Chare to the corresponding extension of CHAREs (where letters are allowed to occur
up to k times)?

It seems that one would need to develop not only a good generalization of SOAs, but also
a “good” inclusion criterion, preferably syntactic. This conjecture is based on the follow-
ing observation: While the results in [5] make no direct use of the results and techniques
that Freydenberger and Reidenbach [7] developed for descriptive generalization of pattern
languages, both papers rely heavily on the fact that the inclusion problem for the respective
language classes has a syntactic criterion for inclusion.

The proofs on descriptive generalization of pattern languages in [7] rely on the fact that
inclusion for terminal-free E-pattern languages is characterized by the existence of a mor-
phism which maps the pattern that generates the superlanguage to the pattern that generates
the sublanguage. This criterion is a versatile tool to prove the nonexistence of a (pattern) lan-
guage between the target language and the language of a descriptive pattern. While the proofs
in [5] cannot make any direct use of the proofs from [7], the approaches are similar concep-
tually. In particular, the line of reasoning in which the correctness proofs of Soa2Chare
and Soa2Sore use the fact that the inclusion problem for SOREs (and CHAREs) is charac-
terized by the covering of the respective SOAs is structurally similar to the proofs for pattern
languages.

Moreover, although deciding whether such a pattern morphism exists is an NP-complete
problem, the techniques in [7] are not affected by the computational hardness. Hence, the
hardness results on the decidability of the k-ORE-inclusion problem presented by Martens
et al. [10] do not exclude the existence of such a criterion. This leaves room for hope that
Soa2Sore can be extended to k-OREs with k ≥ 2.

56 Dominik D. Freydenberger, Timo Kötzing

References
[1] D. ANGLUIN, Finding Patterns Common to a Set of Strings. Journal of Computer and System

Sciences 21 (1980) 1, 46–62.

[2] G. J. BEX, W. GELADE, F. NEVEN, S. VANSUMMEREN, Learning Deterministic Regular Ex-
pressions for the Inference of Schemas from XML Data. ACM Transactions on the Web 4 (2010)
4, 14:1–14:32.

[3] G. J. BEX, F. NEVEN, T. SCHWENTICK, S. VANSUMMEREN, Inference of concise regular ex-
pressions and DTDs. ACM Transactions on Database Systems 35 (2010) 2, 11:1–11:47.

[4] G. J. BEX, F. NEVEN, S. VANSUMMEREN, Inferring XML Schema Definitions from XML Data.
In: Proc. VLDB 2007. 2007, 998–1009.

[5] T. K. D. D. FREYDENBERGER, Fast Learning of Restricted Regular Expressions and DTDs.
Submitted.

[6] H. FERNAU, Algorithms for learning regular expressions from positive data. Information and
Computation 207 (2009) 4, 521–541.

[7] D. D. FREYDENBERGER, D. REIDENBACH, Inferring Descriptive Generalisations of Formal
Languages. In: Proc. COLT 2010. 2010, 194–206.

[8] P. GARCÍA, E. VIDAL, Inference of k-Testable Languages in the Strict Sense and Application to
Syntactic Pattern Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
12 (1990) 9, 920–925.

[9] E. M. GOLD, Language Identification in the Limit. Information and Control 10 (1967) 5, 447–
474.

[10] W. MARTENS, F. NEVEN, T. SCHWENTICK, Complexity of Decision Problems for XML
Schemas and Chain Regular Expressions. SIAM Journal on Computing 39 (2009) 4, 1486–1530.

[11] W. MARTENS, F. NEVEN, T. SCHWENTICK, G. J. BEX, Expressiveness and complexity of XML
Schema. ACM Transactions on Database Systems 31 (2006) 3, 770–813.

[12] Y. K. NG, T. SHINOHARA, Developments from enquiries into the learnability of the pattern lan-
guages from positive data. Theoretical Computer Science 397 (2008) 1–3, 150–165.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 57 – 60

Finding Pseudo-Repetitions
Paweł Gawrychowski(A) Florin Manea(B) Robert Mercaş(C)

Dirk Nowotka(B) Cătălin Tiseanu(D)

(A)Max-Planck-Institute für Informatik,
Saarbrücken, Germany, gawry@cs.uni.wroc.pl

(B)Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany, {flm,dn}@informatik.uni-kiel.de

(C)Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany, robertmercas@gmail.com

(D)University of Maryland at College Park, Computer Science Department,
A.V. Williams Bldg., College Park, MD 20742, USA, ctiseanu@umd.edu

Abstract
Pseudo-repetitions are a generalization of the fundamental notion of repetitions in

sequences, considered initially in the framework of DNA computing and bioinformatics.
We develop the algorithmic foundations for questions on pseudo-repetitions by nontrivial
application of combinatorial results on words.

1. Introduction
The notions of repetition and primitivity are fundamental concepts on sequences used in a
number of fields, among them being stringology and algebraic coding theory. A word is a
repetition (or power) if it can be expressed as a repeated catenation of one of its prefixes.
We consider a more general concept here, namely pseudo-repetitions in words. A word w is
a pseudo-repetition if it can be written as a repeated catenation of one of its prefixes t and
its image f(t) under some morphism or antimorphism (for short “anti-/morphism”) f , thus
w ∈ t{t,f(t)}+.

Pseudo-repetitions, introduced in a restricted form by Kari et al.[2], lacked so far a de-
veloped algorithmic part, something usually quite important in the field this theory originates
from – bioinformatics. This work is aimed to fill this gap. We investigate the following two
basic algorithmic problems: decide whether a word w is a pseudo-repetition for some given
morphism f and find all k-powers of pseudo-repetitions occurring as factors in a word, for
some given f . We establish algorithms and complexity bounds for these problems for vari-
ous types of morphisms thereby improving significantly the results from [1]. Apart from the
application of standard tools of string algorithms, like suffix arrays, we extend the toolbox by
nontrivial applications of results from combinatorics on words.

(B)The work of Florin Manea is supported by the DFG grant 582014. The work of Dirk Nowotka is supported by
the DFG Heisenberg grant 590179.
(C)The work of Robert Mercaş is supported by the Alexander von Humboldt Foundation.

58 Paweł Gawrychowski, Florin Manea, Robert Mercaş, Dirk Nowotka, Cătălin Tiseanu

1.1. Background and Motivation

The motivation of introducing pseudo-repetition and pseudo-primitivity in [2] originated
from the field of computational biology, namely the facts that the Watson-Crick comple-
ment can be formalized as an antimorphic involution and both a single-stranded DNA and its
complement (or its image through such an involution) basically encode the same information.
Until now, pseudo-repetitions were considered only in the cases of anti-/morphic involutions,
following the original motivation, and the results obtained were mostly of combinatoric na-
ture (e.g., generalizations of the Fine and Wilf theorem).

A natural extension of these concepts is to consider antimorphisms and morphisms in
general, which is done in this paper. Considering that the notion of repetition is central in
the study of combinatorics of words, and the plethora of applications that this concept has,
the study of pseudo-repetitions seems even more attractive, at least from a theoretical point
of view. While the biological motivation seems appropriate only for the case when f is an
antimorphic involution, one can imagine a series of real-life scenarios where we are interested
in identifying factors that can be written as an iterated catenation of a word and its encoding
through some simple function f . Indeed, pseudo-repetitions can be seen as strings that have
an intrinsic repetitive structure, hidden by rewriting some of the factors that define it through
some anti-/morphism.

1.2. Some Basic Concepts

For more detailed definitions we refer to the handbook [4].
Let V be a finite alphabet. We denote by V ∗ the set of all words over V and by V k the

set of all words of length k. The length of a word w ∈ V ∗ is denoted by |w|. The empty word
is denoted by λ. Moreover, we denote by alph(w) the alphabet of all letters that occur in w.

A function f : V ∗→ V ∗ is a morphism if f(xy) = f(x)f(y) for any words x and y over
V . Further, f is an antimorphism if f(xy) = f(y)f(x) for all x,y ∈ V ∗. Note that, when
we define a morphism or an antimorphism it is enough to give the definitions of f(a), for all
a ∈ V . An anti-/morphism f : V ∗→ V ∗ is an involution if f2(a) = a for all a ∈ V . We say
that f is uniform if there exists a number k with f(a) ∈ V k, for all a ∈ V ; if k = 1 then f is
called literal. If f(a) = λ for some a ∈ V , then f is called erasing, otherwise non-erasing.

The powers of a word w are defined recursively by w0 = λ and wn = wwn−1 for n≥ 1.
If w cannot be expressed as a nontrivial power of another word, then w is primitive. We say
that a word w is an f -repetition, or, alternatively, an f -power, if w is in t{t,f(t)}+, for some
prefix t of w. If w is not an f -power, then w is f -primitive.

As an example, the word abcaab is primitive from the classical point of view (i.e., 1-
primitive, where 1 is the identical morphism) as well as f -primitive, for the morphism f
defined by f(a) = b, f(b) = a and f(c) = c. However, when considering the morphism
f(a) = c, f(b) = a and f(c) = b, we get that abcaab is the catenation of ab, ca= f(ab), and
ab, thus, being an f -repetition.

Finally, we stress out that the computational model we use to design and analysis of our
algorithms is the unit-cost RAM (Random Access Machine) with logarithmic word size.

Finding Pseudo-Repetitions 59

2. Algorithmic problems and results
In the upcoming algorithmic problems, when we are given as input a word w of length n we
assume that the symbols of w are in fact integers from {1, . . . ,n} (i.e., alph(w)⊆ {1, . . . ,n}),
and w is seen as a sequence of integers. This is a common assumption in algorithmic on
words (see, e.g., the discussion in [3]).

In the first one, which is probably the most interesting in the general context of pseudo-
repetitions, we are interested in deciding whether a word is an f -repetition, for some given
anti-/morphism f whose size is assumed to be constant.

Problem 1 Let f : V ∗→ V ∗ be an anti-/morphism. Given w ∈ V ∗, decide whether for some
word t we have w ∈ t{t,f(t)}+.

We solve this problem in the general case in time O(n lgn). However, in the particular case
of uniform anti-/morphisms we obtain an optimal solution running in linear time. The latter
includes the biologically motivated case of involutions from [2]. Further, we extend our
results to a more general form of Problem 1, testing whether w ∈ {t,f(t)}{t,f(t)}+. Except
for the most general case (of anti-/morphisms that can also erase letters), when we solve this
problem in O(n1+ 1

lg lgn lgn) time , in the rest of the cases we are able to preserve the same
time complexity as for the particular form of the problem.

Two other natural problems are related to identifying the factors of a word which are
pseudo-repetitions. The first one was originally considered in [1]; the second generalizes it.
Both these problems are related to testing the fundamental combinatorial property of freeness
of words, in the context of pseudo-repetitions.

Problem 2 Let f : V ∗→ V ∗ be an anti-/morphism and w ∈ V ∗ a word.
(1) Given the number k enumerate all pairs (i, j) such that w[i..j] ∈ {t,f(t)}k.
(2) Enumerate all triples (i, j, `) such that there exists t with w[i..j] ∈ {t,f(t)}`.

Our approach to the second question of the problem is based on constructing data struc-
tures that enable us to obtain in constant time the answer to queries rep(i, j, `): “Is there
t ∈ V ∗ such that w[i..j] ∈ {t,f(t)}`?”, for 1 ≤ i ≤ j ≤ |w| and 1 ≤ ` ≤ |w|. In the gen-
eral case, one can produce in O(n3√n) time such data structures. When f is non-erasing,
the time needed to construct such data structures is O(n3), while when f is a literal anti-
/morphism we can do it in time Θ(n2). In every case, once we have these structures, we can
identify in Θ(n3) time the triples (i, j, `) such that w[i..j] ∈ {t,f(t)}`, answering question
(2) in Problem 2. Using these data structure we obtain, when f is non-erasing (respectively,
literal), an algorithm that solves this part of the problem in Θ(n3) (respectively, Θ(n2 lgn))
time and show that there are input words on which every algorithm solving question (2) has
a running time asymptotically equal to ours (this time, including the preprocessing time).
Unfortunately, the time bound obtained for most general case is not tight.

The same data structures can be used in the simplest case, of literal anti-/morphisms, to
answer question (1) of Problem 2. We obtain an algorithm that outputs in quadratic time,
for a given w and k, all pairs (i, j) such that w[i..j] ∈ {t,f(t)}k; again, this time bound is
shown to be tight as we exhibit words w and all sorts of (general, non-erasing uniform, or,
respectively, literal) anti-/morphisms f for which w has Θ(n2) factors from {t,f(t)}k. By

60 Paweł Gawrychowski, Florin Manea, Robert Mercaş, Dirk Nowotka, Cătălin Tiseanu

taking advantage of the fact that k is given as input (so fixed throughout the algorithm) we can
refine our approach to solve question (2) in order to obtain a quadratic solution of question
(1) for f non-erasing, which is a tight time bound, and a solution running in O(n2k) for the
general case.

The results reported in this abstract improve significantly the algorithmic results from
in [1, 5].

References
[1] E. CHINIFOROOSHAN, L. KARI, Z. XU, Pseudopower avoidance. Fundamenta Informaticae 114

(2012) 1, 55–72.

[2] E. CZEIZLER, L. KARI, S. SEKI, On a special class of primitive words. Theoretical Computer
Science 411 (2010), 617–630.

[3] J. KÄRKKÄINEN, P. SANDERS, S. BURKHARDT, Linear work suffix array construction. J. ACM
53 (2006), 918–936.

[4] M. LOTHAIRE, Combinatorics on Words. Cambridge University Press, 1997.

[5] F. MANEA, R. MERCAŞ, C. TISEANU, Algorithms and Pseudo-Periodicity in Words. Proc. Der
21. Theorietag der Fachgruppe Automaten und Formale Sprachen (2011).

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 61 – 64

From Equivalence to Almost-Equivalence, and
Beyond—Minimizing Automata With Errors

Markus Holzer(A) Sebastian Jakobi(A)

(A)Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

The study of the minimization problem for finite automata dates back to the early begin-
nings of automata theory. It is well known that for a given n-state deterministic finite au-
tomaton (DFA) one can efficiently compute an equivalent minimal automaton in O(n logn)
time [9]. More precisely, the DFA-to-DFA minimization problem is complete for NL, even
for DFAs without inaccessible states [4]. This is contrary to the nondeterministic case since
the nondeterministic finite automaton (NFA) minimization problem is known to be computa-
tionally hard [10]. Minimization remains intractable even if either the input or the output au-
tomaton is deterministic [10, 12]. Recently another form of minimization for DFAs, namely
hyper-minimization, was considered in the literature [2, 3, 6, 8]. While minimization aims
to find an equivalent automaton that is as small as possible, hyper-minimization intends to
find an almost-equivalent automaton that is as small as possible. Here two languages are
considered to be almost-equivalent, if they are equivalent up to a finite number of exceptions.
Thus, an automaton is hyper-minimal if every other automaton with fewer states disagrees
on acceptance for an infinite number of inputs. Hence, equivalence or almost-equivalence
can be interpreted as an “error profile:” minimization becomes exact compression and hyper-
minimization is a sort of lossy compression. We provide a general framework for error pro-
files of automata. To this end we introduce the concept of E-equivalence. Two languages L1
and L2 are E-equivalent (∼E) for some language E, if their symmetric difference lies in E,
i.e., L14L2 ⊆ E. Here E is called the error language. A close inspection shows that E-
equivalence allows us to cover a lot of prominent “equivalence” concepts from the literature
such as, e.g., equivalence (≡)—set E = ∅ or almost-equivalence (∼)—E is finite. A detailed
discussion on this subject is given in the full version of the paper. We study the compu-
tational complexity of minimizing finite automata with respect to the language relations of
almost-equivalence, and E equivalence, as well as the complexity of some related decision
and counting problems.

The decision version of the classical DFA-to-DFA minimization problem is defined as fol-
lows: given a DFAA and an integer n, does there exist an equivalent n-state DFAB? This no-
tation naturally generalizes to other types of finite automata. The DFA-to-DFA minimization
problem is complete for NL, even for DFAs without inaccessible states [4]. This is contrary

This is an extended abstract of: M. Holzer, S. Jakobi. From Equivalence to Almost-Equivalence, and Beyond—
Minimizing Automata With Errors (Extended Abstract). In H.-C. Yen, O. H. Ibarra (eds.), Proceedings of the 16th
International Conference on Developments in Language Theory. Number 7410 in LNCS, Springer, Taipei, Taiwan,
2012, 190–201.

62 Markus Holzer, Sebastian Jakobi

Minimization problem
DFA-to-. . . NFA-to-. . .

Equivalence relation DFA NFA DFA NFA
≡

NL
PSPACE PSPACE∼

∼E , for DFA AE with E = L(AE) NP

Table 1: Results on the computational complexity of minimizing finite automata with respect to dif-
ferent equivalence relations. The input to all problems is a finite automaton A and an integer n, and
the question is, whether there exists an n-state finite automaton B, that is in the corresponding relation
to A. For the problems on E-minimization, a DFA AE specifying the error language E is given as
additional input.

to the nondeterministic case since the NFA minimization problem is known to be PSPACE-
complete [10], even if the input is given as a DFA. When turning to minimization with respect
to almost-equivalence, or E-equivalence, the results mirror those for ordinary DFA and NFA
minimization, with some notable exceptions. For instance, hyper-minimizing deterministic
machines, that is the DFA-to-DFA minimization problem w.r.t. almost-equivalence, is shown
to be NL-complete while E-minimization of DFAs in general turns out to be NP-complete,
even for some finite E. Our results on the complexity of minimization w.r.t. different equiv-
alence relations are summarized, and compared to the classical results in Table 1. In the
following we present our result on the E-minimization problem.

Theorem 1.1 (E-Minimization) The problem of deciding for two given DFAs A and AE ,
and an integer n, whether there exists a DFA B with n states, such that A ∼E B, for E =
L(AE), is NP-complete. This even holds, if the language E is finite. The problem becomes
PSPACE-complete for NFAs, even if the input is given as a DFA.

Proof. [Sketch] We only sketch the proof for NP-completeness of the DFA-to-DFA E-
minimization. Since A ∼E B can be verified for DFAs in deterministic polynomial time,
by constructing a DFA for the language (L(A)4L(B))∩E, and checking this language for
emptiness, the problem description gives rise to a straightforward guess-and-check algorithm
on a nondeterministic polynomial time bounded Turing machine.

For NP-hardness we use a reduction from MONOTONE 3SAT [5]. Given a Boolean
formula ϕ = c0 ∧ c1 ∧ ·· · ∧ ck−1 with variables X = {x0,x1, . . . ,xn−1}, where each ci is
either a positive clause of the form ci = (xi1 ∨ xi2 ∨ xi3) or a negative clause of the form
ci = (¬xi1 ∨¬xi2 ∨¬xi3), we construct a DFA A = (Q∪P ∪{r,f,s},{a,b,c}, δ,q0,{f}),
whereQ= {q0, q1, . . . , qk−1}, and P = {p0,p1, . . . ,pn−1}. Its transition function δ is depicted
in Figure 1. The integer for the E-minimization instance is set to n+k+2, which is exactly
one less than the number of states in A. Finally, the finite error language is

E = {aiban−j | 0≤ i≤ k−1, ci contains xj or ¬xj }∪
{aibajb,aibajc | 0≤ i≤ k−1, 1≤ j ≤ n−1}∪

{ak+jb | 0≤ j ≤ n−1}.

From Equivalence to Almost-Equivalence, and Beyond—Minimizing Automata With Errors63

q0 . . . qi . . . qk−1

p0. . .pi1. . .pn−1f

r

a a a a

a

aaaaa, c

b, c

b, if ci negativeb, if ci positive b

b

c

c

Figure 1: The DFA A constructed from the Boolean formula ϕ. The b-transitions from
states q0, q1, . . . , qk−1 are only sketched—it is δ(qi, b) = pi1 , if ci = (¬xi1 ∨ ¬xi2 ∨ ¬xi3),
and δ(qi, b) = r otherwise. All undefined transitions go to the sink state s, which is not shown.

A DFA AE accepting this language can easily be constructed in polynomial time.
One can show that ϕ is satisfiable if and only if there exists a DFA B, with A ∼E B,

that has n+ k+ 2 states—in this case, only state r is missing. The overall idea is the fol-
lowing. Since every word in E contains at least one b symbol, the error set does not al-
low E-equivalent automata to differ on inputs a or c. Further, since words aibb and aibc
with 0≤ i≤ k−1 do not belong to E, the b-transitions from states qi must end in states pj ,
and the b-transitions from pj must end in state f or the sink state s. The connection to ϕ is
the following: a state pi, corresponding to variable xi, goes to state f on input b if and only
if the variable xi should be assigned the Boolean value 1. And a state qi, corresponding to
a clause ci, goes to state pj on input b if and only if the clause ci gets satisfied by the vari-
able xj . In this way, any E-minimal DFA B, with A∼E B, corresponds to a satisfying truth
assignment for ϕ, and vice versa. 2

We also consider problems that are related to minimization, such as deciding equiva-
lence, minimality, or canonicity for given automata. The latter problem results from the fact
that, although in general a hyper-minimal, or E-minimal automaton can be smaller than the
classical minimal automaton, there are also languages, whose minimal automaton is already
hyper-minimal, or E-minimal. If this is the case, the automaton (or rather its accepted lan-
guage) is called canonical, or E-canonical. Although E-equivalence is a generalization of
equivalence, and almost-equivalence, the problems to decide whether two languages given
by finite automata are equivalent, almost-equivalent, or E-equivalent, respectively, are all of
same complexity. To be more precise, whenever NFAs are involved in the language spec-
ification the decision problem is PSPACE-complete, while for DFAs it is NL-complete. In
contrast to this, the problems of deciding, whether a given automaton is hyper-minimal, or
E-minimal, are more closely related to minimization, which shows up in their complexity:
deciding hyper-minimality of DFAs is NL-complete, just as deciding minimality, while de-
cidingE-minimality is coNP-complete. This asymmetry can also be observed for canonicity.

Finally we focus on counting problems on finite automata; see, e.g., [1, 7, 11]. It is well
known that for each regular language there is a unique minimal DFA (up to isomorphism) ac-

64 Markus Holzer, Sebastian Jakobi

cepting this language. Since hyper-minimal and E-minimal DFAs are not necessarily unique
anymore, we are led with the following counting problem: given a DFA A, what is the num-
ber of hyper-minimal DFAs B, with A ∼ B? Naturally, this generalizes to determine the
number of E-minimal automata. We show that there is again a significant difference between
the computational complexities of questions concerning almost- and E-equivalence.

Theorem 1.2 (Counting minimal DFAs) Given a DFAA, then the number of hyper-minimal
DFAsB withA∼B can be done in FP, while determining the number ofE-minimal DFAsB,
satisfyingA∼E B andE =L(AE), here the DFAAE is given as additional input, is #P-hard
and can be computed in # · coNP.

One could also count minimal, hyper-minimal, or E-minimal NFAs instead. These three
counting problems belong to #PSPACE= FPSPACE [11]. We have to leave open the lower
bound for the complexity of counting minimal and hyper-minimal NFAs, but for counting the
number of E-minimal NFAs, we can prove #P-hardness.

References
[1] C. ÀLVAREZ, B. JENNER, A very hard log-space counting class. Theoret. Comput. Sci. 107 (1993)

1, 3–30.

[2] A. BADR, Hyper-Minimization in O(n2). Internat. J. Found. Comput. Sci. 20 (2009) 4, 735–746.

[3] A. BADR, V. GEFFERT, I. SHIPMAN, Hyper-Minimizing Minimized Deterministic Finite State
Automata. RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applica-
tions 43 (2009) 1, 69–94.

[4] S. CHO, D. T. HUYNH, The Parallel Complexity of Finite-State Automata Problems. Inform.
Comput. 97 (1992), 1–22.

[5] M. R. GAREY, D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[6] P. GAWRYCHOWSKI, A. JÉZ, Hyper-Minimization Made Efficient. In: R. KRÁLOVIC, D. NI-
WINSKI (eds.), Proceedings of the 34th Conference on Mathematical Foundations of Computer
Science. Number 5734 in LNCS, Springer, Novy Smokovec, High Tatras, Slovakia, 2011, 356–
368.

[7] M. HOLZER, On emptiness and counting for alternating finite automata. In: J. DASSOW,
G. ROZENBERG, A. SALOMAA (eds.), Developments in Language Theory II; at the Crossroads
of Mathematics, Computer Science and Biology. World Scientific, 1996, 88–97.

[8] M. HOLZER, A. MALETTI, An n logn Algorithm for Hyper-Minimizing a (Minimized) Deter-
ministic Automaton. Theoret. Comput. Sci. 411 (2010) 38–39, 3404–3413.

[9] J. HOPCROFT, An n logn algorithm for minimizing the state in a finite automaton. In: Z. KOHAVI

(ed.), The Theory of Machines and Computations. Academic Press, New York, 1971, 189–196.

[10] T. JIANG, B. RAVIKUMAR, Minimal NFA problems are hard. SIAM J. Comput. 22 (1993) 6,
1117–1141.

[11] R. E. LADNER, Polynomial Space Counting Problems. SIAM J. Comput. 18 (1989) 6, 1087–1097.

[12] A. R. MEYER, L. J. STOCKMEYER, The equivalence problem for regular expressions with squar-
ing requires exponential time. In: Proceedings of the 13th Annual Symposium on Switching and
Automata Theory. IEEE Society Press, 1972, 125–129.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 65 – 70

State Complexity of Chop Operations
on Unary and Finite Languages

Markus Holzer(A) Sebastian Jakobi(A)

(A)Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,jakobi}@informatik.uni-giessen.de

Abstract

We continue our research on the descriptional complexity of chop operations. Infor-
mally, the chop of two words is like their concatenation with the touching letters merged
if they are equal, otherwise their chop is undefined. The iterated variants chop-star and
chop-plus are defined similar as the classical operations Kleene star and plus. We investi-
gate the state complexity of chop operations on unary languages and finite languages, and
obtain similar bounds as for the classical operations.

1. Introduction
An interesting field of descriptional complexity of formal languages is the state complexity
of regular languages. Given a regular language L, its state complexity is the minimum num-
ber of states that are sufficient and necessary for a finite automaton to accept L. This can
be adopted to operations on languages. Given a (regularity preserving) k-nary operation ◦
and regular languages L1,L2, . . . ,Lk, the state complexity of ◦ is the minimum number of
states that are sufficient and necessary for a finite automaton to accept ◦(L1,L2, . . . ,Lk), as a
function depending on the state complexities of the input languages. First results on the state
complexity of operations on regular languages were obtained about more than three decades
ago in [10] and [11]. Later in [13], besides some other operations, the state complexity of
concatenation and Kleene star, which are basic operations for describing regular languages,
was studied. Also the special case of unary input languages was investigated there, for which
significantly different bounds than in the general case were obtained. Similarly, research on
these operation problems on finite languages was done in [2]. All these results concentrated
on deterministic finite automata, but one can study the same problems on nondeterministic
finite automata. Research on the nondeterministic state complexity of concatenation, Kleene
star and Kleene plus was done in [7], where it turned out that, unlike in the deterministic case,
the bounds for general regular input languages and those for unary or finite input languages
do not differ much.

This is an extended abstract of: M. Holzer, S. Jakobi. State Complexity of Chop Operations on Unary and
Finite Languages. In M. Kutrib, N. Moreira, R. Reis (eds.): Proceedings of the 14th International Workshop on
Descriptional Complexity of Formal Systems, number 7386 in LNCS, pages 169–182, Braga, Portugal, July 2012.
Springer.

66 Markus Holzer, Sebastian Jakobi

Recently in [1], the chop operation and its iterated variant were introduced as alterna-
tives for concatenation and Kleene star. Substituting these operations, so called chop expres-
sions, which are defined similarly to regular expressions, can be used to describe exactly the
family of (λ-free) regular languages—here λ is the empty word. Various other operations
that are more or less closely related to the herein studied chop operations can be found in,
e.g., [3, 4, 6, 9, 12]. Descriptional complexity of chop expressions and chop operations on
regular expressions and finite automata, as introduced in [1], was studied in [5]. There, tight
bounds of m+n, n+1, and n+2 for the nondeterministic state complexity of, respectively,
chop, chop-plus, and chop-star were obtained. This should be compared to the results for
the classical operations concatenation, Kleene plus, and Kleene star, which yield the tight
bounds m+n, n, and n+ 1, respectively, on the number of states. When considering the
deterministic state complexity instead, the bounds for (iterated) chop differ from those for
(iterated) concatenation, since the size of the alphabet appears as a parameter.

Following the results for (iterated) concatenation on unary and/or finite languages, we
investigate the corresponding operation problems for chop, chop-star, and chop-plus on de-
terministic and nondeterministic finite automata accepting unary and/or finite languages. The
situation will be very similar to concatenation, which at first may seem to be expected—but in
the light of [5], where it was shown that chop expressions can be exponentially more succinct
than regular expressions, this is also quite surprising.

