Multimedia Learning Variables

Cyril Brom, Tereza Hannemann Charles University Faculty of Mathematics and Physics Advanced Multimedia Learning Laboratory

<u>brom@ksvi.mff.cuni.cz</u> <u>hannemann@ksvi.mff.cuni.cz</u> <u>ksvi.mff.cuni.cz/amulab</u>

Type of variables I.

- Manipulated variable
- Dependent (outcome) variable
- Control variable
- Manipulation check variable
- Mediating variable
- Moderating variable

Type of variables II. Objective knowledge outcomes biofeedback eye tracking

- •••
- Subjective
 - self-reports

Theoretical model

- Cognitive theory of multimedia learning (Mayer, 2009; based on Miller, 1956; Baddeley, 1986; Paivio, 1986; Sweller, 1999)
 - dual-channel
 - limited capacity
 - active learning, knowledge construction
 - selecting, organizing, integrating

MOTIVATION (Moreno, 2005)

- think-aloud
- retrospective judgement
- •••

A hypothetical affectivemotivational design principle

• Do this [...miracle...] and learners' affectivemotivational states and **consequently** learning outcomes will be enhanced

A hypothetical affectivemotivational design principle

 Do this [...miracle...] and learners' affectivemotivational states and consequently learning outcomes will be enhanced

A hypothetical affectivemotivational design principle

• Do this [...miracle...] and learners' affectivemotivational states and **consequently** learning outcomes will be enhanced

A hypothetical affectivemotivational design principle

• Do this [...miracle...] and learners' affectivemotivational states and **consequently** learning outcomes will be enhanced

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 intrinsic vs. extraneous load

cognitive resources

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load
 - cognitive

cognitive

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 intrinsic vs. extraneous load

cognitive

cognitive

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load

cognitive resources

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011] • intrinsic vs. extraneous load

cognitive load

cognitive resources

Theory

- Cognitive-Affective Theory of Learning from Media [Moreno, 2005]
- Cognitive Load Theory [Sweller et al., 2011; Kalyuga, 2011]
 - intrinsic vs. extraneous load

Possible principles

...and by the way, Edison was a kind of patent troll...

• Extraneous details [Garner et al., 1992; Rey, 2012]

augmented

Possible

[Mayer & Estrella, 2014; Stárková et al., in prep.]

principles

- Anthropomorphisms, color
 [Um et al., 2012; Münchow, et al., 2017; Plass & Kaplan, 2015]
- Personalization principle [Ginns et al., 2013]

...as raindrops and ice crystals fall through <u>[your]</u> the cloud, they...

augmented

normal

Possible

principles

- Narrative
- Tutor/agent image
- Prosody
- Competition
- • •

not enough data

mixed results

Problem statement

- "Affective-motivational" miracles unknown
- No approach consistently elevates **both positive** affective-motivational factors and learning outcomes

- 90-min long instructional simulation
- Beer vs. Citrate substrate (i.e., a bacterial growth medium)

VS.

Manipulation

- Minimalistic change
 - The same learning process
- ~25 word/short phrases replacements
 - yeast \rightarrow fungal culture
- acetone \rightarrow toxin

Manipulation – graphics

final product: beer in bottles

undistit and book	rychlost	0.11
vycisut zariżeni	POMALU	RYCHLE

4

• Two superficial changes to graphics

Hypotheses

Participants

- University (age ~ 24 years)
- Psychology, computer science, new media
- N = 30 + 35
- Low prior knowledge learners

affect/motivation	learning outcomes	

Variable	Citrate substrate	Beer brewing	d
positive affect [10 – 50]	28.7 (7.21)	32.1 (6.48)	0.44+
flow [21 – 74]	53.4 (6.83)	57.3 (7.86)	0.55*
learning involvement [8 – 56]	42.1 (6.88)	46.9 (5.32)	0.70**
enjoyment [I – 6]	4.83 (0.69)	5.40 (0.50)	0.87**
retention immediate [0 – 31]	22.8 (5.05)	24.9 (3.99)	0.48+
retention delayed [0 – 31]	13.4 (6.08)	18.0 (6.71)	0.66*
transfer immediate [Z-scores]	0.17 (0.93)	0.67 (0.84)	0.46+
transfer delayed [Z-scores]	-0.70 (0.86)	-0.08 (0.87)	0.62*
+ p < .1 * p < .05 ** p < .01			

Results – mediation

- Immediate test scores
 - Yes:
 - Learning involvement (p < .01)
 - Flow (p ~ .05)
 - **No:**
 - Positive affect

[disclaimer: my experience]

- Enjoyment
- Delayed test scores
 - The same immediate test scores
 - But after covarying out initial learning
 - No mediation detected

Knowledge

- Mental models (e.g., Jones et al.,2011, Ecol Soc)
- Retention
- Transfer
- Cf. perceived learning

Retention Test

Please write down an explanation of how lightning works.