2. Definitions

We investigate the descriptional complexity of the chop operation, which was recently intro-
duced in [1], and its iterated variants. The chop or fusion of two words u and w in Σ∗ is
defined as

u�v =

{
u′av′ if u= u′a and v = av′, with u′,v′ ∈ Σ∗ and a ∈ Σ

undefined otherwise,

which is extended to languages as L1�L2 = {u� v | u ∈ L1 and v ∈ L2 }. Note that in the
case of a unary alphabet, the chop of two non-empty words is always defined, in particu-
lar, am� an = am+n−1, for all m,n ≥ 1. For the chop iteration, we define L⊗0 = Σ and
L⊗i = L�L⊗i−1 , for i≥ 1, and the iterated chop or chop-star of a language L is defined as
L⊗ =

⋃
i≥0L

⊗i . Moreover the chop-plus is denoted by L⊕ =
⋃

i≥1L
⊗i . It is easy to see that

the chop operation � is associative, and by definition the set Σ acts as the neutral element on
all languages L from Σ+. This is compatible with the definition of chop-star, because ∅⊗ = Σ.
In general, an application of the chop operation with Σ will cancel λ from the language L.
Therefore, we have Σ�L= L�Σ = L\{λ}, for every L⊆ Σ∗.

For the notions of deterministic (DFA) and nondeterministic finite automata (NFA) and
their accepted languages, we refer standard literature, e.g. to [8]. We only like to stress
out here, that we assume any deterministic automaton to be complete, that is, its transition
function is total. Thus, when counting states of automata, a potential sink state is counted
for DFAs, but not for NFAs.

State Complexity of Chop Operations on Unary and Finite Languages 67

Nondeterministic state complexity
Language family

Regular Unary Finite unary Finite

· m+n m+n−1≤ · ≤m+n m+n−1 m+n−1

� m+n m+n m+n−2 m+n−2

∗ n+1 n+1 n−1 n−1

⊗ n+2 n+2 n−1 n

+ n n n n

⊕ n+1 n+1 n n

Table 1: Nondeterministic state complexities of chop �, chop-star ⊗, and chop-plus ⊕, compared to
their classical counterparts concatenation ·, Kleene star ∗, and Kleene plus + on different language fam-
ilies. Again, m and n are the number of states of the input automata. Concerning the nondeterministic
state complexity of the concatenation of (infinite) unary languages, an m+n upper bound an m+n−1
lower bound was shown in [7]. Whether the upper bound can be lowered or not is still open.

3. Nondeterministic State Complexity
In this section we investigate the nondeterministic state complexity of chop operations applied
to unary and/or finite languages. For the convenience of the reader we restate the construc-
tions from [5] of nondeterministic finite automata for the operations under consideration on
arbitrary regular languages.

Theorem 3.1 LetAi =(Qi,Σ, δi,si,Fi), for i= 1,2, be two nondeterministic finite automata
with |Q1|=m and |Q2|= n. Then the following holds:

1. Let A� = (Q1 ∪Q2,Σ, δ,s1,F2) such that for all states p,q ∈ Q1 ∪Q2 and a ∈ Σ we
have p ∈ δ(q,a) if either p,q ∈ Qi and p ∈ δi(q,a), for i ∈ {1,2}, or if q ∈ Q1 and
p ∈Q2, such that δ1(q,a)∩F1 6= ∅ and p ∈ δ2(s2,a). Then L(A�) = L(A1)�L(A2).

2. Let A⊕ = (Q1∪{s},Σ, δ⊕,s,F1) such that for all a ∈ Σ we have δ⊕(s,a) = δ1(s1,a),
and for all states p,q ∈Q1 we have p ∈ δ⊕(q,a) if p ∈ δ1(q,a), or if δ1(q,a)∩F1 6= ∅
and p ∈ δ1(s1,a). Then L(A⊕) = L(A1)

⊕.

3. Let A⊗ = (Q1∪{s,f},Σ, δ⊗,s,F1∪{f}) such that for all a ∈ Σ we have f ∈ δ⊗(s,a)
if δ1(s1,a)∩F1 = ∅, and further, for all states p ∈ Q1 and q ∈ Q1 ∪ {s} we have
p ∈ δ⊗(q,a) if p ∈ δ⊕(q,a). Then L(A⊗) = L(A1)

⊗.

Our results on the nondeterministic state complexity of chop operations on unary and/or
finite languages are summarized in Table 1. One can see from the table that the upper bounds,
which are implied by the constructions from Theorem 3.1, are tight already for a unary al-
phabet. Exemplarily we present our result on the chop of two languages.

68 Markus Holzer, Sebastian Jakobi

Theorem 3.2 Let A be an m-state and B be an n-state nondeterministic finite automaton
for any integers m,n ≥ 1. Then f(m,n) states are sufficient and necessary in the worst
case for any nondeterministic finite automaton to accept the language L(A)�L(B), where
f(m,n) =m+n if L(A) and L(B) are unary, and f(m,n) =m+n−2 if L(A) and L(B)
are finite, or finite and unary.

Proof. Let Li = L(Ai) for some NFAs Ai = (Qi,Σ, δi,si,Fi), for i = 1,2, and A�

be the NFA constructed as described in Theorem 3.1 such that L(A�) = L(A1)�L(A2).
We begin with the unary case. The upper bound is trivial and for the lower bound consider
the languages (am)∗ and (an)∗, that can be accepted by minimal m-state and n-state NFAs,
respectively. Since am+n−1 is the shortest word in the language L = L1 �L2, any NFA
accepting L needs at least m+n states.

We now turn to finite languages. Here the state graphs of A1 and A2 are acyclic, from
which immediately follows that s2 is not reachable in A�. Further, since we may assume A1
to be minimal and L1 not to be empty, there must be some state f ∈ F1, such that δ1(f,a) = ∅
for all a ∈ Σ. This state is not useful in A� and may be eliminated. So A� needs at most
m+ n− 2 states. The lower bound for finite unary languages is easily verified with the
languages {am−1} and {an−1}. 2

4. Deterministic State Complexity
Now we come to the deterministic state complexity of chop operations. For unary languages,
there obviously cannot be any dependency on the size of the alphabet, and in fact the cor-
responding bounds and proofs are almost the same as in [13] for concatenation. But also
for finite languages, where the alphabet size could play an important role, there is hardly
a difference between the bounds for chop operations and the bounds for the corresponding
classical operations based on concatenation, as studied in [2]. This contrasts the situation for
general regular languages, where the size of the alphabet matters for chop operations [5], but
is mostly irrelevant for concatenation and related operations. Our findings are summarized in
Table 2, again compared to the results for the classical concatenation operations.

The presented bounds for chop-star and chop-plus of (non-unary) finite languages hold
for languages accept by DFAs that have at least two accepting states. If the input language is
accepted by a DFA with a single accepting state, then we get the following result.

Theorem 4.1 Let A be an n-state deterministic finite automaton with one final state and
n ≥ 4, such that L(A) ⊆ Σ∗ is finite. Then n− 2+min(|Σ| ,n− 2) states are sufficient and
necessary in the worst case for any deterministic finite automaton to accept L(A)⊗. A similar
statement also holds for L(A)⊕, where the corresponding bound is n−1+min(|Σ| ,n−2).

Proof. We first consider the chop-star operation. Let A = (Q,Σ, δ,q0,{qf}) be a DFA
accepting a finite language. Then there is a non-accepting sink state qs ∈ Q such that
δ(qs,a) = δ(qf ,a) = qs, for all a ∈ Σ. Further there must be some state q1 ∈ Q \ {qf , qs}
that is only reachable with words of length one. For constructing the NFA A⊗, there is no
need of adding new states s and f , since these can be identified with q0 and qf : the ini-
tial state q0 has no ingoing transitions and qf only leads to the sink state. So we have an

State Complexity of Chop Operations on Unary and Finite Languages 69

Deterministic state complexity
Language family

Regular Unary Finite unary Finite

· m ·2n− t ·2n−1 m ·n m+n−2 (m−n+3)2n−2−1

� m ·2n− t ·2n−min(k,n)+1 m ·n+1 m+n−3 (m−n+2)2n−2−1

∗ 2n−1 +2n−2 (n−1)2 +1 n2−7n+13 2n−3 +2n−4

⊗ 2n−1+min(k,n) (n−1)2 +2 n2−9n+22 2n−3 +2n−3−t+2

+ 2n−1 +2n−2 +1 (n−1)2 +1 n2−7n+13 2n−3 +2n−4 +1

⊕ 2n (n−1)2 +2 n2−9n+22 2n−3 +2n−3−t+1

Table 2: Deterministic state complexities of chop �, chop-star ⊗, and chop-plus ⊕, compared to their
classical counterparts concatenation ·, Kleene star ∗, and Kleene plus + on different language families.
Here m and n are the number of states of the input automata (where m corresponds to the “left”
automaton in the case of · and �), k is the alphabet size, and t is the number of accepting states (of the
“left” automaton).

NFA A⊗ = (Q,Σ, δ⊗, q0,{qf}) such that for all p,q ∈ Q and a ∈ Σ we have p ∈ δ⊗(q,a)
if p = δ(q,a), and additionally, qf ∈ δ⊗(q0,a) if δ(q0,a) 6= qf , and δ(q0,a) ∈ δ⊗(q,a) if
δ(q,a) = qf .

In the corresponding powerset automaton, only singleton sets and sets of the form {q,qf}
for some q ∈ Q \ {qf} are reachable—note that all states P 6= {n− 1} are equivalent to
P \{n−1}. In particular, states {q,qf} are actually of the form {δ(q0,a), qf} for some a∈Σ.
For the singleton sets note that {q1} is not reachable, since states containing q1 must also
contain qf . Further, the number of states P with qf ∈P is bounded by min(|Σ| ,n−2), which
can be seen as follows. If {qf} is reachable, then there must be some a∈ Σ with δ(q0,a) = qf .
Then there are at most |Σ\{a}| other states of the form {q,qf}. Otherwise, if {qf} is not
reachable, there are at most |Σ| many states {q,qf}. But even for large alphabets we cannot
reach more than n− 2 states of size two: the set {q0, qf} is not reachable, and {qs, qf} is
equivalent to {qs}. So we get the stated upper bound of n−2+min(|Σ| ,n−2) states.

It suffices to prove this bound to be optimal for Σ = {a1,a2, . . . ,ak} with 2≤ k ≤ n−2.
Let A= (Q,Σ, δ,0,{n−2}) for Q= {0,1, . . . ,n−1}, and

δ(0,ai) =

{
i for i < k,
n−2 for i= k,

δ(n−3,ai) =

{
n−2 for i < k,

n−1 for i= k,

δ(q,ai) = q+1 for 1≤ q ≤ n−4, δ(n−2,ai) = δ(n−1,ai) = n−1.

The construction of the NFA A⊗ as described above gives rise to the additional transitions
(0,ai,n− 2) and (n− 3,ai, i) for 1 ≤ i ≤ k− 1. In the powerset automaton, the singletons
{q}, for 2≤ q ≤ n−3, are reachable from {0} by reading the word a1a

q−1
k , the state {n−2}

by reading ak, and the sink state {n−1} by reading a1a
n−3
k . Further, the sets {p,n−2}, for

1≤ p≤ k−1, are reachable from {n−3} by reading ap, and no other states can be reached.

70 Markus Holzer, Sebastian Jakobi

The inequivalence of distinct states P and P ′ is easy to see: it suffices to proof that
singletons {p} and {q} with 0 ≤ p < q ≤ n−2 are inequivalent, because this generalizes to
the states {q,n− 2}, and obviously {n− 1} cannot be equivalent to any other state. So let
p < q. The states {0} and {n−3} are distinguished by ak and if p 6= 0 or q 6= n−3, then the
word an−2−q

1 is accepted from {q} but not from {p}.
The bounds for chop-plus can be proven with nearly the same argumentation as above.

The only difference is that no additional transitions get defined for the initial state, and so
{q1} and, respectively, {1} are reachable in the resulting automata, so we need one more
state. 2

References
[1] S. A. BABU, P. K. PANDYA, Chop Expressions and Discrete Duration Calculus. In: D. D’SOUZA,

P. SHANKAR (eds.), Modern Applications of Automata Theory. IISc research Monographs Se-
ries 2, World Scientific, 2010.

[2] C. CÂMPEANU, K. C. II, K. SALOMAA, S. YU, State complexity of basic operations on finite
languages. In: O. BOLDT, H. JÜRGENSEN (eds.), Proceedings of the 4th International Workshop
on Implementing Automata. Number 2214 in LNCS, Springer, Potsdam, Germany, 1999, 60–70.

[3] A. CĂRĂUŞU, G. PĂUN, String intersection and short concatenation. Revue Roumaine de Mathé-
matiques Pures et Appliquées 26 (1981), 713–726.

[4] M. DOMARATZKI, Minimality in Template-Guided Recombination. Information and Computa-
tion 207 (2009), 1209–1220.

[5] M. HOLZER, S. JAKOBI, Chop Operations and Expressions: Descriptional Complexity Consid-
erations. In: G. MAURI, A. LEPORATI (eds.), Proceedings of the 15th International Conference
Developments in Language Theory. Number 6795 in LNCS, Springer, Milan, Italy, 2011, 264–
275.

[6] M. HOLZER, S. JAKOBI, M. KUTRIB, The Chop of Languages. In: P. DÖMÖSI, S. IVÁN (eds.),
Proceedings of the 13th International Conference Automata and Formal Languages. Debrecen,
Hungary, 2011, 197–210.

[7] M. HOLZER, M. KUTRIB, Nondeterministic Descriptional Complexity of Regular Languages.
International Journal of Foundations of Computer Science 14 (2003) 6, 1087–1102.

[8] J. E. HOPCROFT, J. D. ULLMAN, Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[9] M. ITO, G. LISCHKE, Generalized periodicity and primitivity. Mathematical Logic Quarterly 53
(2007), 91–106.

[10] E. LEISS, Succinct representation of regular languages by Boolean automata. Theoretical Com-
puter Science 13 (1981), 323–330.

[11] A. N. MASLOV, Estimates of the Number of States of Finite Automata. Soviet Mathematics Dok-
lady 11 (1970), 1373–1375.

[12] A. MATEESCU, A. SALOMAA, Parallel composition of words with re-entrant symbols. Analele
Universitǎţii Bucureşti Matematicǎ-Informaticǎ 45 (1996), 71–80.

[13] S. YU, Q. ZHUANG, K. SALOMAA, The state complexity of some basic operations on regular
languages. Theoretical Computer Science 125 (1994), 315–328.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 71 – 76

How to Measure Word Order Freedom
for Natural Languages?

Vladislav Kuboň Markéta Lopatková(A) Martin Plátek(A)

Charles University in Prague, Faculty of Mathematics and Physics
{vk,lopatkova}@ufal.mff.cuni.cz, martin.platek@.mff.cuni.cz

1. Introduction
In this paper we would like to clarify some basic features and notions which may play a
key role in the investigations of the word order freedom. For this purpose we are going to
exploit the elementary method of analysis by reduction (AR) and the formal data type de-
rived from this method, so-called D-trees. A complete description of both the method and
the data type can be found for example in ([7]). Let us remind that the analysis by reduction
has served as a motivation for a family of so called restarting automata, see ([6]). The first
step in the direction of more formal treatment of the word order freedom has been done in
([2]), where the authors discussed it without the exploitation of the analysis by reduction and
without setting the constraints on unchanged morphological and syntactic properties of indi-
vidual words. We will focus on some examples cited there and modify them according to the
methods mentioned in ([7]). We also exploit sample sentences from the Prague Dependency
Treebank (PDT),1 a large-scale treebank of Czech ([1]).

2. The Background of our Experiments
We would like to introduce the notion of a shift operation in the course of the AR, a key
notion for the investigation of a measure of word order freedom. In order to be able to define
the shift operation, it is useful to introduce the data structure we are exploiting.

The D-tree (Delete or Dependency trees), see e.g. [7], is a rooted ordered tree with edges
oriented from its leaves to its root. Nodes of each tree correspond to individual occurrences
of word forms in a sentence. Moreover, we suppose a total ordering on the nodes that reflects
word order in a sentence.

Let us remind that the concept of D-tree reflects the analysis by reduction (without rewrit-
ing) – its structure corresponds to a way how individual words of a sentence are deleted in
the course of the corresponding steps of the analysis by reduction. (Informally, each edge of
a D-tree connects a word form to some other word form if the latter cannot be deleted earlier
then the first word form in (any branch of) analysis by reduction of the same sentence.)

(A)The paper reports on the research within the NoSCoM project, supported by the grant of the Grant Agency of
the Czech Republic No. P202/10/1333.

1http://ufal.mff.cuni.cz/pdt.html

72 Vladislav Kuboň, Markéta Lopatková, Martin Plátek

Measures of Non-projectivity and Shift Operation
Non-projectivity. When considering word order freedom, we have to take into account one
phenomenon which is common in languages with higher degree of word order freedom,
namely non-projective constructions (for previous usage of this term see esp. [5, 4]). In
order to classify this phenomenon, it is useful to define certain notions allowing for an easy
definition of projectivity/non-projectivity and also for the introduction of measures of non-
projectivity (these notions are formally defined in [2]).

The coverage of a node u of a D-tree identifies nodes from which there is a path to u
in the D-tree (including empty path). It is expressed as a set of horizontal positions/indices
(expressing total ordering on nodes in a D-tree, see above) of nodes directly or indirectly
dependent upon a particular node.

The notion of a coverage leads directly to a notion of a hole in a subtree. Such a hole
exists if the set of indices in the coverage is not a continuous sequence.

We say that D-tree T is projective if none of its subtrees contains a hole; otherwise, T is
non-projective.

Shift operation. In order to be able to describe necessary word order shifts in the course
of AR, we need to define a notion of equivalence for D-trees. Such equivalence (denoted as
DP-equivalence) is defined as follows: DP-equivalent trees are those D-trees which have (i)
the ‘same’ sets of nodes, i.e., the nodes describing the same set of lexical bundles, and (ii)
their edges always connect ‘identical’ pairs of nodes (nodes with identical lexical bundles). It
actually means that a particular set of DP-equivalent trees contains the D-trees representing
sentences created by a permutation of the words of the original sentence but having the same
dependency relations.

Let T be a D-tree; the set of D-trees which are DP-equivalent to T will be denoted
DPE(T). In other words, DPE(T) is a set of D-trees which differ only in the word order of
their characteristic sentence.

The previous concepts allow us to introduce a new feature, a number of reduction steps
enforcing a shift in a single branch of AR. Shifts make it possible to change word order and
thus ‘recover’ from incorrect word order that may be incurred by an AR deleting step. The
shift operation is such a change in a D-tree when (i) the ordering of all nodes except for one is
preserved, and (ii) the edges are preserved (connecting ‘identical’ pairs of nodes with respect
to described lexical bundles). It means that both the original D-tree T and the modified one
belong to the same set DPE(T).

Let T be a D-tree, T 6∈ CT. Our goal is to find – if possible – a modified D-tree T ′

such that T ′ is a correct surface tree (i.e., T ′ ∈ CT) and T ′ is DP-equivalent to T (i.e.,
T ′ ∈ DPE(T)) by applying as small number of shift operations as possible.

3. Towards a Measure of Word Order Freedom

3.1. Data
The investigation focuses upon an interplay of two phenomena related to word order: the non-
projectivity of a sentence and the number of word order shifts within the analysis by reduction.
This interplay is exemplified on a set of ‘suspicious’ types of sentences identified in previous

How to Measure Word Order Freedom for Natural Languages? 73

work on Czech word order freedom [2]. The sample set was enriched with sentences from
the Prague Dependency Treebank (PDT), a large-scale treebank of Czech [1], namely the
sentences with a non-projectivity given by a modal verb (typically in combination with clitics
[3]). These sentences were manually annotated using the method of analysis by reduction.

3.2. Principles of Data Analysis

The following principles are applied during the analysis of sample data.

Principle 1: ‘Preprocessing’ – we simplify the input sentences using AR in such a way that
only words related to these phenomena are preserved.
In other words, we focus on those branches of AR where the words which do not contribute
to the examined structures are already processed and thus deleted (if it is possible without
shifting). Let us exemplify this on sentence (3) (shortened sentence from PDT) and its initial
simplification:

Example:
(2) Naše firma by se možná mohla tvářit, že se jí premiérova slova netýkají (. . .).

‘Perhaps our firm might pretend that the prime minister’s words do not apply to it (. . .).’
→ Firma by se mohla tvářit.

‘The firm might pretend.’

Principle 2: Minimality – we focus especially on those branches of AR that allows us to
reduce a sentence with minimal number of shifts.
Typically, there are several possibilities how to analyze a simplified sentence. In our example
(2), we can start with reducing the noun firma ‘firm’. This results in the string starting with
clitics by and se – thus a shift in word order positions must by applied to ensure the correct-
ness of the simplified sentence. We have two possibilities of shifting:
(a) We can SHIFT the verb tvářit ‘to pretend’ to the first position, which results in the correct
sentence Tvářit by se mohla. However, the only possible subsequent reduction step means
deleting the pair tvářit se ‘to pretend + REFL’, which requires another SHIFT By mohla.
→SHIFT Mohla by.
Or, (b) we can SHIFT the verb mohla ‘may’ to the first position Mohla by se tvářit. The sub-
sequent reduction of the pair se tvářit ‘REFL + to pretend’ does not require another shifting.

This example shows that if we aim at the minimal necessary number of shifts then we
must apply the second type of shifting.

Principle 3. Restriction on the shift operation – the application of the shift operation is
limited to cases where it is enforced by the correctness preserving principle of AR (i.e., to
cases where a simple deletion would violate the principle of correctness imposed on AR).

Principle 4: Non-projectivity – we allow for non-projective reductions.
Long distance dependencies are allowed, i.e., depending word in a distant (non-projective)
position may be deleted.

Example:
(3) Marii se Petr tu knihu rozhodl nekoupit.

‘to-Mary – REFL – Peter – that/the book – decided – not-to-buy’
‘To Mary, Peter decided not to buy the book.’

74 Vladislav Kuboň, Markéta Lopatková, Martin Plátek

The word Marii (indirect object of the verb nekoupit ‘not-to-buy’) is reduced even though it is ‘sepa-
rated’ from its governing verb by the main predicate rozhodl ‘decided’ (i.e., by the root of the depen-
dency tree); the relation Marii – nekoupit ‘to-Mary – not-to buy’ creates a non-projective edge, [2].

Principle 5: Locality – we limit our observations to simple sentences/clauses containing interesting
phenomena.
This principle allows us to focus on an interplay of several phenomena affecting a single surface syn-
tactic construction (based on principle 1, all ‘uninteresting’ words are already processed, coordination
is simplified etc.); in case of more than one interesting construction in a sentence (prototypically a com-
plex sentence consisting of several clauses), they are processed separately. The reason is simple – if we
want to achieve results reflecting the properties of the investigated phenomenon, we have to eliminate
chances to construct a complex sentence with an arbitrary number of shifts simply by coordinating a
desired number of clauses requiring one shift each (or by inserting a relative clause with a shift).

3.3. How to Measure Word Order Freedom?
The previous work led to the proposal of a measure based on (minimal) number of shifts within an anal-
ysis by reduction of a given sentence, see esp. [3]. We can characterize this approach by principles 1-5
mentioned above, i.e., as an analysis by reduction enhanced with the possibility of word order changes.
The results proved that the number of shifts is an important factor providing different information than
already existing measures reflecting the complexity of word order of individual sentences.

However, the granularity of the proposed measure seemed to be too low as all the inspected sen-
tences from PDT were analyzed with at most one shift operation, regardless the number of holes and
number of clitics in a sentence. This result was improved when we subsequently inspected ‘suspicious’
sentences analyzed in [2]. We have found a construction where at least two shifts are necessary (even
when the principle of non-projectivity is applied, i.e. we allow for non-projective reductions).

Example:
(4) S těžkým se mu bála pomoci úkolem.

‘with – difficult – REFL – him – (she) was afraid – to help – task’
‘With a difficult task, she was afraid to help him.’

This sentence is rather special Czech surface construction when – due to the stress on the adjectival
attribute těžkým ‘difficult’ – the prepositional group s těžkým úkolem ‘with difficult task’ is split and the
preposition and adjective are moved to the beginning of the sentence.

The only possible correctness preserving reduction lies in deleting the pronoun mu ‘him’. With
respect to the dependency relations in the sentence, the subsequent reduction step must delete the ad-
jective, but this step results in an ill-formed sentence:
→DEL * S se bála pomoci úkolem.
Thus a word order correction is enforced:
(a) We can SHIFT the noun úkolem ‘task’ to obtain the (correct) continuous noun group s úkolem ‘with
(the) task’. The reduction of this noun group is then the only reduction possibility, again resulting in
the sentence with an incorrect word order. Now, the ‘optimal’ SHIFT of the main predicate is enforced;
the final deletion results in a correct simplified sentence:
→SHIFT S úkolem se bála pomoci. →DEL * Se bála pomoci. →SHIFT Bála se pomoci. →DEL

Bála se.

(b) Alternatively, the preposition s ‘’with’ is shifted to create continuous noun group s úkolem ‘with
(the) task’, followed by the ‘optimal’ shift of the main predicate; then the sentence can be reduced by
applying simple delete operations:
→SHIFT * Se bála pomoci s úkolem. →SHIFT Bála se pomoci s úkolem. →DEL . . .→ Bála se.

How to Measure Word Order Freedom for Natural Languages? 75

In both branches of AR, (at least) two shift operations are necessary to analyze sentence (4) (con-
trary to the hypothesis made on the basis of corpus data [3]).

This observation, however, does not refine the measure itself, it only increases the range of its values
for Czech.

3.4. A proposed refinement of the original measure
It is quite obvious that applying stricter constraints on the delete or shift operations would bring a
more refined measure. There are actually at least two possible ways – (i) we can distinguish a type of
necessary shifts (e.g., a shift of a verb / a shift across a verb), (ii) the deletion can be limited to adjacent
word forms, or (iii) the deletion can be limited to projective reductions (i.e., dependent and governing
words may be ‘separated’ only by word forms (transitively) dependent on the latter one, contrary to
Principle 4). So far, we have focused on the third restriction.
Example:
(5) Pomocí může být systém ECM.

‘help – can – to be – system – ECM’
‘The ECM system may be a help.’

The first two steps are easy, we will get rid of a subject (the ECM system) by a stepwise deletion:
→ Pomocí může být.

The remaining three words constitute a non-projective ’core’ of the original sentence providing the
following options typical for such a case:
(a) We can make the sentence PROJECTIVE by shifting the dependent word → Může pomocí být.
(b) We can also make it PROJECTIVE by shifting the governing word → Pomocí být může.
(c) The projectivization mentioned in (a) and (b) can also be achieved by means of a shift of the main
verb, in (a) it would represent a shift of the main verb Může to the first position in the sentence, in b) to
the last one. This option actually only increases the number of possibilities without bringing anything
really new. Even worse, shifting the main verb of the sentence may bring additional complications in
case that the non-projective core of the input sentence is bigger and more complex than in our example.
Therefore it is better to avoid this type of a shift entirely and to concentrate on the shifts under options
(a) and (b).

Let us now look at a more complicated example with a clitic combined with a non-projectivity.
Example:
(6) Tu knihu se rozhodl věnovat nadaci.

‘This – book – REFL – decided – donate – to a foundation’
‘(He) decided to donate this book to a foundation.’

The first two deletions are obvious, the words tu ‘this’ and nadaci ‘foundation’ can be reduced in an
arbitrary order: → Knihu se rozhodl věnovat.
Let us now perform the two variants of further reduction according to the options mentioned above:
(a) Let us make the sentence PROJECTIVE by means of shifting the dependent word knihu
→SHIFT * Se rozhodl knihu věnovat.
This shift results in an ungrammatical sentence, therefore it is necessary to perform a shift operation
again, this time by shifting the predicate of the sentence to the sentence first position, thus eliminating
the ungrammaticality caused by the clitic in the first position.
→SHIFT Rozhodl se knihu věnovat.
The remaining reductions are then obvious:
→DEL Rozhodl se věnovat. →DEL Rozhodl se.
(b) In a similar way we can make the sentence PROJECTIVE by means of shifting the governing word
věnovat →SHIFT Knihu věnovat se rozhodl. This shift results in a sentence which looks like syntacti-
cally incorrect one due to the clitic becoming a third word in a sentence, not a second one. However, in

76 Vladislav Kuboň, Markéta Lopatková, Martin Plátek

this case, the group věnovat knihu may be understood as a single unit and thus the clitic still occupies
the sentence second position and we may proceed with a simple reduction:
→DEL Věnovat se rozhodl. →DEL * Se rozhodl. This reduction is the only possible and the ungram-
maticality of the resulting sentence has to be corrected by a second shift:
→SHIFT Rozhodl se.

So, again, regardless of the option used, we are arriving at a score of 2 shifts. This actually indicates
that the refined measure captures the interplay of clitics and non-projectivities in a more subtle way than
the original measure.

4. Conclusion and Future Work
In this paper we have presented the results of a detailed investigation of the phenomenon of word order
freedom for a particular natural language, Czech. We have shown, on the basis of several examples,
that if we leave the safe grounds of data contained in a syntactically annotated corpus of Czech, we may
found sentences exemplifying the complexity of the problem. We have shown that the range of values
of the original measure of word order freedom presented in previous papers may be bigger in certain
cases, we have also discussed the method how to obtain an exact value for this measure, and, last but
not least, we have suggested a refinement of the original measure wchich more adequately captures the
interplay of various phenomena.

In the future we would like to continue the research in this direction by examining more linguistic
phenomena, by testing the measure on other languages with various degree of word order freedom and
by experimenting with a different or modified set of constraints applied on the shift operation.

References
[1] J. HAJIČ, J. PANEVOVÁ, E. HAJIČOVÁ, P. SGALL, P. PAJAS, J. ŠTĚPÁNEK, J. HAVELKA,

M. MIKULOVÁ, Z. ŽABOKRTSKÝ, M. ŠEVČÍKOVÁ-RAZÍMOVÁ, Prague Dependency Treebank
2.0. Linguistic Data Consortium, Philadelphia, PA, USA, 2006.

[2] T. HOLAN, V. KUBOŇ, K. OLIVA, M. PLÁTEK, On Complexity of Word Order. Les grammaires
de dépendance – Traitement automatique des langues (TAL) 41 (2000) 1, 273–300.

[3] V. KUBOŇ, M. LOPATKOVÁ, M. PLÁTEK, Studying Formal Properties of a Free Word Order Lan-
guage. In: G. YOUNGBLOOD, P. MCCARTHY (eds.), Proceedings of the Twenty-Fifth International
Florida Artificial Intelligence Research Society Conference. AAAI Press, Palo Alto, California,
2012, 300–3005.

[4] J. KUNZE, Die Auslassbarkeit von Satzteilen bei koordinativen Verbindungen im Deutschen. Num-
ber 14 in Schriften zur Phonetik, Sprachwissenschaft und Kommunikationsforschung, Akademie-
Verlag, Berlin, 1972.

[5] S. MARCUS, Sur la notion de projectivité. Zeitschrift fur Mathematische Logik und Grundlagen
der Mathematik 11 (1965) 1, 181–192.

[6] F. OTTO, Restarting Automata and Their Relation to the Chomsky Hierarchy. In: Z. ÉSIK,
Z. FÜLÖP (eds.), Proceedings of DLT 2003. LNCS 2710, Springer-Verlag, Berlin, 2003, 55–74.

[7] M. PLÁTEK, F. MRÁZ, M. LOPATKOVÁ, (In)Dependencies in Functional Generative Description
by Restarting Automata. In: H. BORDIHN, R. FREUND, T. HINZE, M. HOLZER, M. KUTRIB,
F. OTTO (eds.), Proceedings of NCMA 2010. books@ocg.at 263, Österreichische Computer
Gesellschaft, Wien, Austria, 2010, 155–170.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 77 – 77

Isomorphisms of Linear Orders Given by Automata
Dietrich Kuske

Institut für Theoretische Informatik, Technische Universität Ilmenau, Germany

This talk considers the following decision problem:

input: two languages L1 and L2 over an alphabet Σ and a linear order ≤ on Σ∗

question: Does (L1,≤)∼= (L2,≤) hold?

We ask this question for fixed linear orders like the lexicographic order and variants there-
off. Furthermore, the languages will be given by finite automata, by (deterministic) pushdown
automata, and by finite tree automata.

References
[1] S.L. Bloom and Z. Ésik. The equational theory of regular words. Information and Com-

putation, 197:55–89, 2005.

[2] Z. Ésik. An undecidable property of context-free linear orders. Inform. Processing Let-
ters, 111(3):107–109, 2011.

[3] D. Kuske. Isomorphisms of scattered automatic linear orders. In CSL’12, 2012. Ac-
cepted.

[4] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic
structures. In LICS 2010, pages 160–169. IEEE Computer Society, 2010.

[5] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic
structures with transitive relations. Transactions of the AMS, 2011. Accepted.

[6] M. Lohrey and Ch. Mathissen. Isomorphism of regular trees and words. In ICALP’11,
Lecture Notes in Comp. Science vol. 6756, pages 210–221. Springer, 2011.

[7] W. Thomas. On frontiers of regular trees. RAIRO – Theoretical Informatics, 20(4):371–
381, 1986.

78

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 79 – 84

States and Heads Do Count For
Unary Multi-Head Finite Automata

Martin Kutrib Andreas Malcher Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract
Unary deterministic one-way multi-head finite automata characterize the unary reg-

ular languages. Here they are studied with respect to the existence of head and state
hierarchies. It turns out that for any fixed number of states, there is an infinite proper head
hierarchy. In particular, the head hierarchy for stateless deterministic one-way multi-head
finite automata is obtained using unary languages. On the other hand, it is shown that
for a fixed number of heads, m+ 1 states are more powerful than m states. Finally, the
open question of whether emptiness is undecidable for stateless one-way two-head finite
automata is addressed and, as a partial answer, undecidability can be shown if at least four
states are provided.

1. Introduction
Finite automata enhanced with multiple one-way reading heads, so-called one-way multi-
head finite automata, can be considered as one of the oldest models for parallel computation.
The idea behind is to have a common finite state control which processes in parallel several
parts of the input that are read by different heads. First investigations on the computational
capacity of such devices date back to [8, 9]. Since that time many extensions of the model
including, for example, two-way head motion and nondeterministic behavior have been stud-
ied, and many results on the computational and descriptional complexity have been obtained.
This documents the importance of such devices. A recent survey on these topics can be found
in [3].

An important question raised already in [9] asks for the power of the heads, that is,
whether additional heads can strengthen the computational capacity of multi-head finite au-
tomata. For one-way devices the question has been answered in the affirmative in [12], where
the witness languages are defined over a ternary alphabet and are not bounded. A reduction
of the size of the underlying alphabet has been obtained in [1, 7], where languages of the
form a∗b∗ are used.

Recently, stateless multi-head finite automata have been introduced as an interesting sub-
class with a biological motivation [11]. For stateless automata the finite state control is re-
stricted to have one state only. Although this seems to be a strong restriction, stateless multi-
head finite automata are still quite powerful. For example, it is shown in [11] that the empti-
ness problem is undecidable for deterministic stateless one-way three-head finite automata.

80 Martin Kutrib, Andreas Malcher, Matthias Wendlandt

In [6] this undecidability result is extended to stateless deterministic two-way two-head finite
automata. It is an open question whether emptiness remains undecidable for deterministic
stateless one-way two-head finite automata. Also in [6], a proper head hierarchy for deter-
ministic stateless one-way multi-head finite automata is shown by a suitable translation of the
languages used in [12]. However, the languages used are not bounded and require a growing
alphabet whose size depends on the number of heads.

An obvious generalization of the concept of stateless automata is to consider whether in
some automata model m+1 states are more powerful than m states. Such state hierarchies
exist, for example, for deterministic and nondeterministic finite automata and for determin-
istic pushdown automata [2]. On the other hand, for nondeterministic pushdown automata a
state hierarchy does not exist, since every context-free language can be accepted by a stateless
nondeterministic pushdown automaton (see [4]).

It is known that every unary language accepted by a one-way multi-head finite automaton
is semilinear and hence regular [5, 10]. Thus, disregarding the number of states, one head
will always suffice to accept these languages. But it turns out that this situation changes
drastically if the number of states is fixed. In this paper, we study these deterministic unary
one-way multi-head finite automata with respect to the number of heads and states. In Sec-
tion 3., as a main result a double hierarchy concerning states and heads is established. On the
one hand, we obtain for every number m ≥ 2 of states that k′ heads are more powerful than
k heads, where k′ ≥ k

(
1+ 1

log2(m)

)
. On the other hand, we show for every number k ≥ 1 of

heads that m+1 states are more powerful than m states. Thus, we have state hierarchies for
a fixed number of heads and head hierarchies for a fixed number of states. In Section 4., we
prove a proper head hierarchy for deterministic stateless one-way multi-head finite automata
using unary witness languages. This improves the result in [6] with respect to the alphabet
size best possible. Finally, we address the open question of whether emptiness is undecid-
able for deterministic stateless one-way two-head finite automata and show that emptiness is
undecidable for deterministic one-way two-head finite automata having four states.

2. Preliminaries and Definitions
Let k ≥ 1 be a natural number. A one-way k-head finite automaton is a finite automaton
having a single read-only input tape whose inscription is the input word in between two
endmarkers (we provide two endmarkers in order to have a definition consistent with two-
way finite automata). The k heads of the automaton can move to the right or stay on the
current tape square but not beyond the endmarkers. Formally, a deterministic one-way k-
head finite automaton (1DFA(k)) is a system M = 〈S,A,k,δ,B,C,s0〉, where S is the finite
set of internal states, A is the finite set of input symbols, k ≥ 1 is the number of heads,
B /∈ A is the left and C /∈ A is the right endmarker, s0 ∈ S is the initial state, δ : S× (A∪
{B,C})k → S×{0,1}k is the partial transition function, where 1 means to move the head
one square to the right, and 0 means to keep the head on the current square. Whenever
(s′,d1d2 · · ·dk) = δ(s,a1a2 · · ·ak) is defined, then di = 0 if ai =C, for 1≤ i≤ k.

A 1DFA(k) starts with all of its heads on the left endmarker. Since we are going to
limit the number of states of the automata, for convenience m-state 1DFA(k) are denoted by
1DFAm(k), for k,m≥ 1. The most restricted version are stateless 1DFA(k), that is, automata

States and Heads Do Count For Unary Multi-Head Finite Automata 81

having exactly one state. Therefore, non-trivial acceptance cannot be defined by accepting
states. Instead, we follow the definition in [6] and say that an input is accepted if and only if
the computation ends in an infinite state loop in which the heads are necessarily stationary,
since they are one-way. A 1DFAm(k) blocks and rejects when the transition function is not
defined for the current situation.

A configuration of a 1DFA(k) M = 〈S,A,k,δ,B,C,s0〉 at some time t ≥ 0 is a triple
ct = (w,s,p), where w ∈A∗ is the input, s ∈ S is the current state, and p= (p1,p2, . . . ,pk) ∈
{0,1, . . . , |w|+ 1}k gives the current head positions. If a position pi is 0, then head i is
scanning the symbol B, if it satisfies 1 ≤ pi ≤ |w|, then the head is scanning the pith letter
of w, and if it is |w|+ 1, then the head is scanning the symbol C. The initial configuration
for input w is set to (w,s0,(0, . . . ,0)). During its course of computation, M runs through
a sequence of configurations. One step from a configuration to its successor configuration
is denoted by `. Let w = a1a2 . . .an be the input, a0 = B, and an+1 = C, then we set
(w,s,(p1,p2, . . . ,pk))` (w,s′,(p1+d1,p2+d2, . . . ,pk+dk)) if and only if (s′,d1d2 · · ·dk) =
δ(s,ap1ap2 · · ·apk). As usual we define the reflexive, transitive closure of ` by `∗, and its
transitive closure by `+. Note, that due to the restriction of the transition function, the heads
cannot move beyond the right endmarker. Whenever we consider an accepting computation
it is understood that we mean the finite initial part of the computation up to but not including
the first state loop at the end. The language accepted by a 1DFA(k)M is

L(M) = {w ∈A∗ | there are s ∈ S,0≤ pi ≤ |w|+1,1≤ i≤ k such that

(w,s0,(0, . . . ,0)) `∗ (w,s,(p1,p2, . . . ,pk)) `+ (w,s,(p1,p2, . . . ,pk))}.

The family of all languages accepted by a device of some type X is denoted by L (X).

Example 2.1 For each k,m ≥ 2, the unary singleton language Lk,m = {a(k−1)mk } is ac-
cepted by some 1DFAm(k).

3. State and Head Double Hierarchy
In this section we are going to show the double hierarchy on the number of states and heads.
We start with the head hierarchy. The approach is to consider a fixed accepting computation of
some unary 1DFAm(k), and to show that either there are infinitely many different accepting
computations or the length of the longest word accepted is at most 2k−1kmk. So, to some
extent the result can be seen as a pumping argument for unary one-way multi-head finite
automata.

In the following, we say that a computation contains a cycle if it contains at least two
configurations that coincide with the state and the input symbols scanned, that is, the actual
head positions do not matter. The length of every cycle is at most m. Considering only the
state and input symbols scanned, we divide a computation into at most (2k+1)m phases. A
new phase is entered when the automaton changes its state, or moves one or more heads from
the left endmarker, or moves one or more heads onto the right endmarker.

Lemma 3.1 Let k,m ≥ 1 and M be a unary 1DFAm(k) accepting a nonempty language.
Then L(M) is either infinite or contains only words strictly shorter than 2k−1kmk.

82 Martin Kutrib, Andreas Malcher, Matthias Wendlandt

Now we are prepared to show the head hierarchy. To this end, we use the unary singleton
language Lk,m = {a(k−1)mk} of Example 2.1 as witness.

Theorem 3.2 Let m ≥ 2 and k ≥ 1. For all k′ ≥ k(1+ 1
log2(m)), the family L (1DFAm(k))

is properly included in L (1DFAm(k′)).

In particular, the head hierarchy is strict and tight when the number of states is at least
2k−1.

Theorem 3.3 Let k ≥ 1. For all m ≥ 2k−1, the family L (1DFAm(k)) is properly included
in L (1DFAm(k+1)).

Proof. Similarly as in the proof of Theorem 3.2 we use Lk+1,m ∈L (1DFAm(k+1)) as
witness. Since kmk+1 = kmmk ≥ k2k−1mk, we derive from Lemma 3.1 that Lk+1,m is not
accepted by any 1DFAm(k)). 2

The proof of Lemma 3.1 reveals an interesting property of unary languages accepted by
stateless 1DFA(k).

Theorem 3.4 Every unary language accepted by some stateless 1DFA1(k) is either finite or
cofinite.

Now we turn to the state hierarchy. It is strict and tight for any number of heads.

Theorem 3.5 Let k ≥ 1. For all m ≥ 1, there is a finite unary language belonging to the
family L (1DFAm+1(k)) but not to L (1DFAm(k)). Therefore, the family L (1DFAm(k)) is
properly included in L (1DFAm+1(k)).

The previous theorem can be strengthened in the sense that there is a unary language
accepted by some one-head (m+1)-state automaton that cannot be accepted by any m-state
automaton having an arbitrary number of heads. Clearly, this language cannot be finite.

Theorem 3.6 Let m be a prime number. There is a unary language belonging to the family
L (1DFAm(1)) but not to any family L (1DFAm−1(k)), k ≥ 1.

4. Head Hierarchy for Stateless Finite Automata
In this section we show an infinite strict and tight head hierarchy for stateless automata using
unary languages. The head hierarchy obtained in [6] is based on languages over a growing
alphabet, that is, the number of symbols increases with the number of heads. We continue
with an example that gives an almost trivial lower bound for the lengths of longest words
in finite unary languages accepted by stateless 1DFA(k). However it is best possible for
very few heads and we need it in the following. It is worth mentioning that there are also
examples showing that the lower bound grows exponentially with k. In order to increase the
readability, we use the following short notation. A transition δ(si,ak) = (si+1,1k) means
that the automaton is in state si and each of the k heads reads an a. Then the automaton
changes its state to si+1 and all k heads move one step to the right.

States and Heads Do Count For Unary Multi-Head Finite Automata 83

Example 4.1 For each k ≥ 1, the unary singleton language {ak−1 } is accepted by the
1DFA1(k) M = 〈{s0},{a},k,δ,B,C,s0〉, where the transition function δ is specified as
δ(s0,Bk−jaj) = (s0,0k−(j+1)1(j+1)) and δ(s0,a

k−1C) = (s0,0k), for 0≤ j ≤ k−1.

Theorem 4.2 For all k≥ 1, there is a finite unary language belonging to the family L (1DFA1(k+
1)) but not to the family L (1DFA1(k)). Therefore, the family L (1DFA1(k)) is properly in-
cluded in L (1DFA1(k+1)).

5. Four States are Too Much For Two-Head Automata

In this section, we investigate the emptiness problem for 1DFA(2). It has been shown in [11]
that the emptiness problem is undecidable for stateless 1DFA(k) where k is at least three.
In [6], the emptiness problem is again studied for stateless multi-head automata. It turned
out that the problem is undecidable for stateless two-way DFA(2). The problem has been left
open for 1DFA(2). Here, we obtain a first result in this direction and show the undecidability
of the problem for 1DFA4(2) having at least four states. The problem remains open for
stateless 1DFA1(2) and 1DFA(2) with two or three states.

The undecidability of the problem is shown by reduction of the emptiness problem for
deterministic linearly space bounded one-tape, one-head Turing machines, so-called linear
bounded automata (LBA). Basically, histories of LBA computations are encoded in single
words that are called valid computations (see, for example, [4]). We may assume that LBAs
get their input in between two endmarkers, make no stationary moves, accept by halting in
some unique state f on the leftmost input symbol, and are sweeping, that is, the read-write
head changes its direction at endmarkers only. Let Q be the state set of some LBA M , where
q0 is the initial state, T ∩Q= ∅ is the tape alphabet containing the endmarkers B and C, and
Σ ⊂ T is the input alphabet. Since M is sweeping, the set of states can be partitioned into
QR and QL of states appearing in right-to-left and in left-to-right moves. A configuration
of M can be written as a string of the form BT ∗QT ∗C such that, Bt1t2 · · · tisti+1 · · · tnC is
used to express that Bt1t2 · · · tnC is the tape inscription, M is in state s, for s ∈ QR scans
tape symbol ti+1, and for s ∈QL scans tape symbol ti. Now we consider words of the form
$w0$w1$ · · ·$wm, where $ /∈ T ∪Q, wi ∈ T ∗QT ∗ are configurations of M with endmarkers
chopped off, w0 is an initial configuration of the form q0Σ∗, wm ∈ {f}T ∗ is a halting, that
is, accepting configuration, and wi+1 is the successor configuration of wi. These words are
encoded so that every state symbol is merged together with its both adjacent symbols into
a metasymbol. To this end, we assume that the LBA input is nonempty, and rewrite every
substring of $w0$ · · ·$wm having the form tqt′ to [t,q, t′], where q ∈Q, t, t′ ∈ T ∪{$}. The
set of these encodings is defined to be the set of valid computations of M . We denote it
by VALC(M).

Lemma 5.1 Let M be an LBA. Then a 1DFA4(2) accepting VALC(M) can effectively be
constructed.

Theorem 5.2 Emptiness is undecidable for 1DFAn(2) with n≥ 4.

84 Martin Kutrib, Andreas Malcher, Matthias Wendlandt

Proof. Let M be an LBA. According to Lemma 5.1 we can effectively construct a
1DFA4(2) M ′ accepting VALC(M). Clearly, L(M ′) = VALC(M) is empty if and only
if L(M) is either {λ} or empty. Since the word problem is decidable and emptiness is
undecidable for LBAs, the theorem follows. 2

References
[1] Chrobak, M.: Hierarchies of one-way multihead automata languages. Theoret. Comput.

Sci. 48, 153–181 (1986)

[2] Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading
(1978)

[3] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins
and directions. Theoret. Comput. Sci. 412, 83–96 (2011)

[4] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

[5] Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown au-
tomata. Inform. Process. Lett. 3, 25–28 (1974)

[6] Ibarra, O.H., Karhumäki, J., Okhotin, A.: On stateless multihead automata: Hierarchies
and the emptiness problem. Theoret. Comput. Sci. 411, 581–593 (2010)

[7] Kutyłowski, M.: One-way multihead finite automata and 2-bounded languages. Math.
Systems Theory 23, 107–139 (1990)

[8] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev.
3, 114–125 (1959)

[9] Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394 (1966)

[10] Sudborough, I.H.: Bounded-reversal multihead finite automata languages. Inform. Con-
trol 25, 317–328 (1974)

[11] Yang, L., Dang, Z., Ibarra, O.H.: On stateless automata and P systems. Int. J. Found.
Comput. Sci. 19, 1259–1276 (2008)

[12] Yao, A.C., Rivest, R.L.: k+1 heads are better than k. J. ACM 25, 337–340 (1978)

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 85 – 89

Manipulation of Finite Automata
A Small Leak Will Sink a Great Ship

Martin Kutrib Katja Meckel Matthias Wendlandt

Institut für Informatik, Justus-Liebig-Universität Giessen
Arndtstr. 2, 35392 Giessen

{kutrib,meckel,wendlandt}@informatik.uni-giessen.de

Abstract

We investigate the state complexity of NFA that are obtained by manipulations of
minimal DFA that may occur when transmitting this automaton to a receiver. Further, we
try to fix the error that occurred and construct minimal DFA for subsets of the languages
of the manipulated and fixed automata.

1. Introduction
The storage of a finite automaton can be done in different ways. One is to define a set of
accepting states and store the transitions in an adjacency list for every letter of the alphabet.
Another way to store the transitions is to write them down as a matrix. This can be done by
using a matrix for every single letter and marking the connected states by a special symbol,
or by a single matrix with entries that are a list of letters of the alphabet.

Both ways of storage may lead to problems when there happens to be for example a
hardware defect or when transmitting this stored automaton to another person. It is well
known that by sending information it may happen that some bits get lost or get modified.
Such a modification may have consequences for the transmitted automaton. It may happen
that for a matrix, one entry may be deleted. This means that a complete transition gets lost.
It is also possible that the adjacency list for one state gets lost. The result is the loss of a state
and all its transitions. In both cases, the receiver of the automaton gets a nondeterministic
finite automaton even though the sent automaton is deterministic.

It is well known that given some n-state NFA one can always construct a language equiv-
alent DFA with at most 2n states [6]. In fact, later it was shown independently in [3, 4, 5]
that this exponential upper bound is best possible. The consequences for our problem are that
if the receiver needs to work on a minimal DFA he may deal with exponentially more states
than the transmitter of the automaton.

There exist a few manipulations that may be a result of a flaw in the transmission of an
automaton. We concentrate on the following ones: exchange of the letter of the transition,
interchange of the source and the target of a transition, deletion of a transition, insertion of a
transition, deletion of a (non-)accepting state with all its incoming and outgoing transitions,
and inversion of the acceptance/non-acceptance of a state. Some of these manipulations only
occur if there happened more than one modification while transmitting the data.

86 Martin Kutrib, Katja Meckel, Matthias Wendlandt

2. Deterministic State Complexity
In this section we are interested in the number of states for a minimal DFA that accepts the
language of the manipulated automaton depending on the number of states of the sent DFA,
because if this number is not that much bigger than the one of the original automaton, it is not
too bad with regards to the state complexity. For regular languages we summarize our results
in Table 1.

Manipulation Regular Languages
exchange letter of transition 2n

interchange source and
target of transition 2n

delete transition n+1
insert transition 2n−1
delete accepting state n
delete non-accepting state n
drop acceptance for a state n
add acceptance for a state n

Table 1: Deterministic state complexities for manipulations of n-DFA accepting regular languages

Since some of these bounds are exponential, the question arises if we get better results
when considering DFA accepting subregular language families. Prominent examples for lan-
guage families that do not meet the exponential upper bound are the unary regular language
family [1, 2] and the family of finite languages [8]. Our results for unary regular languages
and finite languages are summarized in Table 2.

3. Error-Recognition and Error-Fixing
Apart from deterministic state complexity it is also necessary to take a look at the languages
that are accepted by the NFA that are the results of the manipulations. In the usual case, the
language of the received automaton differs from the language of the transmitted DFA. Thus,
it is interesting to know if it is possible to recognise and perhaps even fix the flaw in the
automaton. For error-recognition it is important that the receiver of the automaton knows that
he should have a complete and minimal DFA at hand.

The manipulations that insert a transition, interchange the source and the target of a tran-
sition and exchange the letter of a transition introduce non-determinism to the DFA. Thus,
one can recognise that an error has occurred. If there would be only one transition that is
modified, it is also recognisable which error has occurred since those three manipulations
result in a unique pattern. If there are at least two transitions that are manipulated it is impos-
sible to distinguish between these errors. If the type of manipulation is recognisable it is only
possible to fix the error for interchanged source and target since in all other cases it is not
decidable which transition is the manipulated one and which is the one that already existed
in the original automaton.

Manipulation of Finite Automata A Small Leak Will Sink a Great Ship 87

Manipulation Finite Languages Unary Regular Languages

exchange letter of transition n2−3n
2 +3≤ · ≤ n(n+1)

2 n

interchange source and

target of transition 2
n+1

2 +2
n−1

2 −1≤ · ≤ 2n−1 n+1

delete transition n n+1

insert transition 2
n+1

2 +2
n−1

2 −1≤ · ≤ 2n n2−3n+1≤ · ≤ n2

delete accepting state n−1 n

delete non-accepting state n n

drop acceptance for a state n n

add acceptance for a state n n

Table 2: Deterministic state complexities for manipulations of n-DFA accepting finite languages and
unary regular languages

If at least one transition was deleted during the transmission it is also possible to recog-
nise that an error occurred since then the automaton is not complete anymore. But it is not
possible to fix it since even if it is known where to start the transition and on which letter it is
performed, it still is impossible to recognise which state is the target for this transition. This
is only decidable if the fixed automaton is complete and minimal but there may exist more
than one target for the missing transition that results in such a DFA.

When a complete state with all its incoming and outgoing transitions is deleted in the
automaton on its way to the receiver, it is recognisable that an error has occurred since the
automaton is not complete anymore. Fixing is impossible since it is unknown which are the
targets of the transitions of the missing state.

In general, it is not possible to recognise that a manipulation has occurred that dropped
or added the acceptance for at least one state. In case the received automaton is not minimal
anymore but still complete it is possible to recognise that an error occurred but it is impossible
to fix it. There may have occurred more than one other error or, if it is known that it was an
error concerning the (non-)acceptance of a state, there may exist more than one way to get a
minimal and complete DFA when trying to fix the error [7].

The results from above hold true for finite and for (unary) regular languages. There is only
one obvious exception for unary languages. The exchange of the letter of a transition does
not change anything in the DFA since there exists only a single letter. So this manipulation
does not need to be fixed for DFA accepting unary regular languages.

88 Martin Kutrib, Katja Meckel, Matthias Wendlandt

4. Construction of Deterministic Finite Automata for Sets
Related to the Accepted Languages

Since in most cases it is impossible to fix the error we want to know which words of the
accepted language L′ of the manipulated automaton belong to the language L that is accepted
by the original DFA. These are the words of the set L∩L′. We are also interested in those
words that are rejected by both automata (L∩L′) and in those which may belong to L and
are accepted by at least one of the possible fixed automata.

In a first step we assume that only one error occurred. For manipulations on the transitions
we now can recognise the type of the error. We can construct three automata from the received
NFA: one that recognises L∩L′, another one for L∩L′, and a third automaton that accepts
all words of the fixed automata for which it is unsure if they belong to the original language.
This set includes the original language.

The construction of a DFA that accepts the words of L∩L′ is very simple. If one transition
gets lost while transmitting the DFA, one can simply transform the NFA on hand into a
deterministic automaton. For the other types of transition-errors, a DFA for this set of words
is also quite simple to construct. By deleting all transitions that provide the non-determinism
from the NFA that was received and determinizing this automaton, we obtain the minimal and
complete DFA, that accepts exactly the “good” part of the language. All of those DFA have
a deterministic state complexity of at most n+1, if the automaton that was transmitted is an
n-state DFA since there exists no non-determinism in the constructed NFA.

To build a DFA for L∩L′, we also delete the non-deterministic transitions (if they exist).
Since this NFA is simply an incomplete DFA we can build the complement by switching the
type of acceptance of all states. Thus, a minimal and complete DFA for the rejected part of
the language needs at most n+1 states if the original DFA consists of n states.

This leaves the construction of an automaton that accepts all the words, that may belong
to the language of the original DFA. For such a DFA we need to fix the error. If a transition of
the n-state DFA gets lost on its way from the transmitter to the receiver, it is obvious in which
state it starts and on which letter it is performed. The only problem is the target. For every
possible target we construct a DFA that resembles the received NFA and add the transition
with the chosen target. If we unite the languages accepted by these DFA we get the set of
words that may or may not belong to the original language. A complete and minimal DFA for
this language needs at most n3−n states.

In case a transition is inserted into the n-state DFA on its way from the transmitter to the
receiver, it is obvious for which state it is inserted, and on which letter it is performed. The
only problem is to decide which of the transitions on the same letter in this state is the one
that was inserted. Thus, we construct two DFA that resemble the received NFA and delete
one of the two possible transitions. If we unite the languages accepted by these DFA we get
the set of words that may or may not belong to the original language. A minimal DFA for
this language needs at most n2 states.

For the exchange of the letter on which a transition is performed, we can construct a
minimal DFA for the words that may or may not belong to the accepted language of the
original n-state DFA by building DFA where the exchange of the letter is corrected, building
an NFA for the union of their accepted languages, and determinizing it. This DFA needs at
most n2 states.