Types of transfer test questions

- Redesign
- Troubleshooting
- Prediction
- Conceptual (Mayer 2009)

(Moreno & Mayer, 2000, J Edu Psy)

Table 2.1. Retention and Transfer Questions for the Lightning Lesson

Retention Test

Please write down an explanation of how lightning works. Transfer Test What could you do to decrease the intensity of lightning? Suppose you see clouds in the sky, but no lightning. Why not? What does air temperature have to do with lightning? What causes lightning?

rease write down an explanation of now lightning works.	
Transfer Test	
What could you do to decrease the intensity of lightning?	
Suppose you see clouds in the sky, but no lightning. Why not	?
What does air temperature have to do with lightning?	
What causes lightning?	(Mayer 2009)

Grading

- Retention
 - contains key ideas (e.g., | pt ~ | screen)
 - sentences need not be word-for-word
 - terminologie must be exact
- Transfer no terminology needed

Transfer: idea units

- What does air temperature has to do with lightning? Write down **all possibilities** that occur to you.
 - cold wind before the storm
 - air gets warm and starts to rise
 - in colder temperatures, water vapor condenses into water droplets and forms a cloud
 - when the cloud's top extends above the freezing level, ice crystals starts to form

• contains "idea units" • pre-studies

- when temperature is below zero, it'll be snowing (and no lightning)
- •••

40

Checks

- Pre-studies
 - ~50 % correct answers (Mean); SD ~ 10 %
- 2 raters, agreement ~90%
- Item analysis

Pre-tests - issues

- Cueing
- Testing effect
- Self-assesses prior knowledge
 - low correlation with post-tests
 - self-confidence etc.
- Solomon design
- Zero prior knowledge

Positive-activating activity-realted affective-motivational states

	Positive ^a		Negative ^b		
Object focus	Activating	Deactivating	Activating	Deactivating	
Activity	Enjoyment	Relaxation	Anger Frustration	Boredom	
Outcome/ Prospective	Hope Joy ^c	Relief	Anxiety	Hopelessness	
Outcome/	Joy	Contentment	Shame	Sadness	
Retrospective	Pride Gratitude	Relief	Anger	Disappointment	

^aPositive = pleasant emotion ^bNegative=unpleasant emotion °Anticipatory joy/relief

Randomization

(Pekrun & Linnenbrink & Garcia, 2012)

- feeling related
- exciting
- entertaining

Enjoyment

- I enjoyed doing this activity
- I thought this was a boring activity
- I would describe this activity as very interesting

- boring (reverse-coded)
- value related
- useful
- worthless
- unimportant (Schiefelle, 1990)

Intrinsic motivation

- I enjoyed doing this activity very much
- This activity was fun to do.
- This activity did not hold my attention at all (reverse-coded)
- I would describe this activity as very interesting.

Positive affect

- I feel right now/have felt [time period]:
 - interested
 - excited
 - strong
 - enthusiastic

(Barrett & Russell, 1998; Pekrun & Linnenbrink & Garcia, 2012)

> Negative affect • distressed

> > 8

• While I was doing this activity, I was thinking about how much I enjoyed it.

(McAuley, Duncan & Tammem, 1989)

• proud	° upset
• alert	° guilty
inspired	• scared
• inspired	• hostile
 determined 	• irritable
 attentive 	• ashamed
	° nervous
	∘ jittery
(Watson, Clark & Tellegen, 1988)	∘ afraid

Flow

- I feel just the right amount of challenge.
- My thoughts/activities run fluidly and smoothly.
- I don't notice time passing.
- I have no difficulty concentrating.
- My mind is completely clear.
- I am totally absorbed in what I am doing.
- The right thoughts/movements occur of their own accord.
- I know what I have to do each step of the way.

Learning involvement

- So far, I'm enjoying [topic]
- I was always sure what I was supposed to do next
- I always knew how to complete the assigned tasks
- I'm tired
- I'm looking forward to the next part
- I focused on the [topic's] activity
- I think I am doing well so far
- I was careful and conscientious when completing the tasks

- I feel that I have everything under control.
- I am completely lost in thought.