Manipulation of Finite Automata A Small Leak Will Sink a Great Ship 89

This leaves the error that interchanges the source and target of a transition. This manipu-
lation is easily to be fixed if only one transition is affected. By again interchanging the source
and target of the transition we obtain the original DFA. Thus, n states suffice for the “may or
may not”-language.

We summarize our results on the constructions for the different types of languages and
the considered types of errors in Table 3.

Accepted Rejected “May Or May Not”-

Manipulation Words Words Words

exchange letter of transition n+1 n+1 n2

interchange source and

target of transition n+1 n+1 n

delete transition n+1 n+1 n3−n

insert transition n+1 n+1 n2

Table 3: Deterministic state complexities for the construction of minimal DFA from a manipulated
n-DFA for subsets of the accepted language

References
[1] M. CHROBAK, Finite automata and unary languages. Theoret. Comput. Sci. 47 (1986), 149–158.

[2] M. CHROBAK, Errata to “finite automata and unary languages”. Theoret. Comput. Sci. 302 (2003),
497–498.

[3] O. LUPANOV, A comparison of two types of finite sources. Problemy Kybernetiki 9 (1963), 321–
326. (in Russian), German translation: Über den Vergleich zweier Typen endlicher Quellen. Prob-
leme der Kybernetik 6 (1966), 328-335.

[4] A. R. MEYER, M. J. FISCHER, Economy of description by automata, grammars, and formal sys-
tems. In: Symposium on Switching and Automata Theory (SWAT 1971). IEEE, 1971, 188–191.

[5] F. MOORE, On the bounds for state-set size in the proofs of equivalence between deterministic,
nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20 (1971), 1211–1214.

[6] M. RABIN, D. SCOTT, Finite automata and their decision problems. IMB J. Res. Dev. 3 (1959),
114–125.

[7] A. RESTIVO, R. VAGLICA, Automata with Extremal Minimality Conditions. In: Developments in
Language Theory. LNCS 6224, Springer, 2010, 399–410.

[8] K. SALOMAA, S. YU, NFA to DFA transformation for finite languages over arbitrary alphabets. J.
Autom., Lang. Comb 2 (1997), 177–186.

90

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 91 – 96

Lohmann Words and More Clusters of Words
Gerhard Lischke

Fakultät für Mathematik und Informatik,
Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany
gerhard.lischke@uni-jena.de

Six kinds of both of primitivity and periodicity of words have been introduced by Ito and
Lischke [1]. These give rise to define six kinds of roots of a nonempty word, and it was the
question whether there exist words u such that all the six roots of u are different each other.
It was first assumed that such words do not exist, but in 2010 Georg Lohmann discovered
the first of them. We will show that for such a Lohmann word u the six roots of u fulfil
a fixed prefix relationship, and we give a sufficient condition for a word to be a Lohmann
word. If u has exactly k different roots for 1 < k < 6, then several prefix relationships
between them are possible. With the notion of k-cluster we give an exact classification of
all these possible relationships and investigate whether the appropriate words are periodic or
not. Before defining the roots let us repeat the most important notions which we will use.

We restrict to the nontrivial alphabet X = {a,b} with the fixed ordering a < b. The
empty word is denoted by e, and X+ =Df X

∗ \ {e}. For words p,q ∈ X∗, p is a prefix
of q, in symbols p v q, if there exists r ∈ X∗ such that q = pr. p is a strict prefix of q, in
symbols p< q, if pv q and p 6= q. Pr(q) =Df {p : p< q} is the set of all strict prefixes of
q (including e if q 6= e). p is a suffix of q, if there exists r ∈ X∗ such that q = rp. Besides
the usual concatenation of words we consider the following concatenation with overlaps or
folding operation:

For p,q ∈X∗, p⊗ q =Df {w1w2w3 : w1w3 6= e ∧ w1w2 = p ∧ w2w3 = q},
p⊗0 =Df {e}, p⊗n =Df

⋃
{w⊗p : w ∈ p⊗n−1} for n≥ 1.

For sets A,B ⊆X∗, A⊗B =Df
⋃
{p⊗ q : p ∈A ∧ q ∈B}.

This operation is illustrated by the following example.
Let p= aabaa. Then p⊗p= p⊗2 = {aabaaaabaa,aabaaabaa,aabaabaa}.

A nonempty word p is periodic if and only if it is a concatenation of two or more copies
of the same word v, p = vn, n ≥ 2. A nonempty word is primitive if and only if it is not
periodic.

The next definition is taken from [1].

Definition 1 Let u ∈X+.
The shortest word v such that there exists a natural number n with u= vn

is called the root of u, denoted by root(u).
The shortest word v such that there exists a natural number n with u ∈ vn ·Pr(v)
is called the strong root of u, denoted by sroot(u).
The shortest word v such that there exists a natural number n with u ∈ v⊗n
is called the hyperroot of u, denoted by hroot(u).

92 Gerhard Lischke

The shortest word v such that there exists a natural number n with u ∈ {vn}⊗Pr(v)
is called the super strong root of u, denoted by ssroot(u).
The shortest word v such that there exists a natural number n with u ∈ v⊗n ·Pr(v)
is called the strong hyperroot of u, denoted by shroot(u).
The shortest word v such that there exists a natural number n with u ∈ v⊗n⊗Pr(v)
is called the hyperhyperroot of u, denoted by hhroot(u).

Definition 2 For word functions f and g having the same domain dom(f),
f v g =Df ∀u(u ∈ dom(f)→ f(u)v g(u)).

Theorem 1 The partial ordering v for the functions from Definition 1 is given in Figure 1.

hhroot

shroot

sroot

root

ssroot

hroot

Figure 1: Partial ordering of the root-functions

The proof follows from the definition and can be done as a simple exercise. It is also
contained in [1] and [2].

Definition 3 Let k ∈ {1,2,3,4,5,6}. A word u ∈X+ is called a k-root word if {root(u),
sroot(u),hroot(u),ssroot(u),shroot(u),hhroot(u)} has exactly k elements.
A 6-root word is also called a Lohmann word.

Definition 4 Let k ∈ {1,2,3,4,5,6}.
A k-cluster is a set of the form [α11 · · · α1i1 /α21 · · · α2i2 / · · · /αk1 · · · αkik],
where i1 + i2 + · · ·+ ik = 6,
{α11, . . . ,α1i1}∪{α21, . . . ,α2i2}∪ · · ·∪{αk1, . . . ,αkik}= {hh,ss,sh,h,s,r} and
[α11 · · · α1i1 / · · · /αk1 · · · αkik] =Df {u : u ∈X∗∧ α11root(u) = · · ·= α1i1root(u) <

α21root(u) = · · ·= α2i2root(u) < · · ·< αk1root(u) = · · ·= αkikroot(u)}.

Lohmann words and more clusters of words 93

For α = r, αroot(u) means root(u). Thus, for instance, [hhshh/ss/sr] denotes the set
of all words u satisfying hhroot(u) = shroot(u) = hroot(u) < ssroot(u) < sroot(u) =
root(u).

We will say, that a cluster exists if it is not empty.
For instance, clusters of the form [r/ · · ·] or [· · · /hh · · ·] cannot exist.

Definition 5 A cluster C is called a primitive cluster if it contains only primitive words. A
cluster C is called a periodic cluster if it contains only periodic words. A cluster is called a
mixed cluster if it contains both primitive and periodic words.

Lemma 1 For a nonempty word u, only one of the following relationships is possible (where
we will use hh, ss, sh, h, s, r, respectively, as shorthand expressions instead of hhroot(u),
ssroot(u), shroot(u), hroot(u), sroot(u), root(u), respectively):
(1) hhv ssv shv hv sv r,
(2) hhv ssv shv sv hv r,
(3) hhv shv hv ssv sv r,
(4) hhv shv ssv hv sv r,
(5) hhv shv ssv sv hv r.

Lemma 2 If shroot(u) = ssroot(u) for some u ∈X+, then also sroot(u) = shroot(u) =
ssroot(u), and therefore there is no 5-cluster with sh = ss.

Lemma 3 If ssroot(u) = hroot(u) for some u ∈ X+, then also root(u) = sroot(u) =
ssroot(u) = hroot(u), and therefore there is no 4-cluster and no 5-cluster with ss = h.

Lemma 4 If u ∈X+ is in a k-cluster with k > 1 and sroot(u) = root(u) then u is periodic.

Lemma 5 If ssroot(u) < root(u) for some u ∈X+, then u is not periodic.

Lemma 6 There is no cluster with ss< s= r.

Lemma 7 If ssroot(u) < hroot(u) < root(u) for some u ∈ X+, then ssroot(u) =
sroot(u), and therefore there is no 6-cluster with ss< h.

The proofs of the lemmas 1 to 4 are simple but not so for Lemma 5 and Lemma 7. Lemma
6 is a consequence of Lemma 4 and Lemma 5. Exemplary, we prove Lemma 7.

Proof. Let v = ssroot(u) < p = hroot(u) < root(u) and ssroot(u) < sroot(u). Then
by Lemma 5, u is not periodic and therefore u = root(u) ∈ p⊗m and u ∈ vn⊗ v′ for some
m ≥ 2, n ≥ 1 and v′ < v. There must be an overlapping between vn and v′ since oth-
erwise sroot(u) v v = ssroot(u). This means, u = vnv′′ for a strict subword v′′ of v,
more exactly, v = vlv

′′vr with vl,vr 6= e. If n = 1, then u = vv′′ with |u| ≤ 2|v| − 2 and
therefore |v| ≥ |u|2 + 1 and |p| ≥ |u|2 + 2. Then m = 2 must follow and therefore p = wqw

and u = wqwqw ∈ p⊗2. But then ssroot(u) v sroot(u) v wq which means, |v| ≤ |u|2 , a
contradiction. Now we must have u = vnv′′ ∈ p⊗m with m,n ≥ 2, v < p. Let p = vkq
for some q with |q| < |v| and 1 ≤ k ≤ n. It is q 6= e because otherwise hroot(u) v v.

94 Gerhard Lischke

It is k < n because otherwise |p| > 2
3 |u| contradicting to the fact that the shortest word p

such that u ∈ p⊗m for some m ≥ 2 cannot be longer than 2|u|
3 . Then q < v because of

p = vkq < u = vnv′′. Now we have v = qq′ for nonempty words q, q′, and p = (qq′)kq.
p is the hyperroot of u, and therefore k = 1 because otherwise qq′q would be a shorter
candidate for the hyperroot. Hence u = (qq′)nv′′ ∈ (qq′q)⊗m and v′′, which is shorter
than v = qq′, is a suffix of q′q. If |v′′| ≤ |q| then v′′ is a suffix of q and qq′v′′ = v′′q′q
must follow. This means, v′′ v q and sroot(u) v qq′ = ssroot(u), a contradiction. If
|q| < |v′′| < |qq′| then remember that v = qq′ = vlv

′′vr with vl,vr 6= e and vl is a suffix
of v. From u = (vlv

′′vr)
nv′′ ∈ (vlv

′′vrq)
⊗m we get v′′ = v1q for some v1 which is a strict

nonempty suffix of q′, and vlv1qvrv1q= · · ·vlv1qvrq, therefore qvrv1 = v1qvr and vl is a suf-
fix of vlv1. Since qvrv1 = v1qvr, by the Lemma of Lyndon/Schützenberger ([3], see also [2])
qvr and v1 must be powers of a common primitive word x, v1 = xα, qvr = xβ for α,β ≥ 1.
Then v = vlv1qvr = vlx

α+β . Since vl is a suffix of vlv1 it follows that vl = yvs1 for some
s ≥ 0 and a nonempty suffix y of v1. Since v1 = xα we can assume that vl = yxt for some
t ≥ 0 and y is a nonempty suffix of x. Now we have v = yxc with c = t+α+β ≥ 2 and
u= (yxc)nv′′ where xα v v′′ < xα+β v xc. This means, v′′ = xix1 where α≤ i < α+β−1
and e v x1 v x. Then u = (yxc)nxix1. If x1 = e or x1 = x then hroot(u) v yx < v, a
contradiction. Otherwise, qq′q = yxcq with e< q < xβ cannot be the hyperroot of u. 2

Theorem 2 All Lohmann words belong to the cluster [hh/sh/h/ss/s/r] which is a
primitive cluster. I.e., if u is a 6-root word then u is primitive and
hhroot(u) < shroot(u) < hroot(u) < ssroot(u) < sroot(u) < root(u) = u.

The proof follows with Lemmas 1, 5 and 7.

Definition 6 For finite sequences (k1, . . . ,kr) and (t1, . . . , tm) of natural numbers, let
(k1, . . . ,kr)� (t1, . . . , tm) =Df (k1, . . . ,kr−1,kr+ t1, t2, . . . , tm) and
(k1, . . . ,kr)

�0 =Df (0), (k1, . . . ,kr)
�s =Df (k1, . . . ,kr)

�s−1� (k1, . . . ,kr) for s≥ 1.
Let (k1, . . . ,kr, t) be a sequence of natural numbers with r ≥ 2, 2 ≤ k1 ≤ ki ≤ 2k1 for each
i ∈ {1, . . . , r} and 0≤ t≤ k1, and let s≥ 2 and
(k1, . . . ,kr, t)

�s = (k1, . . . ,kr,kr+1, . . . ,ks·r, t).
If t 6= 0 and k1 ≤ k′ < k1+ t then (k1, . . . ,ks·r,k

′) is called an L-sequence with its producer
(k1, . . . ,kr, t); if t= 0 and k′ with max{k1, . . . ,kr}< k′ ≤ 2k1 exists then (k1, . . . ,ks·r−1,k

′)
is called an L-sequence with its producer (k1, . . . ,kr,0).

Theorem 3 Let v and w be words such that e< v < w, wv 6v pl for some p< w and l > 1,
let (k1, . . . ,kn) be an L-sequence and k+ the greatest number in this sequence, and let w′ be
a word such that wk−1v < w′ < wkv for some k ≥ 2 with k+− k1 ≤ k ≤ k1 and w2 v w′.
Then u= wk1vwk2v · · ·wknvw′ is a Lohmann word.

Proof. Let (k1, . . . ,kr, t) be the shortest producer of the L-sequence (k1, . . . ,kn). Then
the proof is done by verifying the roots:
hhroot(u) = wv, ssroot(u) = wk1vwk2v · · ·wkrvwt,
shroot(u) = wk1v, ssroot(u) < sroot(u)v wk1vwk2v · · ·wkn−1vwkn−k1 ,
hroot(u) = wk1vw′, root(u) = u.

2

Lohmann words and more clusters of words 95

Example 1 (2,2,0), (2,3,0), (2,2,1), (2,4,1), (2,4,2), (3,4,4,2) are producer of theL-sequences
(2,2,2,3), (2,3,2,4), (2,2,3,2,2), (2,4,3,4,2), (2,4,4,4,3), (3,4,4,5,4,4,5,4,4,3), respectively.
(2,3,0) is also a producer of (2,3,2,3,2,4). From (2,2,2,3) with w = ab, v = a, and w′ = (ab)2

we get the smallest Lohmann word ababaababaababaabababaabab.

By Lemma 1, altogether 89 k-clusters are possible: 1 for k = 1, 8 for k = 2, 23 for k = 3,
32 for k = 4, 20 for k = 5, and 5 for k = 6. For k ∈ {2,3,4,5} they are listed in the Fig-
ures 2 to 5. We have already seen that there exists only one 6-cluster. The only 1-cluster is
[hhssshhsr]. The most of the remaining clusters cannot exist by our Lemmas, where the
corresponding numbers are given in the tables. The sign + means that the existence of the
corresponding cluster is sure and was verified by computer experiments.

[hh/ssshhsr] + [hhshh/sssr] +
[hhss/shhsr] 6 [hhssshh/sr] 2,3,6
[hhsh/sshsr] + [hhssshs/hr] +
[hhsssh/hsr] 2,6 [hhssshhs/r] 3

Figure 2: 2-clusters

[hh/ss/shhsr] 6 [hhsssh/s/hr] 2
[hh/sssh/hsr] 2,6 [hhssshs/h/r] +
[hh/ssshh/sr] 2,3,6 [hh/sh/hsssr] +
[hh/ssshhs/r] 3 [hh/shh/sssr] +
[hhss/sh/hsr] 6 [hhsh/h/sssr] +
[hhss/shh/sr] 6,7 [hhsh/hss/sr] 3,6
[hhss/shhs/r] 7 [hhsh/hsss/r] 3
[hhsssh/h/sr] 2,6,7 [hhshh/ss/sr] 6
[hhsssh/hs/r] 2,7 [hhshh/sss/r] +
[hhssshh/s/r] 2,3 [hhsh/ss/hsr] 6
[hh/ssshs/hr] + [hhsh/sss/hr] +
[hhss/shs/hr] +

Figure 3: 3-clusters

Theorem 4 There exists only one mixed cluster namely the 1-cluster [hhssshhsr]. The
clusters [hhsh/sshsr], [hhshh/sssr], [hh/ssshhsr], [hhsh/h/sssr],
[hh/sh/hsssr], [hh/shh/sssr] and [hh/sh/h/sssr] are periodic clusters,
and all other existing clusters are primitive.

The proof follows from our Figures with Lemmas 4 and 5.

96 Gerhard Lischke

[hhss/shh/s/r] 7 [hhsh/ss/hs/r] 7
[hhss/sh/hs/r] 7 [hhsh/ss/h/sr] 6,7
[hhss/sh/h/sr] 6,7 [hhsh/sss/h/r] +
[hh/sssh/hs/r] 2,7 [hhsh/ss/s/hr] +
[hh/sssh/h/sr] 2,6,7 [hh/sh/sss/hr] +
[hh/ss/shh/sr] 6,7 [hhsssh/h/s/r] 2,7
[hhss/shs/h/r] 7 [hh/ssshh/s/r] 2,3
[hhss/sh/s/hr] + [hh/ss/shhs/r] 7
[hh/sssh/s/hr] 2 [hh/ss/sh/hsr] 6
[hh/ss/shs/hr] + [hhsssh/s/h/r] 2,7
[hhsh/hss/s/r] 3 [hh/ssshs/h/r] +
[hhsh/h/sss/r] + [hhshh/ss/s/r] +
[hhsh/h/ss/sr] 6 [hh/sh/hsss/r] 3
[hh/shh/sss/r] + [hh/sh/h/sssr] +
[hh/shh/ss/sr] 6 [hhshss/h/s/r] 2,7
[hh/sh/hss/sr] 3,6 [hh/sh/ss/hsr] 6

Figure 4: 4-clusters

[hhss/sh/h/s/r] 7 [hh/shh/ss/s/r] +
[hh/sssh/h/s/r] 2,7 [hh/sh/hss/s/r] 3
[hh/ss/shh/s/r] 7 [hh/sh/h/sss/r] +
[hh/ss/sh/hs/r] 7 [hh/sh/h/ss/sr] 6
[hh/ss/sh/h/sr] 6,7 [hhsh/ss/h/s/r] 7
[hhss/sh/s/h/r] 7 [hh/sh/ss/hs/r] 7
[hh/sssh/s/h/r] 2,7 [hh/sh/ss/h/sr] 6,7
[hh/ss/shs/h/r] 7 [hhsh/ss/s/h/r] 7
[hh/ss/sh/s/hr] + [hh/sh/sss/h/r] +
[hhsh/h/ss/s/r] + [hh/sh/ss/s/hr] +

Figure 5: 5-clusters

Acknowledgements This work was supported by the Fellowship Program of the Japan Society for
Promotion of Science (JSPS) under No. S-11717. The author is very grateful to Masami Ito for the
cooperation and for the hospitality during his stay in Kyoto, and to Georg Lohmann in Apolda for his
interest and the assistence with his computer programs.

References
[1] M. Ito, G. Lischke, Generalized periodicity and primitivity for words, Math. Log. Quart. 53 (2007),

91–106, Corrigendum in Math. Log. Quart. 53 (2007), 642–643.

[2] G. Lischke, Primitive words and roots of words, Acta Univ. Sapientiae, Informatica 3, 1 (2011),
5–34.

[3] R. C. Lyndon, M. P. Schützenberger, On the equation aM = bN cP in a free group, Michigan Math.
Journ. 9 (1962), 289–298.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 97 – 102

Avoidability of Cubes under Morphic Permutations
Florin Manea(A) Mike Müller(A) Dirk Nowotka(B)

Institut für Informatik, Christian-Albrechts-Universität zu Kiel
D-24098 Kiel, Germany.

{flm,mimu,dn}@informatik.uni-kiel.de

Abstract
We consider the avoidance of patterns involving permutations. One of the remarkable

facts is that in this setting the notion of avoidability index (the smallest alphabet size
for which a pattern is avoidable) is meaningless since a pattern with permutations that
is avoidable in one alphabet can be unavoidable in a larger alphabet. We characterise
the (un-)avoidability of all patterns of the form πi(x)πj(x)πk(x), called cubes under
morphic permutations here, for all alphabet sizes.1

1. Introduction
We are concerned with a generalisation of pattern avoidability [2, 4], by considering patterns
with functional dependencies between variables, in particular, we investigate permutations.
More precisely, we do allow function variables in the pattern that are morphic extensions of
permutations on the alphabet. For example, an instance of the pattern xπ(x)x is a word uvu
that consists of three parts of equal length, that is, |u| = |v|, and v is the image of u under
any permutation on the alphabet. For example, aab|bba|aab is an instance of xπ(x)x for the
morphic extension of permutation a 7→ b and b 7→ a.

Recently, there has been some initial work on avoidance of patterns with involutions
which is a special case of the permutation setting considered in this paper (as involutions are
permutations of order at most two); see [1, 3]. Since these are the very first considerations
on this kind of pattern avoidance at all, we restrict ourselves to cube-like patterns with one
variable, occurring three times, and only one function variable, that is, we investigate patterns
of the form: πi(x)πj(x)πk(x) where i, j,k ≥ 0.

It is worth noting that the notion of avoidability index plays no role in the setting of
patterns involving permutations. Contrary to the traditional setting, where once a pattern
is avoidable for some alphabet size it remains avoidable in larger alphabets, a pattern with
permutations may become unavoidable in a larger alphabet. This is a new and somewhat
unexpected phenomenon in the field of pattern avoidance. It does not occur, for example, in
the involution setting but requires permutations of higher order.

(A)The work of Florin Manea and Mike Müller is supported by the DFG grant 582014.
(B)The work of Dirk Nowotka is supported by the DFG Heisenberg grant 590179.

1This an extended abstract of F. Manea, M. Müller, D. Nowotka: The Avoidability of Cubes under Permutations.
In Hsu-Chun Yen, Oscar H. Ibarra (eds.): Proceedings of the 16th International Conference on Developments in
Language Theory, LNCS 7410, pages 416-427, Taipei, Taiwan, August 14-17, 2012. Springer.

98 Florin Manea, Mike Müller, Dirk Nowotka

2. Preliminaries
We define Σk = {0, . . . ,k−1} to be an alphabet with k letters. For a word w and an integer i
with 1≤ i≤ |w| we denote the i-th letter of w by w[i].

If f : Σk→ Σk is a permutation, we say that the order of f , denoted ord(f), is the mini-
mum value m> 0 such that fm is the identity. If a ∈ Σk is a letter, the order of a with respect
to f , denoted ordf (a), is the minimum number m such that fm(a) = a.

A pattern which involves functional dependencies is a term over (word) variables and
function variables. For example, xπ(y)π(π(x))y is a pattern involving the variables x and
y and the function variable π. An instance of a pattern p in Σk is the result of substituting
every variable by a word in Σ

+
k and every function variable by a function over Σ∗

k. A pattern
is avoidable in Σk if there is an infinite word over Σk that does not contain any instance of the
pattern. Here, we consider patterns with morphic permutations, that is, all function variables
are unary and substituted by permutations f where f(uv) = f(u)f(v) for all words u and v.

The infinite Thue-Morse word t is defined as t= φωt (0), for φt : Σ∗
2 → Σ∗

2 where φt(0) =
01 and φt(1) = 10. It is well-known (see, for instance, [6]) that the word t avoids the patterns
xxx (cubes) and xyxyx (overlaps).

Let h be the infinite word defined as h= φωh(0), where φh : Σ∗
3 → Σ∗

3 is a morphism due
to Hall [5], defined by φh(0) = 012, φh(1) = 02 and φh(2) = 1. The infinite word h avoids
the pattern xx (squares).

The reader is referred to [6] for further details on the concepts discussed here.

3. Main results
We begin this section by showing the avoidability of a series of basic patterns from which
we derive avoidability results for more general patterns. Our first result uses the morphism
α : Σ∗

2 → Σ∗
3 that is defined by

0 7→ 02110, 1 7→ 02210.

Lemma 3.1 The infinite word tα = α(t) avoids the pattern xπ(x)x in Σm, for all m ≥ 3.
This pattern cannot be avoided by words over smaller alphabets. 2

The following lemma is the main tool that we use to analyse the avoidability of cubes
under morphic permutations. To obtain this result we apply the morphism β : Σ∗

2→Σ∗
4 defined

by

0 7→ 012013213, 1 7→ 012031023.

Lemma 3.2 Let tβ = β(t) for the morphism β defined above and let i, j ∈ N and f,g be
morphic permutations of Σm with m ≥ 4. The word tβ does not contain any factor of the
form uf(u)g(u) for any u ∈ Σ+

m with |u| ≥ 7. Furthermore, tβ does not contain any factor
uf i(u)f j(u) with ∣∣{u[`],f i(u)[`],f j(u)[`]}∣∣≤ 2,

for all `≤ |u| and |u| ≤ 6.

Avoidability of Cubes under Morphic Permutations 99

The next result highlights sets of patterns that cannot be simultaneously avoided.

Lemma 3.3 There is no w ∈ Σω3 that avoids the patterns xxπ(x), and xπ(x)x simultane-
ously. There is no w ∈ Σω3 that avoids the patterns xπ(x)π(x), and xπ(x)x simultaneously.

Proof. It can be easily seen (for instance, by trying all the possibilities using backtracking)
that any word of length at least 9 over Σ3 contains a word of the form uuu, uuf(u), or
uf(u)u, for some u ∈ Σ

+
3 and some morphic permutation f of Σ3. Similarly, any word of

length at least 10 over Σ3 contains a word of the form uuu, uf(u)f(u), or uf(u)u, for u∈ Σ
+
3

and a morphic permutation f of Σ3. 2
The following result shows the equivalence between the avoidability of several pairs of

patterns.

Lemma 3.4 Let m ∈ N. A word w ∈ Σωm avoids the pattern xxπ(x) if and only if w avoids
the pattern π(x)π(x)x. A word w ∈ Σωm avoids the pattern xπ(x)π(x) if and only if w avoids
the pattern π(x)xx. A word w ∈ Σωm avoids the pattern xπ(x)x if and only if w avoids the
pattern π(x)xπ(x).

Proof. If an infinite word w has no factor uuf(u), with u∈ Σ+
m and a morphic permutation f

of Σm, thenw does not contain any factor g(u)g(u)u, with u∈Σ+
m and a morphic permutation

g of Σm for which there exists a morphic permutation f of Σm such that g(f(a)) = a, for all
a ∈ Σm. This clearly means that w avoids π(x)π(x)x in Σm. The other conclusions follow
by the same argument. 2

The following two remarks are immediate.
– The pattern πi(x)πi(x)πi(x) is avoidable in Σm for m≥ 2 by the word t.
– The patterns πi(x)πi(x)πj(x) and πi(x)πj(x)πj(x), i 6= j, are avoidable in Σm for
m≥ 3 by the word h.

Another easy case of avoidable patterns is highlighted in the next lemma.

Lemma 3.5 The pattern πi(x)πj(x)πi(x), i 6= j, is avoidable in Σm, for m≥ 3.

Proof. Assume i < j. In this case, setting y= πi(x) we get that the pattern πi(x)πj(x)πi(x)
is actually yπj−i(y)y. We can avoid the last pattern in Σm if we can avoid the pattern yπ(y)y
in Σm. This pattern is avoidable in alphabets with three or more letters, by Lemma 3.1. Also,
yπj−i(y)y is avoidable in Σ2 if and only if j− i is even.

If i > j, we take y= πj(x) and we obtain that πi(x)πj(x)πi(x) equals πi−j(y)yπi−j(y),
which is avoidable if π(y)yπ(y) is avoidable. This latter pattern is avoidable over alphabets
with three or more letters, by Lemmas 3.1 and 3.4. The pattern is also avoidable in Σ2 if and
only if i− j is even. 2

In the next lemma we present the case of the patterns xπi(x)πj(x), with i 6= j. For this
we need to define the following values:

k1 = inf{t : t - |i− j|, t - i, t - j} (1)
k2 = inf{t : t | |i− j|, t - i, t - j} (2)
k3 = inf{t : t | i, t - j} (3)
k4 = inf{t : t - i, t | j} . (4)

100 Florin Manea, Mike Müller, Dirk Nowotka

Remember that inf∅ = +∞. However, note that {t : t - |i− j|, t - i, t - j} is always non-
empty, and that k1 ≥ 3 (as either |i− j| is even or one of i and j is even, so k1 > 2). Also, as
i 6= j at least one of the sets {t : t | i, t - j} and {t : t - i, t | j} is also non-empty. Further, we
define

k = min{max{k1,k2} ,max{k1,k3} ,max{k1,k4}} (5)

According to the remarks above, k is always defined (that is k 6=+∞).

Lemma 3.6 The pattern xπi(x)πj(x), i 6= j, is unavoidable in Σm, for m≥ k.

Proof. First, let us note that the fact that m ≥ k1 means that for every word u ∈ Σ+
m there

exists a morphic permutation f such that u 6= f i(u) 6= f j(u) 6= u; indeed, we take f to
be a permutation such that the orbit of u[1] is a cycle of length k1, which means that the
first letters of u, f i(u) and f j(u) are pairwise different. Similarly, the fact that m ≥ k2
(when k2 6= +∞) means that for every word u ∈ Σ+

m there exists a morphism f such that
u 6= f i(u) = f j(u). In this case, we take f to be a permutation such that ordf (u[1]) = k2,
and f only changes the letters from the orbit of u[1] (thus, ord(f) | k2). Clearly, the first
letters of f i(u) and f j(u) are not equal to u[1], but f i(u) = f j(u) as ord(f) divides |i− j|.
We get that u 6= f i(u) = f j(u), for this choice of f . Finally, one can show by an analogous
reasoning that the fact that m≥ k3 (when k3 6=+∞) means that for every word u ∈ Σ+

m there
exists a morphism f such that u= f i(u) 6= f j(u) and the fact that m≥ k4 (when k4 6=+∞)
means that for every word u ∈ Σ+

m there exists a morphism f such that f i(u) 6= u= f j(u).
Further, we show that ifm≥max{k1,k2} (in the case when k2 6=+∞) there is no infinite

word over Σm that avoids xπi(x)πj(x). As k1 ≥ 3 it follows that m ≥ 3. One can quickly
check that the longest word without an instance of this pattern has length six and is 001010
by trying to construct such a word letter by letter. So there is no infinite word over Σm that
avoids this pattern in this case.

By similar arguments, we show that if m ≥ max{k1,k3} (in the case when k3 6= +∞)
there is no infinite word over Σm that avoids xπi(x)πj(x). In this case, the longest word that
avoids those patterns is 01010.

Ifm≥max{k1,k4} (in the case when k4 6=+∞) we also get that there is no infinite word
over Σm that avoids xπi(x)πj(x). The construction ends at length six, the longest words
avoiding the pattern are 011001, 011002, 011221, 011223 and 011220.

These last remarks show that the pattern xπi(x)πj(x) is unavoidable by infinite words
over Σm, for all m≥ k. 2

The next result represents the main step we take towards characterising the avoidability
of cubes under morphic permutations.

Proposition 3.7 Given the pattern xπi(x)πj(x) we can determine effectively the values m,
such that the pattern is avoidable in Σm.

Proof. Since the case m≥ k is handled in Lemma 3.6, we assume m< k.
The cases for m = 2 and m = 3 are depicted in Table 1. Note that an entry “X” (resp.

“×”) at the intersection of line (i) and column (j,Σm) means that the pattern xf i(x)f j(x) is
avoidable (resp. unavoidable) in Σm. To build the table we used the results from Lemmas 3.3
to 3.5 and the fact that xπi(x)πj(x) is avoidable in Σ2 if and only if i ≡ j ≡ 0(mod 2) (by

Avoidability of Cubes under Morphic Permutations 101

the Thue-Morse word). Also, for Σ3, when j 6= 0, every instance of the pattern contains cubes
or squares, so it can be avoided by the infinite words t (seen as a word over three letters, that
just does not contain one of the letters) or h, respectively. In the case when j = 0, we use the
word defined in Lemma 3.2 to show the avoidability of the respective patterns.

We move on to the case m ≥ 4. In this case, we split the discussion in several further
cases, depending on the minimum of k1,k2,k3, and k4.

Case 1: k1 = min{k1,k2,k3,k4}. This means that k > k1. If m < k1 it follows that
m | i and m | j (since k3,k4 > k1). For every a ∈ Σm and every permutation f of Σm, since
ordf (a) ≤ m we get that ordf (a) | i and ordf (a) | j. So an instance of xπi(x)πj(x) is
actually a cube, which is avoided by the Thue-Morse word. If k1 ≤m < k, then for every
a ∈ Σm and every permutation f of Σm we either have that ordf (a) divides both i and j or
that ordf (a) divides neither i nor j nor |i− j|. If we have a letter a occurring in a word u
such that the latter holds, it means that there are at least three different letters in uf i(u)f j(u).
If no such letter exists in u, then uf i(u)f j(u) is a cube. In both cases, the Thue-Morse word
avoids the pattern xπi(x)πj(x).

Case 2: k2 = min{k1,k2,k3,k4}. In this case, we get that k = k1. If 4 ≤ m < k2 we
have for every a ∈ Σm and every permutation f of Σm that ordf (a) | i and ordf (a) | j (since
k3,k4 > k2). So every instance of the pattern xπi(x)πj(x) is a cube, which is avoided by the
Thue-Morse word. If k2 ≤m< k, we have for each a ∈ Σm and every permutation f of Σm

that either ordf (a) divides at least one of i and j or ordf (a) | |i− j|. In all cases, this means
that for each position l of a word u, we have that at least two of the letters u[`],f i(u)[`] and
f j(u)[`] are equal, and the word defined in Lemma 3.2 avoids such patterns.

The cases k3 = min{k1,k2,k3,k4} and k4 = min{k1,k2,k3,k4} are analysed using the
same methods and lead to similar results, so that we can conclude: a pattern of the form
xπi(x)πj(x) is always avoidable in Σm for all 4≤m< k. Moreover, it might also be avoid-
able in Σ2 and Σ3, or only Σ3 but not in Σ2, or neither in Σ2 nor in Σ3 (according to Table 1).
Therefore, for each pair (i, j) of natural numbers, we can effectively compute the values of
m such that xπi(x)πj(x) is avoidable in Σm. 2

Further we show the following result, as a completion of the previous one.

Proposition 3.8 Given the pattern πi(x)πj(x)x we can determine effectively the values m,
such that the pattern is avoidable in Σm.

j(mod 6)
0 1 2 3 4 5

0 X X × X X X × X X X × X
1 × X × X × × × × × × × ×

i(mod 6) 2 X X × × X X × × X X × X
3 × X × X × × × X × × × X
4 X X × X X X × × X X × ×
5 × X × × × × × × × × × X

Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3

Table 1: Avoidability of xπi(x)πj(x) in Σ2 and Σ3

102 Florin Manea, Mike Müller, Dirk Nowotka

Proof. To check whether πi(x)πj(x)x is avoidable in Σm or not, let M = max{i+ 1, j+
1,m}. Then fM ! equals the identity for all permutations f of the alphabet Σm. Let us take
y= πi(x). Since the functions that substitute π are permutations, we obtain that πi(x)πj(x)x
is avoidable in Σm if and only if yπM !−i+j(y)πM !−i(y) is avoidable in Σm. Moreover, note
that:

inf{t : t - j, t -M !− i, t -M !− i+ j}= inf{t : t - |i− j|, t - i, t - j}
inf{t : t | j, t -M !− i, t -M !− i+ j}= inf{t : t - i, t | j}

inf{t : t |M !− i, t -M !− i+ j}= inf{t : t | i, t - j}
inf{t : t -M !− i, t |M !− i+ j}= inf{t : t | |i− j|, t - i, t - j}

Therefore, yπM !−i+j(y)πM !−i(y) is avoidable in Σm if 4 ≤m < k, where k is defined
using (5) for i and j. 2

In the exact same manner we get the following proposition.

Proposition 3.9 Given the pattern πi(x)xπj(x) we can determine effectively the values m,
such that the pattern is avoidable in Σm. 2

We can now summarise our results in the following theorem:

Theorem 3.10 Given the pattern πi(x)πj(x)πk(x), we can determine effectively the values
m such that the pattern is avoidable in Σm.

Proof. If i = min{i, j,k}, let y = πi(x). The pattern becomes yπ`(y)πt(y), and we can
identify all the alphabets where this pattern is avoidable by Proposition 3.7.

If j = min{i, j,k} we use Proposition 3.9 to identify all the alphabets where this pattern
is avoidable. Finally, if k = min{i, j,k}, we use Proposition 3.8 to identify all the alphabets
where this pattern is avoidable. 2

References
[1] B. BISCHOFF, J. CURRIE, D. NOWOTKA, Unary Patterns with Involution. International Journal

of Foundations of Computer Science (2012). To appear.

[2] J. CASSAIGNE, Algebraic Combinatorics on Words, chapter Unavoidable Patterns. Cambridge Uni-
versity Press, Cambridge, UK, 2002, 111–134.

[3] E. CHINIFOROOSHAN, L. KARI, Z. XU, Pseudopower avoidance. Fundamenta Informaticae 114
(2012), 1–18.

[4] J. CURRIE, Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339 (2005) 1, 7–18.

[5] M. HALL, Lectures on Modern Mathematics, 2, chapter Generators and relations in groups – The
Burnside problem, Wiley, New York, 1964, 42–92.

[6] M. LOTHAIRE, Combinatorics on Words. Cambridge University Press, 1997.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 103 – 108

On Internal Contextual Grammars with
Subregular Selection Languages

Florin Manea(A) Bianca Truthe(B)

(A)Christian-Albrechts-Universität zu Kiel, Institut für Informatik
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany

flm@informatik.uni-kiel.de
(B)Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany
truthe@iws.cs.uni-magdeburg.de

Abstract

In this paper, we study the power of internal contextual grammars with selection lan-
guages from subfamilies of the family of regular languages. If we consider families Fn

which are obtained by restriction to n states or nonterminals or productions or symbols to
accept or to generate regular languages, we obtain four infinite hierarchies of the corre-
sponding families of languages generated by internal contextual grammars with selection
languages in Fn.

1. Introduction
Contextual grammars were introduced by Solomon Marcus in [5] as a formal model that
might be used in the generation of natural languages. The derivation steps consist in adding
contexts to given well formed sentences, starting from an initial finite basis. Formally, a
context is given by a pair (u,v) of words and the external adding to a word x gives the word
uxv whereas the internal adding gives all words x1ux2vx3 when x = x1x2x3. Obviously,
by linguistic motivation, a context can only be added if the words x or x2 satisfy some given
conditions. Thus, it is natural to define contextual grammars with selection in a certain family
F of languages, where it is required that x or x2 have to belong to a language of the family
F which is associated with the context. Mostly, the family F is taken from the families of
the Chomsky hierarchy (see [3, 7, 6], and the references therein).

By Jürgen Dassow, in [1], the study of external contextual grammars with selection in
special regular sets was started. Finite, combinational, definite, nilpotent, regular suffix-
closed, regular commutative languages and languages of the form V ∗ for some alphabet V
were considered. In [2], Jürgen Dassow, Florin Manea, and Bianca Truthe continued the re-
search and new results on the effect of regular commutative, regular circular, definite, regular

This paper was presented at DCFS 2012 (see [4]).
(A)F. Manea’s work is supported by the DFG grant 582014.

104 Florin Manea, Bianca Truthe

suffix-closed, ordered, combinational, nilpotent, and union-free selection languages on the
generative power of external contextual grammars were obtained. Furthermore, families of
regular languages which are defined by restrictions on the resources used to generate or to
accept them were investigated. As measures, the number of states necessary to accept the
regular languages and the number of nonterminals, production rules or symbols needed to
generate the regular languages have been considered. In all these cases, infinite hierarchies
were obtained.

In the present paper (which is a short version of the paper [4] presented at the conference
DCFS 2012), we continue this line of research and investigate the effect of the number of
resources (states, nonterminals, production rules, and symbols) on the generative power of
internal contextual grammars. This case seems more complicated than the case of external
contextual grammars, as there are two important differences between the way a derivation is
conducted in internal grammars and in an external one. First, in the case of internal contextual
grammars, the insertion of a context in a sentential form can be done in more than one place,
so the derivation becomes, in a sense, non-deterministic; in the case of external grammars,
once a context was selected there is at most one way to insert it: wrapped around the sentential
form, when this word was in the selection language of the context. Second, if a context can
be added internally, then it can be added arbitrarily often (because the subword where the
context is wrapped around does not change) which does not necessarily hold for external
grammars. However, we are able to obtain infinite hierarchies with respect to the descriptional
complexity measures we use, but with different proof techniques.

2. Definitions

Throughout the paper, we assume that the reader is familiar with the basic concepts of the
theory of automata and formal languages. For details, we refer to the Handbook of Formal
Languages by Grzegorz Rozenberg and Arto Salomaa ([7]). Here we only recall some nota-
tion and the definition of contextual grammars with selection which form the central notion
of the paper.

Given an alphabet V , we denote by V ∗ and V + the set of all words and the set of all non-
empty words over V , respectively. The empty word is denoted by λ. For a word w ∈ V ∗ and
a letter a ∈ V , by |w| and #a(w) we denote the length of w and the number of occurrences of
a in w, respectively. The cardinality of a set A is denoted by #(A).

Let G= (N,T,P,S) be a regular grammar (specified by finite sets N and T of nontermi-
nals and terminals, respectively, a finite set of productions of the form A→ wB or A→ w
withA,B ∈N and w ∈ T ∗ as well as S ∈N). Further, letA= (X,Z,z0,F,δ) be a determin-
istic finite automaton (specified by sets X and Z of input symbols and states, respectively,
an initial state z0, a set F of accepting states, and a transition function δ) and L be a regular

On Internal Contextual Grammars with Subregular Selection Languages 105

language. Then we define

State(A) = #(Z),

Var(G) = #(N), Prod(G) = #(P), Symb(G) = ∑
A→w∈P

(|w|+2),

State(L) = min{State(A) |A is a det. finite automaton accepting L} ,
K(L) = min{K(G) |G is a reg. grammar for L} (K∈{Var,Prod,Symb}),

and, for K ∈ {State,Var,Prod,Symb}, we set

REGK
n = {L | L is a regular language with K(L)≤ n} .

Remark. We note that if we restricted ourselves to rules of the form A→ aB and A→ λ
with A,B ∈N and a ∈ T , then we would have State(L) = Var(L).

We now introduce the central notion of this paper.
Let F be a family of languages. A contextual grammar with selection in F is a triple

G= (V,{(S1,C1),(S2,C2), . . . ,(Sn,Cn)} ,B)

where

• V is an alphabet,

• for 1 ≤ i ≤ n, Si is a language over V in F and Ci is a finite set of pairs (u,v) with
u ∈ V ∗, v ∈ V ∗,

• B is a finite subset of V ∗.

The set V is called the basic alphabet; the languages Si and the sets Ci, 1 ≤ i ≤ n, are
called the selection languages and the sets of contexts of G, respectively; the elements of B
are called axioms.

We now define the internal derivation for contextual grammars with selection.
Let G = (V,{(S1,C1),(S2,C2), . . . ,(Sn,Cn)} ,B) be a contextual grammar with selec-

tion. A direct internal derivation step in G is defined as follows: a word x derives a word
y (written as x =⇒ y) if and only if there are words x1, x2, x3 with x1x2x3 = x and there
is an integer i, 1 ≤ i ≤ n, such that x2 ∈ Si and y = x1ux2vx3 for some pair (u,v) ∈ Ci.
Intuitively, we can only wrap a context (u,v) ∈ Ci around a subword x2 of x if x2 belongs
to the corresponding language Si. We call a word of a selection language useful, if it is a
subword of a word of the generated language – if it is really selected from wrapping a context
around it.

By =⇒∗ we denote the reflexive and transitive closure of =⇒. The internal language
generated by G is defined as

L(G) = {z | x=⇒∗ z for some x ∈B } .

ByL(IC,F) we denote the family of all internal languages generated by contextual grammars
with selection in F . When we speak about contextual grammars in this paper, we mean
contextual grammars with internal derivation (also called internal contextual grammars).

106 Florin Manea, Bianca Truthe

Example 2.1 Let n≥ 1 and V = {a} be a unary alphabet. We set

Bn =
{
ai | 1≤ i≤ n

}
, Un = {an }+ , and Ln =Bn∪Un.

The contextual grammar Gn = (V,{(Un,{(λ,an)})} ,Bn) generates the language Ln. This
can be seen as follows. The context an can be added to a word w if and only if w contains at
least n letters. The only axiom to which a context can be added is an. From this, we get the
unique derivation

an =⇒ a2n =⇒ a3n =⇒ ·· · .

It is easy to see that the set Un is accepted by the automaton

(V,{z0,z1, . . . ,zn},z0,{zn}, δn)

where the graph

start // z0
a // z1

a //

OO
a

· · · a // zn

represents the transition function δn.
Hence, we have Ln ∈ L(IC,REGState

n+1). 3

3. Results
The language L1 = {λ}∪ {w | w ∈ {a,b}+, #b(w) = 1} and the languages Ln for n ≥ 2
given in Example 2.1 are witnesses for the proper inclusions of the hierarchy with respect to
the number of states.

Theorem 3.1 For any natural number n≥ 1, we have the proper inclusion

L(IC,REGState
n)⊂ L(IC,REGState

n+1).

Also with respect to the number of nonterminal symbols, we obtain an infinite hierarchy.

Theorem 3.2 For any natural number n≥ 0, we have the proper inclusion

L(IC,REGVar
n)⊂ L(IC,REGVar

n+1).

For these proper inclusions, the languages

Ln = {ap1bap2b . . .apnbap1bap2b . . .apnb | pi ≥ 1, 1≤ i≤ n}

for n≥ 1 are witnesses.
As consequences from the previous theorem, we obtain also infinite hierarchies with re-

spect to the number of production rules and the number of symbols. However, the properness
of the inclusions L(IC,REGK

n) ⊆ L(IC,REGK
n+1) with K ∈ {Prod,Symb} and n ≥ n0 for

some start number n0 does not immediately follow. For the complexity measure Prod, we

On Internal Contextual Grammars with Subregular Selection Languages 107

consider a generalization of the languages Ln for n ≥ 1 used in the proof of the previous
theorem.

Let m≥ 1, Am = {a1, . . . ,am }, and V = Am∪{b}. The languages Ln consist again of
words formed by 2n a-blocks ended by the letter b each and where the block lengths coincide
in a crossed agreement manner. However, an a-block now consists of letters from the set Am

instead of the single letter a only.
Formally, we define for n≥ 1 the languages

L(m)
n = { w1bw2b . . .wnbwn+1bwn+2b . . .w2nb |

wi,wn+i ∈A+
m, |wi|= |wn+i|, 1≤ i≤ n }.

For these languages, we obtain

L(m)
n = L(IC,REGProd

(m+1)(n−1)+1)\L(IC,REGProd
(m+1)(n−1)).

This result leads to the inclusion

L(IC,REGProd
k−1)⊂ L(IC,REGProd

k)

for k ≥ 3, if we set n= 2 and m= k−2.
For k = 1, the proper inclusion holds because the family L(IC,REGProd

0) only contains
finite languages whereas the infinite language L(m)

1 belongs to the family L(IC,REGProd
1).

For k = 2, the properness of the inclusion can be shown with the witness language

L=
{
wabcd

nem |m≥ 0,n≥ 0,wab ∈ {a,b}∗ ,#a(wab) = n,#b(wab) =m
}
.

Together, we obtain the following result.

Theorem 3.3 The relation

L(IC,REGProd
n)⊂ L(IC,REGProd

n+1)

holds for every natural number n≥ 0.

We now consider the complexity measure Symb. Both the families L(IC,REGSymb
0) and

L(IC,REGSymb
1) are equal to the class of finite languages (every selection language is the

empty set; the language generated coincides with the set of axioms). The language family
L(IC,REGSymb

2) contains infinite languages; for instance, the language L = {a}∗ is gener-
ated by the contextual grammar G= ({a} ,{({λ},{(λ,a)})} ,{λ}). This yields the proper
inclusion

L(IC,REGSymb
1)⊂ L(IC,REGSymb

2).

Also the further inclusions are proper, as can be proven with the languages

Ln = {amc1c2 . . . cn−1b
m |m≥ 0}

for n≥ 2.
This leads to the following result.

108 Florin Manea, Bianca Truthe

Theorem 3.4 We have the relations

L(IC,REGSymb
0) = L(IC,REGSymb

1) = FIN

and
L(IC,REGSymb

n)⊂ L(IC,REGSymb
n+1)

for every natural number n≥ 1.

It remains open for future research to consider other families of subregular languages,
defined by restrictions of combinatorial nature, like the ones studied in [1, 2] for external
contextual grammars.

References
[1] J. DASSOW, Contextual grammars with subregular choice. Fundamenta Informaticae 64 (2005)

1–4, 109–118.

[2] J. DASSOW, F. MANEA, B. TRUTHE, On Contextual Grammars with Subregular Selection Lan-
guages. In: M. HOLZER, M. KUTRIB, G. PIGHIZZINI (eds.), Descriptional Complexity of For-
mal Systems – 13th International Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25 – 27,
2011. Proceedings. LNCS 6808, Springer-Verlag, 2011, 135–146.

[3] S. ISTRAIL, Gramatici contextuale cu selectiva regulata. Stud. Cerc. Mat. 30 (1978), 287–294.

[4] F. MANEA, B. TRUTHE, On Internal Contextual Grammars with Subregular Selection Languages.
In: M. KUTRIB, N. MOREIRA, R. REIS (eds.), Descriptional Complexity of Formal Systems – 14th
International Workshop, DCFS 2012, Braga, Portugal, July 23 – 25, 2012. Proceedings. LNCS
7386, Springer-Verlag, 2012, 222–235.

[5] S. MARCUS, Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–1534.

[6] G. PĂUN, Marcus Contextual Grammars. Kluwer Publ. House, Doordrecht, 1998.

[7] G. ROZENBERG, A. SALOMAA (eds.), Handbook of Formal Languages. Springer-Verlag, Berlin,
1997.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 109 – 114

Limited Context Restarting Automata and
McNaughton Families of Languages

Friedrich Otto(A) Peter Černo(B) František Mráz(B)

(A)Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

(B)Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 Praha 1, Czech Republic
petercerno@gmail.com,mraz@ksvi.ms.mff.cuni.cz

Abstract

In the literature various types of restarting automata have been studied that are based
on contextual rewriting. A word w is accepted by such an automaton if, starting from
the initial configuration that corresponds to input w, the word w is reduced to the empty
word within a finite number of applications of these contextual rewritings. This approach
is reminiscent of the notion of McNaughton families of languages. Here we put the
aforementioned types of restarting automata into the context of McNaughton families
of languages, relating the classes of languages accepted by these automata in particular to
the class GCSL of growing context-sensitive languages and to the class CRL of Church-
Rosser languages.

1. Introduction
Restarting automata have been introduced to model the linguistic technique of analysis by re-
duction [8]. By now many different types of restarting automata have been defined and stud-
ied intensively, see for example [13]. The deterministic context-free languages, the context-
free languages, the Church-Rosser languages and the growing context-sensitive languages
have all been characterized by certain types of restarting automata.

In [5] the so-called clearing restarting automaton was introduced. While in general a
restarting automaton scans the tape contents from left to right until it detects a position to
which a rewrite operation applies, the rewriting done by a clearing restarting automaton only
depends on the context of a fixed size around the subword to be rewritten. In fact, a clearing
restarting automaton can only delete symbols. For these automata a simple learning algorithm
exists, but not surprisingly, clearing restarting automata are quite limited in their expressive
power. They accept all regular languages and even some languages that are not context-free,

(B)The second and the third author were supported by the Grant Agency of the Czech Republic under the projects
P103/10/0783 and P202/10/1333 and by the Grant Agency of Charles University under project 272111/A-INF/MFF.

110 Friedrich Otto, Peter Černo, František Mráz

but they do not even accept all context-free languages. Accordingly, they were extended to
the so-called ∆-clearing restarting automata and the ∆∗-clearing restarting automata that can
use a marker symbol ∆ in their rewrite operations. It turned out that these types of restarting
automata can accept all context-free languages [6].

In [2] limited context restarting automata were defined that can be seen as an extension of
the clearing restarting automaton. These automata just apply rewrite steps based on context
information, but their rewrite rules are more general. In fact, the most general form of these
automata accepts exactly the growing context-sensitive languages. In [2] a special version of
a genetic algorithm is proposed to learn these automata from positive and negative samples.

As a limited context restarting automaton applies its rewrite operations based on con-
text information, it can be interpreted as executing reductions with respect to a finite string-
rewriting system. This is essentially the same concept as the one that underlies the notion of
McNaughton families of languages studied in [3]. Accordingly, it is natural to investigate the
correspondence between the various types of limited context restarting automata on the one
hand and the McNaughton families of languages of [3] on the other hand. Here we compare
the families of languages that are accepted by the various types of limited context restarting
automata to the class GCSL of growing context-sensitive languages [4, 7] and to the class
CRL of Church-Rosser languages [10].

Notation. In the following all alphabets considered will be finite. For an alphabet Σ, Σ∗

is used to denote the set of all words over Σ including the empty word λ. For w ∈ Σ∗, |w|
denotes the length of w. By N we denote the set of non-negative integers. A weight function
is a mapping g : Σ→N that assigns a positive weight g(a) to each letter a of Σ. It is extended
to arbitrary words by taking g(λ) = 0 and g(wa) = g(w)+g(a) for all words w ∈ Σ∗ and all
a ∈ Σ. Finally, for any type A of automaton, L(A) is used to denote the class of languages
accepted by automata of this type.

2. Basic Definitions and First Results

A string-rewriting system S on Σ consists of (finitely many) pairs of strings from Σ∗, called
rewrite rules, which are written as (`→ r). By dom(S) we denote the set dom(S) = {` |
∃r ∈ Σ∗ : (`→ r) ∈ S } of left-hand sides of rules of S. The reduction relation ⇒∗S on Σ∗

that is induced by S is the reflexive and transitive closure of the single-step reduction relation
⇒S = {(u`v,urv) | (`→ r)∈S,u,v ∈ Σ∗ }. For a string u∈ Σ∗, if there exists a string v such
that u⇒S v holds, then u is called reducible modulo S. Otherwise, u is called irreducible
modulo S. IRR(S) denotes the set of all irreducible strings modulo S.

Next we come to the notion of McNaughton families of languages. A language L ⊆ Σ∗

is called a McNaughton language, if there exist a finite alphabet Γ strictly containing Σ, a
finite string-rewriting system S on Γ, strings t1, t2 ∈ (ΓrΣ)∗ ∩ IRR(S), and a letter Y ∈
(Γr Σ)∩ IRR(S) such that, for all w ∈ Σ∗, w ∈ L if and only if t1wt2 ⇒∗S Y . Here the
symbols of Σ are terminals, while those of Γ r Σ can be seen as nonterminals. We say
that the McNaughton language L is specified by the four-tuple (S,t1, t2,Y). This fact will be
expressed as L=L(S,t1, t2,Y). By placing restrictions on the finite string-rewriting systems
used we obtain certain families of McNaughton languages [3].

The ∆∗-clearing restarting automata were introduced together with the clearing restarting

Limited Context Restarting Automata 111

automata and the ∆-clearing restarting automata by two of the authors in [5]. Here we estab-
lish an upper bound by showing that these types of restarting automata only accept languages
that are growing context-sensitive.

Definition 2.1

(a) Let k be a nonnegative integer. A k-context rewriting system is a systemM = (Σ,Γ, I),
where Σ is a finite input alphabet, Γ is a finite working alphabet containing Σ, but not
the special symbols ¢ and $, called sentinels, and I is a finite set of instructions of the
form (x,z→ t,y), where x∈ {λ,¢}·Γ∗, |x| ≤ k, is called a left context, y ∈ Γ∗ ·{λ,$},
|y| ≤ k, is called a right context, and z→ t is called a rule, where z, t ∈ Γ∗, z 6= t. If
we do not specify k (e.g. if we talk about context rewriting systems) we have no upper
bound on the contexts, which is equivalent to k =+∞.

A word w= uzv can be rewritten into utv, denoted as uzv `M utv, if and only if there
exists an instruction i= (x,z→ t,y) ∈ I such that x is a suffix of ¢ ·u and y is a prefix
of v · $. The language associated with M is defined as L(R) = {w ∈ Σ∗ | w `∗M λ},
where `∗M denotes the reflexive and transitive closure of `M .

(b) A k-clearing restarting automaton (k-cl-RA) is a k-context rewriting systemM =(Σ,Σ, I)
such that, for each instruction i= (x,z→ t,y) ∈ I , we have z ∈ Σ+ and t= λ.

(c) A k-∆-clearing restarting automaton (k-∆-cl-RA) is a k-context rewriting system M =
(Σ,Γ, I) such that Γ = Σ∪ {∆}, where ∆ is a new symbol, and for each instruction
i= (x,z→ t,y) ∈ I , we have z ∈ Γ+ and t ∈ {λ,∆}.

(d) A k-∆∗-clearing restarting automaton (k-∆∗-cl-RA) is a k-context rewriting system
M = (Σ,Γ, I) such that Γ = Σ∪{∆}, where ∆ is a new symbol, and for each instruction
i= (x,z→ t,y) ∈ I , we have z ∈ Γ+ and t= ∆i for some i satisfying 0≤ i≤ |z|.

Observe that λ ∈ L(M) holds for each context rewriting system M . In order to simplify the
discussion we will call two languages L1,L2 ⊆ Σ∗ equal if L1∩Σ+ = L2∩Σ+.

Theorem 2.2 L(∆∗-cl-RA)⊆ GCSL.

It remains open whether ∆∗-clearing restarting automata accept all growing context-
sensitive languages.

3. Limited Context Restarting Automata
The limited context restarting automaton, abbreviated as lc-R-automaton, was introduced
in [2] as a generalization of the clearing restarting automaton. Here we introduce a slightly
generalized version which uses weight-reducing rules instead of length-reducing ones.

Definition 3.1 A limited context restarting automaton is a context rewriting system M =
(Σ,Γ, I), such that for all (x,z→ t,y)∈ I : g(x)> g(y) for some weight function g : Σ∗→N.
We use the notation (x | z→ t | y) for instructions.

112 Friedrich Otto, Peter Černo, František Mráz

Example 3.2 Let M = ({a,b,c},{a,b,c}, I), where I = {(λ | acbb→ c | λ),(¢ | c→ λ | $)},
be an lc-R-automaton. Then aaacbbbbbb `M aacbbbb `M acbb `M c `M λ, and so the word
a3cb6 belongs to L(M). It is easily seen that L(M) = {ancb2n | n≥ 0}.

We consider several restricted types of lc-R-automata. Recall from Definition 3.1 that
all instructions of an lc-R-automaton are necessarily weight-reducing. We say that an lc-R-
automaton M = (Σ,Γ, I) is of type

• R′0, if I is an arbitrary finite set of (weight-reducing) instructions;

• R′1, if for all (u|x→ y|v) ∈ I: y ∈ Γ∪{λ}, and x ∈ Γ+;

• R′2, if for all (u|x→ y|v) ∈ I: y ∈ Γ∪{λ}, u ∈ {λ,¢}, v ∈ {λ,$}, and x ∈ Γ+;

• R′3, if for all (u|x→ y|v) ∈ I: y ∈ Γ∪{λ}, u ∈ {λ,¢}, v = $, and x ∈ Γ+.

We say that an lc-R-automaton M = (Σ,Γ, I) is of type Ri, if it is of type R′i and, in
addition, M is length reducing, i.e. for all (u|x→ y|v) ∈ I: |x|> |y|, for all i ∈ {0,1,2,3}.

In what follows, lc-R-automata of type R, for R ∈ {R0,R′0,R1,R′1,R2,R′2,R3,R′3},
will be referred to as lc-R[R]-automata. In [1], Basovník studied the power of length-
reducing lc-R-automata. Here we complete his results by also studying the other types of
lc-R-automata.

Theorem 3.3 L(lc-R[R′0]) = L(lc-R[R0]) = GCSL .

Theorem 3.4 L(lc-R[R′1]) = GCSL .

Theorem 3.5 GACSL ⊆ L(lc-R[R1]) ⊆ GCSL, that is, the class of languages that are ac-
cepted by lc-R[R1]-automata lies between the class GACSL of growing acyclic context-
sensitive languages [11] and the class GCSL of growing context-sensitive languages.

Theorem 3.6 L(lc-R[R′2]) = L(lc-R[R2]) = CFL .

Theorem 3.7 L(lc-R[R′3]) = L(lc-R[R3]) = REG.

4. Confluent Limited Context Restarting Automata
As defined in Definition 3.1, an lc-R-automaton M = (Σ,Γ, I) is a nondeterministic device.
This phenomenon complicates the problem of deciding membership in L(M). Here we are
interested in lc-R-automata for which all computations from ¢w$ lead to ¢$, if w ∈ L(M).
Unfortunately, it is undecidable in general whether a finite string-rewriting system is conflu-
ent on a given congruence class, even if the given finite system only contains length-reducing
rules [12]. Therefore, we turn to lc-R-automata that are even further restricted.

Definition 4.1 An lc-R-automaton M = (Σ,Γ, I) is called confluent if the corresponding
string-rewriting system R(M) = {uxv→ uyv | (u | x→ y | v) ∈ I } is confluent.

Limited Context Restarting Automata 113

We will use the prefix con- to denote types of confluent lc-R-automata. Further, for each
type R ∈ {R′i,Ri | i ∈ {0,1,2,3}}, lc-R[con-R] will denote the class of lc-R-automata of
typeR that are confluent.

Theorem 4.2 L(lc-R[con-R′0]) = L(lc-R[con-R0]) = CRL.

Theorem 4.3 L(lc-R[con-R′3]) = L(lc-R[con-R3]) = REG.

For the classes of languages that are accepted by confluent lc-R-automata of types R′1,
R1, R′2 or R2, we have no characterization results yet. However, we have some preliminary
results concerning the latter classes.

Lemma 4.4 If L is accepted by an lc-R[con-R′2]-automaton, then L ∈ DCFL∩DCFLR.

Lemma 4.5 The deterministic context-free language Lu = {canbnc | n≥ 1} ∪ {damb2md |
m≥ 1} is not accepted by any lc-R[con-R′2]-automaton.

Corollary 4.6
(a) The class of languages that are accepted by lc-R[con-R′2]-automata is properly

contained in the class symDCFL.
(b) The class of languages that are accepted by lc-R[con-R′2]-automata is incompara-

ble to the language classes DLIN and LIN.

These results also hold for the class of languages that are accepted by lc-R[con-R2]-
automata. However, the exact relationship of these classes of languages to the class of con-
fluent monadic McNaughton languages and to the class of confluent generalized monadic
McNaughton languages of [9] remains currently open.

Finally we shortly consider lc-R[con-R1]-automata.

Lemma 4.7 The languageLexpo5 = {a5n |n≥ 0} is accepted by an lc-R[con-R1]-automaton.

Corollary 4.8 The class of languages that are accepted by lc-R[con-R1]-automata is incom-
parable to the class CFL under inclusion. In particular, it properly includes the class of
languages that are accepted by lc-R[con-R2]-automata.

5. Concluding Remarks
We have studied the relationship between various classes of limited context restarting au-
tomata on the one hand and certain McNaughton families of languages on the other hand. We
have seen that the class GCSL of growing context-sensitive languages is an upper bound for
all the types of limited context restarting automata considered, and that this upper bound is
attained by three classes of these automata. Under the additional requirement of confluence,
the Church-Rosser languages form an upper bound, which is reached by the two most general
types of these automata. On the other hand, for the most restricted types of lc-R-automata,
we just obtain the regular languages, both in the confluent and the non-confluent case. How-
ever, for the intermediate systems, the question for an exact characterization of the classes of
languages accepted remains open.

114 Friedrich Otto, Peter Černo, František Mráz

References
[1] S. BASOVNÍK, Learning restricted restarting automata using genetic algorithm. Master’s thesis,

Charles University, Faculty of Mathematics and Physics, Prague, 2010.

[2] S. BASOVNÍK, F. MRÁZ, Learning limited context restarting automata by genetic algorithms. In:
J. DASSOW, B. TRUTHE (eds.), Theorietag 2011. Otto-von-Guericke-Universität, Magdeburg,
2011, 1–4.

[3] M. BEAUDRY, M. HOLZER, G. NIEMANN, F. OTTO, McNaughton families of languages. Theo-
ret. Comput. Sci. 290 (2003), 1581–1628.

[4] G. BUNTROCK, F. OTTO, Growing context-sensitive languages and Church-Rosser languages.
Inform. and Comput. 141 (1998), 1–36.

[5] P. ČERNO, F. MRÁZ, Clearing restarting automata. Fund. Inf. 104 (2010), 17–54.

[6] P. ČERNO, F. MRÁZ, ∆-clearing restarting automata and CFL. In: G. MAURI, A. LEPORATI

(eds.), DLT 2011. LNCS 6795, Springer, Berlin, 2011, 153–164.

[7] E. DAHLHAUS, M. WARMUTH, Membership for growing context-sensitive grammars is polyno-
mial. J. Comput. System Sci. 33 (1986), 456–472.

[8] P. JANČAR, F. MRÁZ, M. PLÁTEK, J. VOGEL, Restarting automata. In: H. REICHEL (ed.),
FCT’95. LNCS 965, Springer, Berlin, 1995, 283–292.

[9] P. LEUPOLD, F. OTTO, On McNaughton families of languages that are specified by some variants
of monadic string-rewriting systems. Fund. Inf. 112 (2011), 219–238.

[10] R. MCNAUGHTON, P. NARENDRAN, F. OTTO, Church-Rosser Thue systems and formal lan-
guages. J. Assoc. Comput. Mach. 35 (1988), 324–344.

[11] G. NIEMANN, J. WOINOWSKI, The growing context-sensitive languages are the acyclic context-
sensitive languages. In: W. KUICH, G. ROZENBERG, A. SALOMAA (eds.), DLT 2002. LNCS
2295, Springer, Berlin, 2002, 197–205.

[12] F. OTTO, On deciding the confluence of a finite string-rewriting system on a given congruence
class. J. Comput. System Sci. 35 (1987), 285–310.

[13] F. OTTO, Restarting automata. In: Z. ÉSIK, C. MARTIN-VIDE, V. MITRANA (eds.), Recent
Advances in Formal Languages and Applications. Studies in Computational Intelligence 25,
Springer, Berlin, 2006, 269–303.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 115 – 120

On Localization of (Post)Prefix (In)Consistencies(A)

Martin Procházka Martin Plátek

Charles University, MFF UK, Department of Computer Science,
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

martproc@gmail.com, martin.platek@mff.cuni.cz

1. Introduction
A reducing automaton (red-automaton) is a deterministic automaton proposed for checking
word and sub-word correctness by the use of analysis by reduction, see [3, 4, 5]. Its monotone
version characterizes the class of deterministic context-free languages (DCFL). We propose
a method for a construction of a deterministic push-down transducer for any monotone re-
ducing automaton which is able with the help of special output symbols to localize its prefix
and post-prefix (in)consistencies, and certain types of reducing conflicts.

2. Definitions and Basic Properties
The reducing automaton is a refinement of R-automaton from [2]. It has a finite control unit
and a working head attached to a list with sentinels on both ends. It works in certain cycles
called stages. At the beginning of each stage, the head points at the leftmost item behind
the left sentinel, and the control unit is in a special initial state. In the process of the stage
the automaton moves the head from the item it currently points to the next item on the right.
During such a transition it changes the state of its control unit according to the current state
and the currently scanned symbol. The stage ends as the control unit gets to any of special
states called operations. There are three kinds of operations: ACC, ERR, and RED. Both ACC

and ERR-operation halts the whole computation, ACC accepts and ERR rejects the word in the
list. The RED-operation RED(n) determines how the list should be shortened. Its parameter
n – a binary word of a limited size – specifies which item on the left of the head are to be
removed from the list. Bit 1 means “remove the item from the list”, bit 0 means “leave the
item in the list”. After all items designated for deletion are removed, the automaton resets its
control unit to the initial state and places the head at the leftmost item in the list. The string
n∈ (10∗)+ determines, which items will be deleted from the list. If the i-th symbol of n from
the right is equal to 1, then the automaton deletes the i-th item to the left from the position of
the head. The item scanned by the head is considered as the first one.

All final states of a reducing automaton M create a finite subset FM of the (unbounded)
set {ACC,ERR}∪{RED(n) | n ∈ (1·0∗)+ }. Now we are able to introduce reducing automata
in a formal way.

(A)This work was supported by the grant projects of the Grant Agency of the Czech Republic No. P202/10/1333
and P103/10/0783.

116 Martin Procházka, Martin Plátek

A reducing automaton (red-automaton) is a 7-tuple M = (ΣM ,«, »,SM ,sM , FM ,fM),
where ΣM is a finite input alphabet, «,» 6∈ ΣM are the (left and right) sentinels, SM is the
finite set of internal states, sM ∈ SM is the (re)starting state, FM is the finite set of final states
(operations), fM : SM × (ΣM ∪{»})−→ (SM ∪FM) is the transition function of M , which
fulfills the following condition: ∀s ∈ SM : fM (s,») ∈ FM .

We will describe the behavior of M in more details by two functions enhancing the tran-
sition function fM :
δM : (SM ∪FM ∪{RED})× (ΣM ∪{«,»})−→ (SM ∪FM ∪{RED})
∆M : (SM ∪F ∗M)× (ΣM ∪{«,»})−→ (SM ∪F ∗M)

RED is a new (helping) state which is different from all states from SM , and the set F ∗M is
defined in the following way: F ∗M = FM ∪{RED(n ·0k) | RED(n) ∈ FM a k ≥ 1}

Both functions δM , ∆M for all pairs created by a state s ∈ SM and by a symbol a ∈
(ΣM ∪ {»} are equal to the function fM . We define the new functions for the remaining
relevant pairs in the following way:

δM (s,«) = sM ∆M (s,«) = sM

δM (ACC,a) = ACC ∆M (ACC,a) = ACC

δM (ERR,a) = ERR ∆M (ERR,a) = ERR

δM (RED(n),a) = RED ∆M (RED(n),a) = RED(n·0)
δM (RED,a) = RED

The first enhancement of δM : δ∗M (s,λ) = s, δ∗M (s,ua) = δM (δ∗M (s,u),a)

The first enhancement of ∆M : ∆∗M (s,λ) = s, ∆∗M (s,ua) = ∆M (∆∗M (s,u),a)
We will often use the following conventions: δ∗M (sM ,w)= δ∗M («w), ∆∗M (sM ,w)=∆∗M («w).

We define for the both function a further important enhancement, namely for the final
subsets S of the set SM ∪FM ∪ {RED} resp. SM ∪F ∗M : δ∗M (S,u) = {δ∗M (s,u) | s ∈ S},
∆∗M (S,u) = {∆∗M (s,u) | s ∈ S}.

We will consider in the following only the reducing automata which fulfills the following
natural condition: δ∗M (sM ,u) = RED(n) =⇒ |u| ≥ |n|.
Simple language by M : L0(M) = {w ∈ Σ∗M | ∆∗M («w») = ACC}.
Characteristic constant kM : kM = max

{
|n|

∣∣RED(n) ∈ FM

}
.

The operation of reduction. We will exactly describe a reduction of a word by a binary
sequence with the help of the following operation /: a/0= a, a/1= λ, λ/n= λ, u/λ=
u, (u ·a)/(n · i) = (u/n) · (a/i), where u ∈ Σ∗, a ∈ Σ, n ∈ (10∗)+ and i ∈ {0,1}. The size
of the strings u,n is here unbounded, moreover u can be longer then n, and vice versa. The
reduction of the word (a) by the sequence 1 ·0 ·1 is given in the following way: (a)/101= a.
We can describe the way how the red-automaton M reduces a word w ∈ Σ∗M .
The relation of reduction denoted by ⇒M is introduced in the following way: «w»⇒M

«w′», if ∆∗M («w») = RED(n), and «w»/n = «w′». If «w»⇒M «w′» holds, we say, that the
automaton M reduces the word w into the word w′. We can see that |w|> |w′|. The relation
⇒+ is the transitive closure of⇒;⇒∗ is the reflexive and transitive closure of⇒.
Analysis by reduction by M is any sequence of reductions «w1»⇒ «w2»⇒ . . .⇒ «wn»,
which cannot be further prolonged. If wn ∈ L0(M), we speak about accepting analysis by
reduction, in the other case we speak about rejecting analysis by reduction. Often we will
speak about analysis instead of analysis by reduction.

On Localization of (post)prefix (In)Consistencies 117

Stages. Each computation of a red-automaton is divided in stages. At the beginning of each
stage the head points at the leftmost item behind the left sentinel, and the control unit is in
the (re)starting state. The stage ends as the control unit gets to any final state (operation)
from FM . There are three kinds of operations: ACC, ERR, and RED. Accordingly, we have
accepting (ACC-), rejecting (ERR-), and reducing (RED-)stages.
Recognized language by M : L(M) = {w | «w»⇒∗M «w′», and w′ ∈ L0(M)}.
Error and correctness preserving property. We can see the following usefull property: If
«w1»⇒M «w2», then w1 ∈ L(M), exactly if w2 ∈ L(M).
Monotony. Monotony is an important property that enables to characterize the class of DCFL
in terms of monotonic reducing automata. Informally a red-automaton M is monotonic if
the size of sequences of non-visited items (symbols) in individual stages of any analysis by
reduction by M is non-increasing.

2.1. Prefix and post-prefix (in)consistencies

Assumption. We assume in the following that L ⊆ Σ∗, and any symbol of Σ is a symbol
of some word from L.We call a word v inconsistent (incorrect) with respect to the language
L⊆ Σ∗, if for any u, w ∈ Σ∗ is uvw 6∈ L. We can see that incorrect words can obtain proper
incorrect sub-words. This fact lead us to the following notion. We say that a word v is an
incorrect core of the word w with respect to the language L, if it is a subword of w, if it is
incorrect with respect to the language L, and if it is minimal by the ordering "to be a sub-
word". On the other hand, a word v is a correct sub-word of a word a w with respect to the
language L, if w = xvy, and for some x′, y′ is x′vy′ ∈ L. We say that v is a correct core of
a word w with respect to the language L, if it is a correct sub-word of w with respect to L,
and it is maximal by the ordering "to be a sub-word". The assumption that each symbol of Σ

is a symbol of some word of the language L ensures that each symbol of any word w ∈ Σ∗ is
contained in some correct core of this word.

Prefix consistence is the longest correct prefix v of the analyzed word w. Prefix incon-
sistence is the shortest incorrect prefix of the analyzed word w, i.e., it is the prefix va of w,
where a ∈ Σ. Post-prefix consistence is a suffix x of a correct core behind (to the right of)
the prefix consistence, or behind some of the previous post-prefix consistencies. We assign to
the post-prefix consistency x the incorrect sub-word xa of w. We say that xa is a post-prefix
inconsistence of w (with respect to L).

Our effort in the following is to deterministically, in a monotonic way to localize the
prefix and post-prefix (in)consistencies in the analyzed words from DCFL.

3. Post-prefix robust analyzer A

Prefix consistence. A red-automaton M is prefix-consistent when for each word u and
each symbol a (including the right sentinel) it holds the following: if ∆M (sM ,u) ∈ SM and
∆M (sM ,ua) 6= ERR, then ua is a prefix of some word from L(M) · {»}.

Let us note that monotone, prefix consistent, red-automata characterize the class of DCFL.
We will show informally in the next part a method how construct for a given monotone,
prefix-correct, state-minimal reducing automatonM a robust analyzerAwhich determines in

118 Martin Procházka, Martin Plátek

any wordw∈ «Σ∗M» the prefix-(in)consistence, and (not obligatory all) post-prefix (in)consistencies.
We suppose for the construction that L(M) 6= ∅.

At firstAwill use the prefix-consistency ofM for the finding of the prefix-(in)consistency
of the analyzed word w.

Such a situation can occur after one, or after more stages if M will be transfered into the
final rejecting state ERR. The computation (analysis) of M on the word w until this moment
we describe in the following way:

1) At first M (possibly) gradually reduces the word w into the word w′, i.e., w⇒∗M w′.
2) Then in the next stage M transfers over some prefix x of the word w′ into some non-

final state s ∈ SM , i.e., δ∗M (sM ,x) = s ∈ SM ,
3) Finally from the state s transfers over the next symbol a into the final state ERR, i.e.,

δM (s,a) = ERR.
We can see that A has founded by the previous simulation of M the prefix inconsistency

of w. For marking of the prefix inconsistency A inserts the sign ! between the correct prefix
«x and the symbol a.

The prefix-consistency of M ensures that M has visited in the last step described above
the symbol a at the first time. Therefore if w′ = «xay for some y then ay is a suffix of the
original input word w.

Let us now informaly describe howA continues in the robust analysis over the mentioned
suffix ay of the word w.

We will use the function δM for this aim. This function was introduced as an enhancement
of the transition function fM . It describes not only the transfers between the individual states,
but also the tranfers between the indiviual subsets of the set SM ∪FM ∪{RED}, i.e., of the set
of all final and non-final states, and of a special state RED. We will use it in the following in
order to describe the all possible computation of M over the suffix ay at the same time.

We let A to compute the function δM over the suffix ay = a0a1 . . .a|y| starting from the
set SM of all non-final states of M . A will control the computation in the following way. Let
us initially take the set SM as a set further denoted as SI .

Let us denote the following part of the computation of A as a cycle C1. The cycle C1
is performed until for the set S = δ∗M (SI ,a0 . . .ai), where 0 ≤ i ≤ |y|, holds that ∅ ⊂ S ⊆
SM ∪{ERR}, and S contains some non-final state. Then A performs the following action:
the head of A will be placed to the next item to the right, and as (the current value of) the set
S will be taken the set δM (S,ai+1). Here ends the description of C1.

The core of the post-prefix analysis byA are the following four cases where is not fulfilled
the condition for the remaining word in the cycle C1.

Correct suffix. The set S contains the accepting state ACC; i.e., ACC ∈ S. If ACC ∈ S,
then the current suffix of the analyzed word w by A is a suffix of some word from L(M).
Therefore, the current suffix cannot contain any further inconsistency. The work of A on w
is finished at this moment.

An unambiguous inconsistency. The set S contains a single state – the rejecting state
ERR; i.e., S = {ERR}. All the possible computations of M over the word w behind the previ-
ous inconsistency has ended at the same time in the state ERR. We have found a suffix of a
correct core of the analyzed word, i.e., one of its post-prefix (in)consistency. At this moment
A inserts the sign ! immediately before the position of its working head. The automaton
A will look for a new post-prefix (in)consistency behind (to the right from) the currently

On Localization of (post)prefix (In)Consistencies 119

inserted sign !. A will take instead of the set {ERR} as the current value of the set S the
set δM (SM ,a), where a is the symbol scanned by the working head. A will continue in the
robust analysis of the remaining suffix by the schema of the cycle C1.

An ambiguous reduction. S does not contain ACC, and either does contain two different
reducing states of M , or does contain at least one non-final state, and at least one reducing
state; i.e., ACC 6∈ S, and ∃n : RED(n) ∈ S 6⊆ {RED(n),ERR}. We say that S fulfilling the
condition above is an ambiguous set. The task for A is to work without false inconsistency
messages. From that reason A separates the ambiguous part from the remaining suffix. It
inserts the sign for the ambiguity ? in the place of the current ambiguity, i.e., immediately
to the left from the position of the working head (if the sign is not already placed there in
some of the previous stages). At this moment A takes for the set S the complete set SM , and
continues in the robust analysis behind the sign ? by the scheme of the cycle C1.

An unambiguous reduction. The set S contains exactly one reducing operation, and
possibly beside it the final state ERR; i.e., ∃n : RED(n) ∈ S ⊆ {RED(n),ERR}.

Let us denote as u the sub-word which is created by the input symbols positioned between
the last sign ! or ?, and the position of the working head including the scanned symbol. The
sub-word u is because of the prefix-consistency, and because of the state minimality of M a
sub-word of some word from L(M). Moreover, the u is reduced in any word w ∈ L(M) of
the form w = vux by the reducing seguence n, i.e, the reducing sequence and the position of
the reduction are determined unambiguously. A will reduce also by n, but only the symbols
from u if we consider the case that n can be longer then u.

Observation. The reducing sequence n deletes at least one symbol from u. This obser-
vation follows from the unambiguity of the reduction of u. Apart from the reduction of u
by n, A will insert into the list a new item with an auxiliary symbol – the set U of pairs of
an internal state and a word over an input alphabet of the length kM at most. This auxiliary
symbol will be used in the next stage to adjust the set of states computed by the function δM .
Our goal is to avoid situation when δ∗M (s,u) = ERR 6= δ∗M (s,u/n) for some s ∈ SM . Such
internal states s must be eliminated. The set U is defined by the following way:

If |u| ≥ |n|, then A reduces the working list of items by n and A puts a new item with
the auxiliary symbol U just in front of the leftmost deleted item. U = {(s,λ) | ∃s′ ∈
SM : δ∗M (s′,u1) = s and δ∗M (s,u2) = RED(n)} where u= u1u2 and |u2|= |n|.

If |u| < |n|, then A cannot reduce by the whole n as such a reduction would impact
a part of the working list in front of u; this part would be reduced by n1 such that
n= n1n2 and |n2|= |u|. But a part of the working list in front of the rightmost marker
! or ? can be reduced in some word of L(M) in other way or even not at all. So,Awill
reduce items behind the rightmost marker ! or ? by the reducing sequence n2 and it
will insert a new item containing an auxiliary symbolU just to the right of the rightmost
marker. U = {(s,x) | ∃v ∈ Σ∗M : x= v/n1 a |v|= |n1| a δ∗M (s,vu) = RED(n)}.

Insertion of the set U into the working list is important as it ensures the continuity of subse-
quent stages of computation. In next stage, A will use this set to adjust the set S of internal
states computed by function δM . As soon as A reach the item with U , it substitute S by
S′ = {δ∗M (s,v) | (s,v) ∈ U}. It guarantees that A enter a part of the list impacted by the last
reduction in such states only that led to the last reduction of u by n resp. n2.

120 Martin Procházka, Martin Plátek

A uses just defined set U in such a case only when the new item with U is inserted just
behind an item containing a symbol of the input alphabet or a marker. Otherwise, when this
item contains an auxiliary symbol U ′ different from both markers, then (instead of insertion
of U) A replaces U ′ with U computed in the following way:
U = {(s,x) | ∃y,(s′,x′) ∈ U ′ : x= yx′/n1 , and δ∗M (s,y) = s′ , and δ∗M (s′,x′u) = RED(n),
and |y| = max{0, |n1| − |x′|}}, where n1 is a prefix of n of the length |n| − |u|. In all

cases, the length of the word x contained in any pair of inserted set U is bounded by the
characteristic constant kM which ensures that U is finite.

Now we have outlined the behavior of A in the first stage after the localization of the
prefix-inconsistence. In the next stages we need also to consider the signs and the other
auxiliary symbols inserted in the previous stages.

In [3] is in detail described the construction of the robust analyzer A and the transforma-
tion of it into a deterministic push-down transducer with the properties summarized in the
following theorem.

Theorem 3.1 Let M be a mon-red-automaton which is prefix-consistent, and state-minimal.
Then there is a deterministic push-down transducer T which translates any word w from Σ∗M
on a word pA(w) ∈ (ΣM ∪{!,?})∗ with the following properties:
1. If pA(«w») does not contain any sign !, then pA(«w») = «w» and w is from L(M).
2. If «w» ∈ «L(M)» then pA(«w») = «w».
3. If «u! is a prefix of pA(«w») and u does not contain the sign ! then u does not contain
the sign ? as well, and «u is the longest correct-prefix of the word «w» with respect to the
language «L(M)».
4. If !u! or ?u! is a sub-word of the word pA(«w») and u does not contain any sign ! or ?
then u is a suffix of some corect core of the word «w» with respect to the language «L(M)».
5. If !u» or ?u» is a suffix of the word pA(«w»), and u does not contain any sign ! or ? then
u» is a sufix of some word from «L(M)».
6. If !u? or ?u? is a sub-word of pA(«w») and u does not contain any sign ! or ? then u is
a sub-word of some word from «L(M)».

References
[1] Cormack G.V., An LR Substring Parser for Noncorrecting Syntax Error Recovery, in:

Proc. of PLDI ’89, 1989, 161-169.

[2] Jančar P., Mráz F., Plátek M., Vogel J.: Restarting Automata; in Proc. FCT’95, Dresden,
Germany, August 1995, LNCS 965, Springer Verlag 1995, pp. 283 - 292

[3] Procházka M.: Redukční automaty a syntaktické chyby; (in Czech) text for PhD disser-
tation, submitted in July 2012.

[4] Procházka M.: Concepts of Syntax Error Recovery for Monotonic Reducing Automata,
MIS 2004, pp. 94–103, http://ulita.ms.mff.cuni.cz/pub/MIS/MIS2004.pdf

[5] Procházka M., Plátek M.: Localization of (In)Consistencies by Monotone Reducing
Automata., Accepted for ITAT 2012.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 121 – 126

New Model for Picture Languages Recognition:
Two-dimensional Sgraffito Automaton

Daniel Průša(A) František Mráz(B)

(A)Czech Technical University, Faculty of Electrical Engineering
Karlovo náměstí 13, 121 35 Prague 2, Czech Republic

prusapa1@cmp.felk.cvut.cz

(B)Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, 118 25 Prague 1, Czech Republic

frantisek.mraz@mff.cuni.cz

Abstract

We present a new model of a two-dimensional computing device called sgraffito au-
tomaton and demonstrate its significance. In general, the model is simple, allows a clear
design of important computations and defines families exhibiting good properties. It does
not exceed the power of finite-state automata when working over one-dimensional inputs.
On the other hand, it induces a family of picture languages that strictly includes REC
and the deterministic variant recognizes languages in DREC as well as those accepted by
four-way automata.

1. Introduction
The theory of two-dimensional languages generalizes concepts and techniques from the the-
ory of formal languages. The basic element, which is a string, is extended to a matrix of
symbols, usually called a picture. Various classes of picture languages can be formed, espe-
cially by generalizing one-dimensional computational or generative models, which possibly
leads to some two-dimensional variant of the Chomsky hierarchy. Naturally we can ask,
whether the induced families inherit properties of their one-dimensional counterparts. The
answer is typically negative. A more complex topology of pictures causes that families of
picture languages are of a different founding.

A four-way finite automaton (4FA) [2] is a good example. It is a finite-state device com-
posed of a control unit equipped with a head moving over an input picture in four directions:
left, right, up and down. Even if the automaton is a simple extension of the two-way finite
automaton, the formed family of languages shows properties different from those of regular
languages [4].

In 1991, Giammaresi and Restivo proposed the family of recognizable languages (REC)
[3]. The languages in REC are defined using tiling systems. They also coincide with the

(A)The authors were supported by the Grant Agency of the Czech Republic: the first author under the project
P103/10/0783 and the second author under the projects P103/10/0783 and P202/10/1333.

122 Daniel Průša, František Mráz

languages recognizable by the two-dimensional on-line tessellation automata (2OTA) [6] or
definable using existential monadic second order logic. The family is well established, has
many remarkable properties and the defined recognizability is a robust notion. It is even pre-
sented as the ground-level class among the families of two-dimensional languages. However,
this vision is somehow contradicted by the fact that the non-determinism exhibited by REC
makes it quite powerful. Even some NP-complete problems belong to REC [8]. This fact
has inspired the further proposal of DREC [1] – the family of deterministically recognizable
languages. It coincides with the closure under rotation ofL(2DOTA), where 2DOTA denotes
deterministic 2OTA.

In this abstract we present a new two-dimensional computing device called sgraffito au-
tomaton (2SA). We introduced it at DLT 2012 [9].

Sgraffito (Italian: “scratched”), in the visual arts, a technique used in painting,
pottery, and glass, which consists of putting down a preliminary surface, cover-
ing it with another, and then scratching the superficial layer in such a way that the
pattern or shape that emerges is of the lower colour. (Encyclopædia Britannica
Online. Retrieved 20 March, 2012)

The automaton has a finite state control and works on a picture consisting of symbols with dif-
ferent weights (as if they were put on its background in order from the lightest to the heaviest).
2SA can move its head over the picture in four directions. It must rewrite scanned symbol
in each step and the symbol can be rewritten by a lighter symbol only (this corresponds to
scratching some of the top layers). The automaton accepts by entering an accepting state.

A formal definition of the automaton is given in Section 2 Section 3 shows several closure
properties for languages accepted by nondeterministic and deterministic 2SAs. The recogni-
tion power of the model is compared to other models in Section 4 Finally, concluding remarks
are presented in Section 5

2. Sgraffito Automata
The sgraffito automaton is a special instance of two-dimensional Turing machine. For a
picture P ∈ Σ∗,∗, P̂ denotes the boundary picture which extends P by two border rows and
columns formed of special markers from S = {`,a,>,⊥,#}, called sentinels.

P

#

#

#

#

`

.̀..
a

a
...

⊥ ⊥ ⊥ ⊥. . .

> > > >. . .

Furthermore, let H = {R,L,D,U,Z} be the set of the head movements (right, left, down, up
and none movement respectively). Define a mapping ν : S →H where

ν(`) = R, ν(a) = L, ν(>) = D, ν(⊥) = U and ν(#) = Z.

New Model for Picture Languages Recognition: Two-dimensional Sgraffito Automaton 123

Definition 2.1 A (nondeterministic) two-dimensional bounded Turing machine (2BTM) is a
tupleM= (Q,Σ,Γ, δ,q0,QF) where

– Σ is an input alphabet,
– Γ is a working alphabet such that Σ⊆ Γ,
– Q is a finite, nonempty set of states,
– q0 ∈Q is the initial state,
– QF ⊆Q is the set of final states, and
– δ : (Q\QF)× (Γ∪S)→ 2Q×(Γ∪S)×H is a transition relation.
Moreover, for any pair (q,a) ∈Q× (Γ∪S), every (q′,a′,d) ∈ δ (q,a) fulfils
– a ∈ S implies d= ν(a) ∧ a′ = a, and
– a /∈ S implies a′ /∈ S .
If ∀q ∈Q,∀a ∈ Γ∪S : |δ(q,a)| ≤ 1, we sayM is a deterministic 2BTM.

The notions like configuration and computation of the machine M are easily defined
as usual. Let P ∈ Σ∗,∗ be an input. In the initial configuration of M on P , its working
tape contains P̂ , its control unit is in state q0 and the head scans the top-left corner of P .
When P is the empty picture, the head scans the bottom-right corner of P̂ containing #. The
machine accepts P iff there is a computation ofM starting in the initial configuration on P
and finishing in a state from QF .

Definition 2.2 A two-dimensional sgraffito automaton (2SA) is a tupleA=(Q,Σ,Γ, δ,q0,QF ,µ)
where

– (Q,Σ,Γ, δ,q0,QF) is a 2BTM,
– µ : Γ→ N is a weight function and the transition relation satisfies

(q′,a′,d)∈δ(q,a) ⇒ µ(a′)<µ(a) for all q,q′∈Q,d ∈H,a,a′∈ Γ.

A is a deterministic 2SA (2DSA) if the underlying 2BTM is deterministic.

Lemma 2.3 Let M = (Q,Σ,Γ, δ,q0,QF) be a 2BTM. Let k ∈ N be an integer such that
during each computation ofM over any picture from Σ∗,∗, each tape field is scanned by the
head of M in at most k configurations. Then, there is a 2SA A such that L(A) = L(M).
Moreover, ifM is deterministic, A is deterministic too.

Proof. Let A = (Q,Σ,Γ2, δ2, q0,QF ,µ) be a 2SA, where Γ2 = Σ∪ (Γ×{1, . . . ,k})
and each instruction (q,a)→ (q′,a′,d) from δ is represented in δ2 by the following set of
instructions:

(q,a)→ (q′,(a′,1) ,d) ,
(q,(a,i))→ (q′,(a′, i+1) ,d) ∀i ∈ {1, . . . ,k−1}.

Finally, we define

µ(a) = k+1 ∀a ∈ Σ,
µ((a,i)) = k+1− i ∀(a,i) ∈ Γ×{1, . . . ,k} .

We shall see that L(A) = L(M) and that deterministic δ produces deterministic δ2. 2

124 Daniel Průša, František Mráz

Lemma 2.3 says that, instead of designing a 2SA, it is sufficient to describe a 2BTM
for which the number of transitions over each tape field is bounded by a constant. One-
dimensional constant-visit machines were already studied by Hennie [5]. He proved that such
machines recognize only the regular languages. This implies that sgraffito automata restricted
to work over one-row (or one-column) pictures recognize just the regular languages as well.

3. Closure Properties
The common closure properties of the families induced by sgraffito automata are identical to
the closure properties of REC and DREC, as it is demonstrated in this section.

Theorem 3.1
• L(2SA) and L(2DSA) are closed under union, intersection, rotation and mirroring.
• L(2SA) is closed under row and column concatenation and projection.
• L(2DSA) is closed under complement.

Proof. A clear constructive proof can be given for each particular claim. Let us demon-
strate this for the column concatenation of picture languages L1, L2, denoted by L1 dL2.

Let A1, A2 be 2SAs such that L1 = L(A1), L2 = L(A2). We construct a 2SA A which
nondeterministically chooses a column in the input P̂ and marks it. Then it simulatesA1 over
the left part (including the marked column) and, after that, A2 over the right part (excluding
the marked column). A accepts if both simulations finished with accepting. 2

To reveal more properties of sgraffito automata, we utilize two languages over Σ = {0,1}.
The language of “duplicates” Ldup consists of all pictures Q dQ, where Q is a nonempty
square over Σ. The language of “permutations” Lperm is a subset of Ldup and consists of
those pictures Q dQ, where each row and each column of Q contains symbol 1 exactly once.
Examples are shown in Figure 1.

0 1 0 1 0 1 0 1

1 0 1 1 1 0 1 1

1 1 1 0 1 1 1 0

1 0 0 0 1 0 0 0

(a)

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

1 0 0 0 1 0 0 0

(b)

Figure 1: Sample pictures from (a) Ldup and (b) Lperm.

Proposition 3.2 ([4, 7]) Ldup andLperm are not in REC, while their complements are in REC.

An analogous result can be obtained for Ldup when considering sgraffito automata.

Lemma 3.3 Ldup is not accepted by any 2SA. Ldup is not accepted by any 2DSA.

Utilizing Lemma 3.3, the following theorem is proved.

New Model for Picture Languages Recognition: Two-dimensional Sgraffito Automaton 125

Theorem 3.4 L(2SA) is not closed under complement. L(2DSA) is not closed under pro-
jection and row, neither column concatenation.

The studied closure properties are summarized in Figure 2. Their coincidence with the
properties of REC and DREC is emphasized.

∪ ∩ \ d, d π R,VM,HM

REC yes yes no yes yes yes
L(2SA) yes yes no yes yes yes
DREC yes yes yes no no yes
L(2DSA) yes yes yes no no yes

Figure 2: Overview of closure properties.

4. A Taxonomy of Picture Languages
This section compares the power of sgraffito automata with four-way automata and on-line
tessellation automata.

It is a known fact that DREC and L(4FA) are incomparable. We showed that 2DSAs
accept all languages recognized by 4FAs. The proof is based on two facts - an oriented graph
G expressing transitions of a 4FA can be represented by a 2DSA A and A can perform a
depth-first search in G determining accessibility of a final state from the initial configuration.

Theorem 4.1 L(4FA) is included in L(2DSA).

Furthermore, a straightforward simulation of 2OTA, resp. 2DOTA can be easily designed.

Theorem 4.2 REC is included in L(2SA), DREC is included in L(2DSA).

While Ldup cannot be recognized by any 2SA, there is a 2DSA recognizing Lperm. It is
possible to check if a pair of symbols 1 in a row is located in columns with the same index in
each half of the picture. Moreover, the whole verification can be done by a constant number
of visits in each tape field – a unique row, column and diagonals are used to define a bouncing
style traversal based localization for each pair. For more details, see [9].

Since we have shownLdup ∈ (RECrL(2DSA)) andLperm ∈ (L(2DSA)rREC), families
L(2DSA) and REC are incomparable.

All the mentioned relationships are summarized in Figure 3.

5. Conclusion
We have introduced a new computational model called sgraffito automaton and investigated
its properties. If the automaton is restricted to work over one-row pictures only, the recogni-
tion power degenerates to the power of finite-state automaton. Such results give the families a

126 Daniel Průša, František Mráz

DREC L(4FA)

REC L(2DSA)

L(2SA)

Figure 3: Relationships between studied families. Arrows represent proper inclusions while dashed
lines connect incomparable classes.

great importance and entitle us to see them as alternative ground levels in the two-dimensional
hierarchy. This is also well justified by the results on closure properties. We think that sgraf-
fito automata deserve to be the subject of further research. A special attention should be paid
to 2DSAs, since they simulate 4FAs and define thus an interesting deterministic family. The
study of the automata can provide additional insight on the fundamental differences between
one-dimensional and two-dimensional languages.

References
[1] M. ANSELMO, D. GIAMMARRESI, M. MADONIA, From Determinism to Non-determinism in

Recognizable Two-Dimensional Languages. In: T. HARJU, J. KARHUMÄKI, A. LEPISTÖ (eds.),
Developments in Language Theory. LNCS 4588, Springer, 2007, 36–47.

[2] M. BLUM, C. HEWITT, Automata on a 2-dimensional tape. In: Proceedings of the 8th Annual
Symposium on Switching and Automata Theory (SWAT 1967). FOCS ’67, IEEE Computer Society,
Washington, DC, USA, 1967, 155–160.

[3] D. GIAMMARRESI, A. RESTIVO, Recognizable picture languages. International Journal of Pattern
Recognition and Artificial Intelligence 6 (1992) 2-3, 32–45.

[4] D. GIAMMARRESI, A. RESTIVO, Two-dimensional languages. In: G. ROZENBERG, A. SALOMAA

(eds.), Handbook of formal languages, Vol. 3. Springer-Verlag New York, Inc., New York, NY,
USA, 1997, 215–267.

[5] F. HENNIE, One-tape, off-line Turing machine computations. Information and Control 8 (1965) 6,
553–578.

[6] K. INOUE, A. NAKAMURA, Some properties of two-dimensional on-line tessellation acceptors. In:
Information Sciences. 13, 1977, 95–121.

[7] J. KARI, C. MOORE, New Results on Alternating and Non-deterministic Two-Dimensional Finite-
State Automata. In: A. FERREIRA, H. REICHEL (eds.), STACS 2001. LNCS 2010, Springer Berlin
/ Heidelberg, 2001, 396–406.

[8] K. LINDGREN, C. MOORE, M. NORDAHL, Complexity of Two-Dimensional Patterns. Journal of
Statistical Physics 91 (1998) 5-6, 909–951.

[9] D. PRŮŠA, F. MRÁZ, Two-Dimensional Sgraffito Automata. In: H.-C. YEN, O. IBARRA (eds.),
Developments in Language Theory. Lecture Notes in Computer Science 7410, Springer Berlin /
Heidelberg, 2012, 251–262.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 127 – 132

Inside the Class of REGEX Languages
Markus L. Schmid

Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

M.Schmid@lboro.ac.uk

Abstract

We study different possibilities of combining the concept of homomorphic replace-
ment with regular expressions in order to investigate the class of languages given by
extended regular expressions with backreferences (REGEX). It is shown in which regard
existing and natural ways to do this fail to reach the expressive power of REGEX.

1. Introduction
Since their introduction by Kleene in 1956 [7], regular expressions have not only constantly
challenged researchers in formal language theory, they also attracted pioneers of applied
computer science as, e. g., Thompson [9], who developed one of the first implementations of
regular expressions, marking the beginning of a long and successful tradition of their practical
application (see Friedl [5] for an overview). In order to suit practical requirements, regular
expressions have undergone various modifications and extensions which lead to so-called
extended regular expressions with backreferences (REGEX for short), nowadays a standard
element of most text editors and programming languages (cf. Friedl [5]).

The main difference between REGEX and classical regular expressions is the concept
of backreferences. Intuitively speaking, a backreference points back to an earlier subexpres-
sion, meaning that it has to be matched to the same word the earlier subexpression has been
matched to. For example, r := (1 (a | b)∗)1 ·c · \1 is a REGEX, where \1 is a backreference
to the referenced subexpression in between the parentheses (1 and)1. The language described
by r, denoted by L(r), is the set of all words wcw, w ∈ {a,b}∗; a non-regular language.

A suitable language theoretical approach to these backreferences is the concept of ho-
momorphic replacement. For example, the REGEX r can also be given as a string xbx,
where the symbol x can be homomorphically replaced by words from {a,b}∗, i. e., both oc-
currences of x must be replaced by the same word. Numerous language generating devices
can be found that use various kinds of homomorphic replacement. The most prominent ex-
ample are probably the well-known L systems (see Kari et al. [6] for a survey), but also
many types of grammars as, e. g., Wijngaarden grammars, macro grammars, Indian parallel
grammars or deterministic iteration grammars, use homomorphic replacement as a central
concept (cf. Albert and Wegner [1] and Bordihn et al. [3] and the references therein). Albert
and Wegner [1] and Angluin [2] introduced H-systems and pattern languages, respectively,
which both use homomorphic replacement in a more puristic way, without any grammar like

128 Markus L. Schmid

mechanisms. More recent models like pattern expressions (Câmpeanu and Yu [4]), synchro-
nized regular expressions (Della Penna et al. [8]) and EH-expressions (Bordihn et al. [3]) are
mainly inspired directly by REGEX.

The contribution of this paper is to investigate alternative possibilities to combine the
two most elementary components of REGEX, i. e., regular expressions and homomorphic
replacement, with the objective of reaching the expressive power of REGEX as close as pos-
sible, without exceeding it. Particularly challenging about REGEX is that due to the possible
nesting of referenced subexpression the concepts of regular expressions and homomorphic
replacement seem to be inherently entangled and there is no easy way to treat them sepa-
rately. We illustrate this with the example t := (1 a

∗)1 · (2 (b · \1)∗)2 · \2 · \1. The language
L(t) := {an(ban)m(ban)man | n,m≥ 0} cannot that easily be described in terms of a single
string with a homomorphic replacement rule, e. g., by the string xyyx, where x can be re-
placed by words from {an | n≥ 0}, and y by words of form {(ban)m | n,m≥ 0}, since then
we can obtain words an(ban

′
)m(ban

′
)man with n 6= n′. In fact, two steps of homomorphic

replacement seem necessary, i. e., we first replace y by words from {(bz)n | n≥ 0} and after
that we replace x and z by words from {an | n ≥ 0}, with the additional requirement that
x and z are substituted by the same word. More intuitively speaking, the nesting of refer-
enced subexpressions require iterated homomorphic replacement, but we also need to carry
on information from one step of replacement to the next one.

The concept of homomorphic replacement is covered best by pattern languages (see An-
gluin [2]). We combine patterns with regular expressions by first adding the alternation and
star operator to patterns and, furthermore, by letting their variables be typed by regular lan-
guages, i. e., the words variables are replaced with are from given regular sets. Then we
iterate this step by using this new class of languages again as types for variables and so on.
We also take a closer look at pattern expressions (see Câmpeanu and Yu [4]). In [4], many
examples are provided that show how to translate a REGEX into an equivalent pattern ex-
pression and vice versa. It is also stated that this is possible in general, but a formal proof
for this statement is not provided. In the present work we show that pattern expressions are
in fact much weaker than REGEX and they describe a proper subset of the class of REGEX
languages. These limits in expressive power are caused by the above described difficulties
due to the nesting of referenced subexpressions.

On the other hand, pattern expressions still describe an important and natural subclass
of REGEX languages, that has been independently defined in terms of other models and, as
shown in this work, also coincides with the class of languages resulting from the modification
of patterns described above. We then refine the way of how pattern expressions define lan-
guages in order to accommodate the nesting of referenced subexpressions and we show that
the thus obtained class of languages coincides with the class of languages given by REGEX
that do not contain a referenced subexpression under a star.

2. General Definitions

Let N := {1,2,3, . . .} and let N0 := N∪{0}. For an arbitrary alphabet A, a word (over A)
is a finite sequence of symbols from A, and ε stands for the empty word. The notation A+

denotes the set of all nonempty words over A, and A∗ :=A+∪{ε}. For the concatenation of

Inside the Class of REGEX Languages 129

two words w1,w2 we write w1 ·w2 or simply w1w2. We say that a word v ∈A∗ is a factor of
a word w ∈ A∗ if there are u1,u2 ∈ A∗ such that w = u1 ·v ·u2. The notation |K| stands for
the size of a set K or the length of a word K.

We use regular expression as they are commonly defined (see, e. g., Yu [10]). For the
alternation operations we use the symbol “|”. For any regular expression r, L(r) denotes
the language described by r and REG denotes the set of regular languages. Let Σ be a finite
alphabet of terminal symbols and let X := {x1,x2,x3, . . .} be a countably infinite set of vari-
ables with Σ∩X = ∅. For any word w ∈ (Σ∪X)∗, var(w) denotes the set of variables that
occur in w.

3. Patterns with Regular Operators and Types
In this section, we combine the pattern languages mentioned in Section 1. with regular lan-
guages and regular expressions.

Let PAT := {α | α ∈ (Σ∪X)+} and every α ∈ PAT is called a pattern. We always assume
that, for every i∈N, xi ∈ var(α) implies {x1,x2, . . . ,xi−1}⊆ var(α). For any alphabetsA,B,
a morphism is a function h : A∗→ B∗ that satisfies h(vw) = h(v)h(w) for all v,w ∈ A∗. A
morphism h : (Σ∪X)

∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ. For an
arbitrary class of languages L and a pattern α with |var(α)| =m, an L-type for α is a tuple
T := (Tx1 ,Tx2 , . . . ,Txm), where, for every i, 1 ≤ i ≤m, Txi ∈ L and Txi is called the type
language of (variable) xi. A substitution h satisfies T if and only if, for every i, 1≤ i≤m,
h(xi) ∈ Txi .

Definition 3.1 Let α ∈ PAT, let L be a class of languages and let T be an L-type for α. The
set LT (α) := {h(α) | h is a substitution that satisfies T } is the T -typed pattern language of
α. For any class of languages L, LL(PAT) := {LT (α) | α ∈ PAT, T is an L-type for α} is
the class of L-typed pattern languages.

In order to describe larger classes of REGEX languages by means of the pattern-based
formalism given in Definition 3.1, the next step could be to type the variables of patterns with
languages from LREG(PAT) instead of REG and then using the thus obtained languages again
as type languages and so on. However, this approach leads to a dead end:

Proposition 3.2 For any class of languages L, LL(PAT) = LLL(PAT)(PAT).

This observation brings us to the definition of the set of patterns with regular operators:
PATro := {α | α is a regular expression over (Σ∪X)}. In order to define the language given
by a pattern with regular operators, we extend the definition of types to patterns with regular
operators in the obvious way.

Definition 3.3 Let α∈ PATro and let T be a type for α. The T -typed pattern language of α is
defined by LT (α) :=

⋃
β∈L(α)LT (β). For any class of languages L, we define LL(PATro) :=

{LT (α) | α ∈ PATro,T is an L-type for α}.

Patterns with regular operators are also used in the definition of pattern expressions (see
[4] and Section 4.) and have been called regular patterns in [3].

130 Markus L. Schmid

It seems reasonable to assume that REG-typed patterns with regular operators are strictly
more powerful than REG-typed patterns without regular operators. In the following proposi-
tion, we formally prove this intuition.

Proposition 3.4 L{Σ∗}(PAT)⊂ LREG(PAT)⊂ LREG(PATro).

The invariance of typed patterns – represented by Proposition 3.2 – does not hold any-
more with respect to patterns with regular operators. Before we formally prove this claim,
we shall define an infinite hierarchy of classes of languages given by typed patterns with reg-
ular operators. Let Lro,0 := REG and, for every i ∈ N, we define Lro,i := LLro,i−1(PATro).
Furthermore, we define Lro,∞ =

⋃∞
i=0Lro,i.

It follows by definition, that the classes Lro,i, i ∈ N0, form a hierarchy and we strongly
conjecture that it is proper. However, here we only separate the first three levels of that
hierarchy.

Theorem 3.5 Lro,0 ⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ Lro,4 ⊆

4. Pattern Expressions
We now define pattern expressions as introduced by Câmpeanu and Yu [4], but we use a
slightly different notation.

Definition 4.1 A pattern expression is a tuple (x1 → r1,x2 → r2, . . . ,xn → rn), where, for
every i, 1≤ i≤ n, ri ∈ PATro and var(ri)⊆ {x1,x2, . . . ,xi−1}. The set of all pattern expres-
sions is denoted by PE.

In [4], the language of a pattern expression is defined in the following way.

Definition 4.2 Let p := (x1 → r1,x2 → r2, . . . ,xn → rn) be a pattern expression. We de-
fine Lp,x1 := L(r1) and, for every i, 2 ≤ i ≤ n, we define Lp,xi := LTi(ri), where Ti :=
(Lp,x1 ,Lp,x2 , . . . ,Lp,xi−1) is a type for ri. The language generated by p with respect to iter-
ated substitution is defined by Lit(p) := Lp,xn and Lit(PE) := {Lit(p) | p ∈ PE}.

The class of languages described by pattern expressions with respect to iterated substitu-
tion coincides with the class Lro,∞ of the previous section:

Theorem 4.3 Lro,∞ = Lit(PE).

In the following, we define an alternative way of how pattern expressions can describe
languages, i. e., instead of substituting the variables by words in an iterative way, we substitute
them uniformly.

Definition 4.4 Let p := (x1 → r1,x2 → r2, . . . ,xn → rn) ∈ PE. A word w ∈ Σ∗ is in the
language generated by p with respect to uniform substitution (Luni(p), for short) if and only
if there exists a substitution h such that h(xn) =w and, for every i, 1≤ i≤ n, there exists an
αi ∈ L(ri) with h(xi) = h(αi).

Inside the Class of REGEX Languages 131

For an arbitrary pattern expression p := (x1 → r1,x2 → r2, . . . ,xn→ rn), the language
Luni(p) can also be defined in a more constructive way. We first choose a word u ∈ L(r1)
and, for all i, 1 ≤ i ≤ n, if variable x1 occurs in ri, then we substitute all occurrences of x1
in ri by u. Then we delete the element x1→ r1 from the pattern expression. If we repeat this
step with respect to variables x2,x3, . . . ,xn−1, then we obtain a pattern expression of form
(xn→ r′n), where r′n is a regular expression over Σ. The language Luni(p) is the union of the
languages given by all these regular expression.

The language Lit(p) can be defined similarly. We first choose a word u1 ∈L(r1) and then
we substitute all occurrences of x1 in r2 by u1. After that, we choose a new word u2 ∈ L(r1)
and substitute all occurrences of x1 in r3 by u2 and so on until there are no more occurrences
of variable x1 in q and then we delete the element x1→ r1. Then this step is repeated with
respect to x2,x3, . . . ,xn−1.

The above considerations yield the following proposition:

Proposition 4.5 Let p := (x1 → r1,x2 → r2, . . . ,xm → rm) be a pattern expression. Then
Luni(p)⊆Lit(p) and if, for every i, j, 1≤ i < j ≤m, var(ri)∩var(rj) = ∅, then also Lit(p)⊆
Luni(p).

While it can be easily shown that every language given by a pattern expression with
respect to iterated substitution can also be defined by a pattern expression with respect to
uniform substitution, the question of whether or not, for every pattern expression p, we can
find a pattern expression p′ with Luni(p) =Lit(p

′), is not that easy to answer. It can be shown
that there are in fact languages that can be expressed by some pattern expression with respect
to uniform substitution, but not by any pattern expression with respect to iterated substitution,
which yields the main result of this section:

Theorem 4.6 Lit(PE)⊂ Luni(PE).

We mention that in Bordihn et al. [3], it has been shown that H∗(REG,REG), a class of
languages given by an iterated version of H-systems (see Albert and Wegner [1] and Bordihn
et al. [3]), also coincides with Lit(PE), which implies Lro,∞ = Lit(PE) =H∗(REG,REG)⊂
Luni(PE). Next, we compare the class Luni(PE) to the class of REGEX languages.

A REGEX r is star-free initialised if and only if every referenced subexpression does
not occur under a star. Let REGEXsfi be the set of REGEX that are star-free initialised. It
can be shown that the class of languages described by pattern expressions with respect to
uniform substitution coincides with the class of languages given by regular expressions that
are star-free initialised:

Theorem 4.7 L(REGEXsfi) = Luni(PE).

In Sections 3 and 4, we have investigated several proper subclasses of the class of REGEX
languages and their mutual relations. We conclude this section, by summarising these results:

L{Σ∗}(PAT)⊂ LREG(PAT)⊂ Lro,1 ⊂ Lro,2 ⊆ Lro,3 ⊆ . . .⊆ Lro,∞ =

H∗(REG,REG) = Lit(PE)⊂ Luni(PE) = L(REGEXsfi)⊆ L(REGEX) .

132 Markus L. Schmid

References
[1] J. ALBERT, L. WEGNER, Languages with homomorphic replacements. Theoretical Computer

Science 16 (1981), 291–305.

[2] D. ANGLUIN, Finding patterns common to a set of strings. In: Proc. 11th Annual ACM Symposium
on Theory of Computing. 1979, 130–141.

[3] H. BORDIHN, J. DASSOW, M. HOLZER, Extending regular expressions with homomorphic re-
placement. RAIRO Theoretical Informatics and Applications 44 (2010), 229–255.

[4] C. CÂMPEANU, S. YU, Pattern expressions and pattern automata. Information Processing Letters
92 (2004), 267–274.

[5] J. E. F. FRIEDL, Mastering Regular Expressions. Third edition, O’Reilly, Sebastopol, CA, 2006.

[6] L. KARI, G. ROZENBERG, A. SALOMAA, L systems. In: G. ROZENBERG, A. SALOMAA (eds.),
Handbook of Formal Languages. 1. chapter 5, Springer, 1997, 253–328.

[7] S. KLEENE, Representation of events in nerve nets and finite automata. In: C. SHANNON, J. MC-
CARTHY (eds.), Automata Studies. Annals of Mathematics Studies 34, Princeton University Press,
1956, 3–41.

[8] G. D. PENNA, B. INTRIGILA, E. TRONCI, M. V. ZILLI, Synchronized regular expressions. Acta
Informatica 39 (2003), 31–70.

[9] K. THOMPSON, Programming Techniques: Regular expression search algorithm. Communica-
tions of the ACM 11 (1968).

[10] S. YU, Regular Languages. In: G. ROZENBERG, A. SALOMAA (eds.), Handbook of Formal
Languages. 1. chapter 2, Springer, 1997, 41–110.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 133 – 138

Closure Properties of Parallel Communicating
Restarting Automata Systems

Marcel Vollweiler(A)

(A)Fachbereich Elektrotechnik/Informatik
Universität Kassel, 34109 Kassel, Germany

vollweiler@theory.informatik.uni-kassel.de

Abstract

Systems of parallel communicating restarting automata were announced in [4] and
introduced in [13, 14]. Within these systems restarting automata work together in a par-
allel way with a high degree of independence. For this, a communication protocol is used
for transmitting messages between the automata. Depending on the type of restarting
automata that are used as the components of the system, various language classes were
characterized. Here, closure properties are presented for these language classes, and it
is shown that three of them, namely L(PC-RLWW), L(PC-RRWW), and L(PC-RWW)
are actually so-called AFLs (abstract families of languages).

1. Introduction

On the one hand, systems of parallel communicating components were considered for several
formal language devices, e.g. parallel communicating grammar systems [10, 1], parallel com-
municating finite automata systems [8], parallel communicating pushdown automata systems
[2], and parallel communicating Watson-Crick automata systems [3]. The basic motivation
for this kind of systems is the classroom model that is a problem solving strategy where sev-
eral agents work together in a parallel manner and, although they work independently of each
other, they are allowed to transmit messages by communication.

On the other hand, restarting automata were introduced in [6] as a device to model the
linguistic technique of analysis by reduction that is used to check the syntactical correctness
of sentences of a natural language with a free word order [11]. For a comprehensive overview
and further details of restarting automata the reader is referred to, e.g., [9].

In systems of parallel communicating restarting automata both concepts are combined,
i.e. several restarting automata work together in a parallel way to accept a language. In [13]
and [14] first results on these systems and the corresponding language classes were shown,
e.g. on the computational power and centralization. Here, results on closure properties of
the language classes that are characterized by parallel communicating restarting automata
systems are presented.

134 Marcel Vollweiler

2. Parallel communicating restarting automata systems

A restarting automaton consists of a finite control and a flexible tape that initially contains
the input enclosed by the left and the right sentinels ¢ and $, respectively. To read the tape
content a window of a specified size is used. Each computation of an automaton begins in
the initial state and the window is positioned on the left end of the tape. Now, the automaton
behaves as follows: First, it can move the window several steps to the right and to the left.
Then, a rewrite operation is executed, whereby the currently read tape content is replaced by
a shorter word. The sentinels are not allowed to be removed. Thereafter, the window can be
moved again and finally a restart operation follows. That means, the finite control is reset
into the initial state and the window is set to its initial position on the left end of the tape.
This sequence of operations is called a cycle and can be repeated until either the automaton
reaches an accepting configuration (denoted by ‘Accept’) by applying an accept step or it
gets stuck. The language that is accepted by a restarting automaton consists of all words
over a specified input alphabet for which there exists a computation such that the automaton
reaches the accepting configuration.

The most general type of a restarting automaton (as described above) is called RLWW-
automaton. If the window is not allowed to be moved to the left, then the automaton is of type
RRWW. In case of an RRWW-automaton that has to perform a restart operation immediately
after a rewrite operation, it is an RWW-automaton. Moreover, if no auxiliary symbols are
allowed to be used, then the automaton is of type RLW, RRW, or RW. And finally, if the
currently read tape content is only allowed to be rewritten by a scattered subword, i.e. only
symbols are allowed to be removed, then it is of type RL, RR, or R. For the purpose of
simplicity the set of all mentioned types of restarting automata is denoted by T . The set of
all one-way restarting automata is defined by TR = {RRWW,RRW,RR,RWW,RW,R}. In
general, a restarting automaton is nondeterministic. For deterministic automata the prefix
‘det-’ is used. In some situations the prefix ‘(det-)’ (in brackets) is used to emphasize that it
does not matter whether the automaton is deterministic or not.

A parallel communicating restarting automata system, PCRA system for short, is a finite
collection of restarting automata: M = (M1,M2, . . . ,Mn), whereby n is the degree of the
system and Mi = (Qi,Σ,Γi,¢,$, qi,ki, δi) for each i ∈ {1, . . . ,n}. Here, for all i, 1≤ i≤ n,
Qi is the set of states, Σ is the input alphabet, Γi is the tape alphabet, ¢ and $ are the left and
right sentinels of the tape, qi is the initial state, ki is the window size, and δi is the transition
mapping. The automata M1,M2, . . . ,Mn are also called the components of the system.

A PCRA system works as follows. Initially, each component contains the input word
on its tape, starts the computation in its initial state, and behaves like a usual restarting au-
tomaton. At one point of the computation a component Mi may need some information from
another component Mj . This is signalized by reaching a request state reqjd, whereby d is a
local information that is not transmitted by the component but can be kept during the com-
munication. On the other hand, a component may have some information that it wants to
transmit to another particular component. For this purpose, it can switch into a response state
resid′,c, where c denotes the message to be transmitted. In the communication protocol that
is used here, all messages are strings of constant length. A communication does only take
place, if both communication partners reach the corresponding request and response state,
respectively. However, it is not important when they reach these states: as long as only one

Closure Properties of Parallel Communicating Restarting Automata Systems 135

of the two communication partners reaches a request or response state, it just waits for the
answer of the other one. In particular, there is no explicit synchronization like a global clock
that is used in other definitions of PC systems (a global clock is a mechanism that forces all
components to execute exactly one computation step in each time unit; such mechanism is
avoided for PCRA systems, since it can be seen as a kind of implicit communication). If
the communication partner does not reach the corresponding communication state, then the
component is blocked for the rest of the system’s computation (the system just does not no-
tice this and continues its computation). Otherwise, if both communication partners reach
corresponding communication states, then the communication step can be executed. For this,
the requesting component Mi is set from state reqjd into the receive state recjd,c that contains
the transmitted message (because it has received the requested information from Mj) and the
responding component Mj is set from the state resid′,c into the acknowledge state ackid′,c (the
receipt of the message is acknowledged). Afterwards, both components continue their local
computations.

Formally, for two configurations K = (κ1, . . . ,κn) and K ′ = (κ′1, . . . ,κ
′
n), whereby κi

and κ′i are the current configurations of the components, a computation step of the system
is denoted by ` and is defined as follows: K `K ′ holds if and only if one of the following
conditions holds (uivi and ujvj are the current tape contents of Mi and Mj , respectively)

1. κi `Mi
κ′i (a local computation step)

2. ∃j ∈ {1,2, . . . ,n}\{i} : κi = uireq
j
di
vi, κj = ujresidj ,cvj ,

κ′i = uirec
j
di,c

vi, κ
′
j = ujackidj ,cvj (a communication)

3. ∃j ∈ {1,2, . . . ,n}\{i} : κi = uires
j
di,c

vi, κj = ujreqidjvj ,
κ′i = uiack

j
di,c

vi, κ
′
j = ujrecidj ,cvj (a communication)

4. κi = κ′i and no local operation (MVR, MVL, rewrite, restart) or communication of Mi

is possible (Mi waits).

Observe that especially the fourth condition provides the idea of a non-synchronized be-
haviour, since a component can wait arbitrarily long for the execution of a communication
step. The reflexive and transitive closure of ` is denoted by `∗ and describes a computation.
Then, the language that is accepted by a systemM is defined as

L(M) = {w ∈ Σ∗ | (q1¢w$, q2¢w$, . . . , qn¢w$) `∗ (κ1,κ2, . . . ,κn),
{κ1,κ2, . . . ,κn}∩{Accept} 6= ∅}.

That means, a system accepts all words for which at least one of the components reaches the
accepting configuration; it does not matter which one.

If the components are of type X, X∈T , then the system is called of type PC-X. In general,
a PCRA system is nondeterministic. If all components are deterministic and of type X, then
the system is also called deterministic and of type det-PC-X. The classes of all languages
that are accepted by any PCRA system of type PC-X or det-PC-X is denoted by L(PC-X) or
L(det-PC-X), respectively.

A PCRA system is called centralized if each component is only allowed to communicate
with the first (master) component. In [13, 14] it is shown that centralized PCRA systems have

136 Marcel Vollweiler

the same computational power as non-centralized systems. Moreover, the centralized system
that can be effectively constructed from a non-centralized system accepts if and only if its
first component accepts.

3. Closure properties
The following table summarizes the closure properties that we have established so far. The
first column contains the language classes that are mainly divided into deterministic and non-
deterministic classes and classes with auxiliary symbols and those without. The meaning of
the operations are from left to right: union, intersection, intersection with a regular language,
complementation, marked product, product, Kleene closure, positive closure, application of
arbitrary homomorphisms, application of ε-free (non-erasing) homomorphisms, and inverse
homomorphisms. Thereby, ‘+’ means that the language classes are closed under the particular
operation, ‘-’ means they are not closed, and in the cases of ‘?’ it is still open.

∪ ∩ ∩REG
c ·# · ∗ + h hε h−1

L(det-PC-R(R)(W)) + + + + + ? ? ? − ? ?
L(det-PC-RL(W)) + + + + + ? ? ? − ? ?
L(det-PC-R(R)WW) + + + + + ? ? ? − ? +
L(det-PC-RLWW) + + + + + ? ? ? − ? +
L(PC-R(R)(W)) + + + ? + ? ? ? − ? ?
L(PC-RL(W)) + + + ? + ? ? ? − ? ?
L(PC-R(R)WW) + + + ? + + + + − + +
L(PC-RLWW) + + + ? + + + + − + +

Most of the results are obtained by straightforward constructions. Whereas the closure
under the first three operations result more or less from the definition of PCRA systems and
the computational power of individual restarting automata (even the weakest types of restart-
ing automata accept all regular languages), the closure under complementation is based on
the bounded number of different configurations of a PCRA system and the fact that, when-
ever a deterministic system reaches a configuration twice, then it is in a computation loop
(and cannot accept the input anymore).

PCRA systems that accept the product of two languages, the Kleene closure, or the pos-
itive closure can work in two main phases. First, a factorization of the input is guessed
nondeterministically and stored with markers on the tape (for the marked product this step is
omitted). Second, the systems for the given languages are simulated on the specified factors
and the markers are interpreted as one of the sentinels. Within the first phase all components
move their windows simultaneously and write the markers at the same positions. For this,
communication and centralization is used. Moreover, setting a marker on the tape means to
rewrite two tape symbols because of the length reducing property of restarting automata. The
rewritten symbols can be stored within the finite control of the according components. Since
it can be shown that the nonforgetting property (i.e. the automaton can change into any state

Closure Properties of Parallel Communicating Restarting Automata Systems 137

in a restart operation instead of the initial state only) is no advantage for PCRA systems,
this can be used to keep the symbols in the finite control even during a restart operation of a
component.

To show the closure under non-erasing and inverse homomorphisms an additional prop-
erty is used: a PCRA system can be defined that behaves exactly like an individual compo-
nent, merges the tapes of its components to one common tape and thus increases the size
of the tape by a constant factor. Thus, subsystems can be defined such that each subsystem
represents one component with a bigger tape. That can be used to translate an input into its
image or preimage according to a given homomorphism. None of the language classes above
is closed under arbitrary homomorphisms, that means homomorphisms that map symbols to
the empty word. This follows immediately from the well-known fact that each recursively
enumerable language L can be represented by L = h(L1 ∩L2), whereby L1 and L2 are de-
terministic context-free languages and h is an arbitrary homomorphism [5]. On the one hand,
even individual restarting automata of the weakest types accept all deterministic context-free
languages [7] and all language classes of PCRA systems are closed under intersection. Thus,
if for any type of PCRA systems the corresponding language class would be closed under
arbitrary homomorphisms, then this kind of PCRA systems can accept all recursively enu-
merable languages. On the other hand, the available work space of a PCRA system is linear
bounded, i.e. each language of any PCRA system is included in the set of context-sensitive
languages that is again a proper subset of the recursively enumerable languages. Hence, we
have a contradiction.

A consequence of the obtained closure properties is that the three language classes L(PC-
RLWW), L(PC-RRWW), and L(PC-RWW) are so-called AFLs (abstract families of lan-
guages) but they are not full AFLs [12].

References
[1] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, G. PĂUN (eds.), Grammar Systems: A Gram-

matical Approach to Distribution and Cooperation. Gordon and Breach Science Publishers, Inc.,
Newark, NJ, USA, 1994.

[2] E. CSUHAJ-VARJÚ, C. MARTÍN-VIDE, V. MITRANA, G. VASZIL, Parallel Communicating
Pushdown Automata Systems. International Journal of Foundations of Computer Science 11
(2000) 4, 631–650.

[3] E. CZEIZLER, E. CZEIZLER, Parallel Communicating Watson-Crick Automata Systems. In:
Z. ÉSIK, Z. FÜLÖP (eds.), Automata and Formal Languages, 11th International Conference,
AFL 2005, Dobogókő, Hungary, May 17-20. Institute of Informatics, University of Szeged, 2005,
83–96.

[4] M. GOEHRING, PC-Systems of Restarting Automata. In: J. MIELKE, L. STAIGER, R. WINTER

(eds.), Theorietag Automaten und Formale Sprachen 2009. Universität Halle-Wittenberg, Institut
für Informatik, 2009, 26–27. Technical Report 2009/03.

[5] M. A. HARRISON, Introduction to Formal Language Theory. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1978.

[6] P. JANČAR, F. MRÁZ, M. PLÁTEK, J. VOGEL, Restarting Automata. In: H. REICHEL (ed.),
Fundamentals of Computation Theory. Lecture Notes in Computer Science 965, Springer Berlin /
Heidelberg, 1995, 283–292.

138 Marcel Vollweiler

[7] P. JANČAR, F. MRÁZ, M. PLÁTEK, J. VOGEL, On Restarting Automata with Rewriting. In:
G. PĂUN, A. SALOMAA (eds.), New Trends in Formal Languages. Lecture Notes in Computer
Science 1218, Springer Berlin / Heidelberg, 1997, 119–136.

[8] C. MARTÍN-VIDE, A. MATEESCU, V. MITRANA, Parallel Finite Automata Systems Communi-
cating by States. International Journal of Foundations of Computer Science 13 (2002) 5, 733–749.

[9] F. OTTO, Restarting Automata. In: Z. ÉSIK, C. MARTÍN-VIDE, V. MITRANA (eds.), Recent Ad-
vances in Formal Languages and Applications. Studies in Computational Intelligence 25, Springer
Berlin / Heidelberg, 2006, 269–303.

[10] G. PĂUN, L. SANTEAN, Parallel communicating grammar systems: the regular case. Analele
Universitatii din Bucuresti, Seria matematica-informatica 2 (1989), 55–63.

[11] M. PLÁTEK, M. LOPATKOVÁ, K. OLIVA, Restarting Automata: Motivations and Applications.
In: M. HOLZER (ed.), Workshop ‘Petrinetze’ and 13. Theorietag ‘Formale Sprachen und Auto-
maten’. Technische Universität München, 2003, 90–96.

[12] G. ROZENBERG, A. SALOMAA (eds.), Handbook of Formal Languages, vol. 1: Word, Language,
Grammar. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[13] M. VOLLWEILER, Centralized Versus Non-Centralized Parallel Communicating Systems of
Restarting Automata. In: F. OTTO, N. HUNDESHAGEN, M. VOLLWEILER (eds.), 20. Theorie-
tag Automaten und Formale Sprachen 2010. Number 2010/3 in Kasseler Informatikschriften,
Fachbereich Elektrotechnik / Informatik, Universität Kassel, 2010, 130–135. http://nbn-
resolving.de/urn:nbn:de:hebis:34-2010110534894.

[14] M. VOLLWEILER, F. OTTO, Systems of Parallel Communicating Restarting Automata. In:
R. FREUND, M. HOLZER, B. TRUTHE, U. ULTES-NITSCHE (eds.), 4th Workshop on Non-
Classical Models for Automata and Applications. Österreichische Computer Gesellschaft, 2012.

F. Mráz (Ed.): Theorietag 2012, Prague, 3. – 5.10.2012
Faculty of Mathematics and Physics, Charles University in Prague pp. 139 – 142

Regular Ideal Languages
and Their Boolean Combinations

Franz Jahn Manfred Kufleitner Alexander Lauser

FMI, University of Stuttgart, Germany

jahnfz@studi.informatik.uni-stuttgart.de
{kufleitner, lauser}@fmi.uni-stuttgart.de

Abstract

We consider ideals and Boolean combinations of ideals. For the regular languages
within these classes we give expressively complete automaton models. In addition, we
consider general properties of regular ideals and their Boolean combinations. These
properties include effective algebraic characterizations and lattice identities.

In the main part of this extended abstract, we consider the following deterministic
one-way automaton models: unions of flip automata, weak automata, and Staiger-Wagner
automata. We show that each of these models is expressively complete for regular Boolean
combination of right ideals. Right ideals over finite words resemble the open sets in the
Cantor topology over infinite words. An omega-regular language is a Boolean combination
of open sets if and only if it is recognizable by a deterministic Staiger-Wagner automaton;
our result can be seen as a finitary version of this classical theorem. In addition, we also
consider the canonical automaton models for right ideals, prefix-closed languages, and
factorial languages.

Finally, we consider a two-way automaton model which is known to be expressively
complete for two-variable first-order logic. We show that the above concepts can be
adapted to these two-way automata such that the resulting languages are the right ideals
(resp. prefix-closed languages, resp. Boolean combinations of right ideals) definable in
two-variable first-order logic.

The results of this extended abstract were already presented at CIAA 2012, cf. [3].

The Cantor topology over infinite words is an important concept for classifying languages
over infinite words. For example, an ω-regular language is deterministic if and only if it is
a countable intersection of open sets, cf. [11, Remark 5.1]. There are many other properties
of ω-languages which can be described using the Cantor topology, see e.g. [7, 8]. Ideals
are the finitary version of open sets in the Cantor topology. A subset P of a monoid M is
a right (resp. left, two-sided) ideal if PM ⊆ P (resp. MP ⊆ P, MPM ⊆ P). In particular, a
language L⊆ A∗ is a right ideal if LA∗ ⊆ L. A filter is the complement of an ideal. Thus over
finite words, a language L⊆ A∗ is a right filter if and only if it is prefix-closed, i.e., if uv ∈ L
implies u ∈ L. Prefix-closed languages correspond to closed sets in the Cantor topology. A
language L⊆ A∗ is a two-sided filter if and only if it is factorial (also known as factor-closed or
infix-closed), i.e., if uvw ∈ L implies v ∈ L. Our first series of results gives effective algebraic

† The last two authors were supported by the German Research Foundation (DFG) under grant DI 435/5-1.

140 Franz Jahn, Manfred Kufleitner, Alexander Lauser

characterizations of right (resp. left, two-sided) ideal languages and of Boolean combinations
of such languages. In addition, we give lattice identities for each of the resulting language
classes. As a byproduct, we show that a language is both regular and a Boolean combination
of right (resp. left, two-sided) ideals if and only if it is a Boolean combination of regular right
(resp. left, two-sided) ideals, i.e., if I is the class of right (resp. left, two-sided) ideals and REG
is the class of regular languages, then REG∩BI = B(REG∩ I). Here, B denotes the Boolean
closure.

The second contribution consists of expressively complete (one-way) automaton models
for right ideals, prefix-closed languages, factorial languages, and Boolean combinations of
right ideals. The results concerning ideals and closed languages are straightforward and stated
here only to draw a more complete picture. Our main original contribution are automaton
models for regular Boolean combinations of right ideals. We always assume that every state in
an automaton is reachable from some initial state, i.e., all automata in this paper are accessible.

• A flip automaton is an automaton with no transitions from final states to non-final states,
i.e., it “flips” at most once from a non-final to a final state. Consequently, every minimal
complete flip automaton has at most one final state which has a self-loop for each letter
of the alphabet. Paz and Peleg have shown that if a language L is recognized by a
complete deterministic automaton A , then L is a right ideal if and only if A is a flip
automaton [6]. A language is a regular Boolean combination of right ideals if and only
if it is recognized by a union of flip automata (which do not have to be complete).

• An automaton is fully accepting if all states are final. A word u is rejected in a fully
accepting automaton A if and only if there is no u-labeled path in A which starts in
an initial state. Nondeterministic fully accepting automata are expressively complete
for prefix-closed languages. Moreover, if a language L is recognized by a deterministic
trim automaton A , then L is prefix-closed if and only if A is fully accepting.

• A path automaton is an automaton A such that all states are both initial and final, i.e.,
a word u is accepted by A if there exists a u-labeled path in A . Both deterministic
and nondeterministic path automata recognize exactly the class of regular factorial
languages. This characterization can be implicitly found in the work of Avgustinovich
and Frid [1].

• An automaton is weak if in each strongly connected component either all states are final
or all states are non-final. Any run of a weak automaton flips only a bounded number of
times between final and non-final states. Nondeterministic weak automata can recognize
all regular languages. On the other hand, if a language L is recognized by a deterministic
automaton A , then L is a Boolean combination of right ideals if and only if A is weak.
Weak automata have been introduced by Muller, Saoudi, and Schupp [5].

• Deterministic Staiger-Wagner automata over infinite words have been used to character-
ize ω-languages L⊆ Aω such that both L and Aω \L are deterministic [9]. Acceptance
of a run in a Staiger-Wagner automaton only depends on the set of states visited by the
run (but not on their order or their number of occurrences). We show that, over finite
words, deterministic Staiger-Wagner automata are expressively complete for Boolean
combinations of right ideals. In particular, deterministic Staiger-Wagner automata and
deterministic weak automata accept the same class of languages.

Regular Ideal Languages and Their Boolean Combinations 141

We note that flip automata, fully accepting automata, and weak automata yield effective
characterizations of the respective language classes. For example, in order to check whether a
deterministic automaton A recognizes a Boolean combination of right ideals, it suffices to test
if A is weak. Moreover, the above automaton models can easily be applied to subclasses of
automata such as counter-free automata [4]. This immediately yields results of the following
kind: A regular language L is both star-free and a Boolean combination of right ideals if and
only if its minimal automaton is weak and counter-free.

For some classes of languages it is more adequate to use two-way automata. The relation
between two-way automata and ideals (resp. closed languages, Boolean combinations of ideals)
is more complex than for one-way automata. In the last section, we consider deterministic
partially ordered two-way automata (po2dfa). In a partially ordered automaton, the transition
relation induces a partial ordering of the states, i.e., in each run of a partially ordered automaton,
no state is re-entered once it is left. Partially ordered automata are also known as very weak,
1-weak, or linear automata. We give restrictions of po2dfa’s which define the right ideals (resp.
prefix-closed languages, Boolean combinations of right ideals) inside the po2dfa-recognizable
languages. The class of languages recognized by po2dfa has a huge number of equivalent
characterizations; these include the variety DA of finite monoids, two-variable first-order logic,
unary temporal logic, unambiguous polynomials, and rankers; see e.g. [10, 2]. Some of these
characterizations admit natural restrictions which are expressively complete for their ideal
(resp. prefix-closed, Boolean combination of ideals) counterparts. We introduce one-pass flip
po2dfa (resp. one-pass fully accepting po2dfa, one-pass po2dfa) as expressively complete
automaton models for right ideals (resp. prefix-closed languages, Boolean combinations of
right ideals) inside the class of po2dfa-recognizable languages. Here, a two-way automaton
is one-pass if acceptance of the input depends only on the state of the automaton which
encounters the right end marker for the first time. The notions of flip, fully accepting, and
weak two-way automata are defined similarly to the one-way case. The main challenge for
each of the above automaton models is to show closure under union and intersection since
standard techniques, such as sequentially executing one automaton after the other, cannot be
applied. As a complementary result we have that weak one-pass two-way dfa’s have the same
expressive power as their one-way counterparts, i.e., recognize regular Boolean combinations
of right ideals.

References
[1] S. V. AVGUSTINOVICH, A. E. FRID, Canonical decomposition of a regular factorial language. In:

D. GRIGORIEV (ed.), CSR 2006, vol. 3967 of LNCS, pp. 18–22. Springer, 2006.
[2] V. DIEKERT, P. GASTIN, M. KUFLEITNER, A survey on small fragments of first-order logic over

finite words. Int. J. Found. Comput. Sci., 19(3):513–548, 2008.
[3] F. JAHN, M. KUFLEITNER, A. LAUSER, Regular ideal languages and their Boolean combinations.

In: CIAA 2012, vol. 7381 of LNCS, pp. 205–216. Springer, 2012. Full version available on-line
under http://arxiv.org/abs/1102.5013.

[4] R. MCNAUGHTON, S. PAPERT, Counter-Free Automata. The MIT Press, 1971.
[5] D. E. MULLER, A. SAOUDI, P. E. SCHUPP, Alternating automata, the weak monadic theory

of the tree, and its complexity. In: L. KOTT (ed.), ICALP 1986, vol. 226 of LNCS, pp. 275–283.
Springer, 1986.

142 Franz Jahn, Manfred Kufleitner, Alexander Lauser

[6] A. PAZ, B. PELEG, Ultimate-definite and symmetric-definite events and automata. J. Assoc.
Comput. Mach., 12(3):399–410, 1965.

[7] D. PERRIN, J.-É. PIN. Infinite words, vol. 141 of Pure and Applied Mathematics. Elsevier, 2004.
[8] L. STAIGER, ω-languages. In: A. SALOMAA, G. ROZENBERG (eds.), Handbook of Formal

Languages, vol. 3, pp. 339–387. Springer, 1997.
[9] L. STAIGER, K. W. WAGNER, Automatentheoretische und automatenfreie Charakterisierungen

topologischer Klassen regulärer Folgenmengen. Elektron. Inform.-verarb. Kybernetik, 10(7):379–
392, 1974.

[10] P. TESSON, D. THÉRIEN, Diamonds are forever: The variety DA. In: GRACINDA GOMES (ed.) et
al., Semigroups, Algorithms, Automata and Languages 2001, pp. 475–500. World Scientific, 2002.

[11] W. THOMAS, Automata on infinite objects. In: J. VAN LEEUWEN (ed.), Handbook of Theoretical
Computer Science, ch. 4, pp. 133–191. Elsevier, 1990.

143

Author Index
A
Alhazov, Artiom . 27

B
Barth, Stephan . 33
Braune, Fabienne .37
Büchse, Matthias . 41

C
Černo, Peter . 109

D
Dassow, Jürgen . 45

F
Freund, Rudolf . 27
Freydenberger, Dominik D. 51

G
Gawrychowski, Paweł 57

H
Heikenwälder, Hilbert 27
Holub, Jan . 1
Holzer, Markus . 61, 65

J
Jahn, Franz . 139
Jakobi, Sebastian 61, 65
Jančar, Petr . 3

K
Kuboň, Vladislav . 71
Kufleitner, Manfred 139
Kuske, Dietrich . 77
Kutrib, Martin . 79, 85
Kötzing, Timo . 51

L
Lauser, Alexander . 139
Lischke, Gerhard . 91
Lopatková, Markéta 71

M
Malcher, Andreas . 79

Maletti, Andreas . 37
Manea, Florin 45, 57, 97, 103
Meckel, Katja . 85
Mercaş, Robert .57
Mercaş, Robert .45
Mráz, František 109, 121
Müller, Mike .97

N
Nowotka, Dirk . 57, 97

O
Oliva, Karel . 15
Oswald, Marion . 27
Otto, Friedrich . 109

P
Plátek, Martin . 71, 115
Procházka, Martin . 115
Průša, Daniel . 121

Q
Quernheim, Daniel . 37

R
Rogozhin, Yurii . 27

S
Schmid, Markus L. 127
Seemann, Nina . 37
Sergey Verlan . 27

T
Tiseanu, Cătălin . 57
Truthe, Bianca . 103

V
Vogler, Heiko . 17
Vollweiler, Marcel .133

W
Wendlandt, Matthias 79, 85

Z
Žabokrtský, Zdeněk 21

22ND THEORIETAG
AUTOMATA AND FORMAL LANGUAGES

OCTOBER 3–5, 2012, PRAGUE
PROCEEDINGS

František Mráz (Ed.)

Published by
MATFYZPRESS
publishing house

of the Faculty of Mathematics And Physics
Charles University in Prague

Sokolovská 83, CZ – 186 75 Praha 8
as the 415. publication

This book was prepared from input files supplied by the authors. No additional corrections
of the included articles were made by the editor. This volume was typeset using LATEX.

Printed by Reproduction center UK MFF
Sokolovská 83, CZ – 186 75 Praha 8

Prague 2012

ISBN 978-80-7378-221-4