(Rheinberg, Vollmeyer, & Engesser, 2003)

tasks.		
	(Brom et al., 2017, CAE)	

Experiment	Characteristics	n	Age group	Generalized positive affect	Flow [21-74]	Generalized negative affect
				[10-50]	[]	[10-50]
Beer Brewing	2-hour simulation, personalized version	36	university	32.89 (6.73)	55.43 (7.06)	14.24 (4.00)
(Brom, Bromová, et al., 2014)	2-hour simulation, direct version	39	university	31.26 (7.28)	55.71 (8.12)	13.86 (3.89)
Europe 2045	5-hour digital game	103	high school + university	30.95 (6.34)	50.86 (8.28)	17.86 (6.11)
(Brom, Šisler, et al., 2016)	5-hour non-digital game	96	high school + university	30.84 (7.21)	49.65 (8.36)	18.00 (6.57)
	5-hour discussion without gaming elements	126	high school + university	26.00 (6.77)	46.18 (7.77)	18.06 (6.15)
Beer Brewing – Gamified	2-hour simulation, gamified	31	university	32.26 (7.49)	57.23 (7.33)	13.45 (4.22)
(Brom et al., 2019)	2-hour simulation, personalized version	34	university	32.82 (7.03)	56.27 (8.28)	14.53 (5.28)
	2-hour simulation, direct version	33	university	30.20 (5.88)	54.11 (8.28)	13.71 (3.76)
Wastewater	6-minute animation, personalized version	37	university	31.86 (7.42)	57.32 (6.22)	12.30 (2.92)
(Brom, Hannemann et al., 2017)	6-minute animation, direct version	37	university	30.49 (6.03)	55.32 (8.21)	12.19 (3.69)
	6-minute animation, personalized version	37	high school	30.91 (7.15)	55.26 (8.17)	13.33 (3.33)
	6-minute animation, direct version	37	high school	30.89 (6.48)	54.47 (8.02)	14.59 (5.96)
Beer vs. Citrate	90-minute simulation, direct version, citrate	35	university	28.71 (7.21)	53.43 (6.83)	13.51 (3.91)
(Brom, Děchtěrenkoet al., 2017)	substrate production					
	90-minute simulation, direct version, beer brewing	30	university	32.10 (6.48)	57.28 (7.86)	12.87 (3.46)
First-aid training course; actors	15-minute life action training simulation; actors	12	young adults	34.08 (8.74)	58.58 (7.39)	14.25 (4.96)
(Brom, Buchtová, et al., 2014)						
Filling in of questionnaires at a delayed testing session	At the beginning a 30-minute long testing session	165	adults 18-34 years of age	23.27 (6.74)	-	13.89 (4.81)
(preliminary data)	At the end of a 30-minute long testing session	165	adults 18-34 years of age	22.19 (7.17)	-	13.41 (5.04)
Beginning of an experiment	6-minute animation (Wastewater, both conditions)	37+37	high school	28.60 (6.14)	-	16.97 (5.63)
(Brom et al., 2017)	6-minute animation (Wastewater, both conditions)	37+37	university	27.74 (6.28)	-	14.55 (3.69)

Cognitive load

• Difficulty:

- How difficult was today's lesson on [topic] for you?
- Effort:
 - How much effort did you invest to learn today's topic?
- Intrinsic load:
 - [1] The content of this activity was very complex.

Control variables

- Perceived math/ICT knowledge:
 - Check one of the following to indicate your knowledge of ...
- Ability to acquire mental models:
 - Imagine you will be examined in the history of shipping traffic in the 19th century. A week before the exam, the examiner proposes that you can learn just one of the following two things: a) the names of British steamboats form the second half of the 19th century, including their displacement and their propeller type, or b) how these steamboats' propellers work. There are over sixty steamboats and five functionally distinct propeller types. What would you prefer to learn?

9

[2] The problem/s covered in this activity was/were very complex.[3] In this activity, very complex terms were mentioned.[4] I invested a very high mental effort in the complexity of this activity.

(Pass, 1992; de Jong, 2010;

Leppink et al.,2014)

• Extraneous load:

- [5] The explanations and instructions in this activity were very unclear.
- [6] The explanations and instructions in this activity were full of unclear language.
- [7] The explanations and instructions in this activity were, in terms of learning, very ineffective.
- [8] I invested a very high mental effort in unclear and ineffective explanations and instructions in this activity.
- Prior tiredness:
 - How alert do you feel right now?
 - How do you feel overall right now?

Example: Motivation to play vs. motivation to learn within edu-LARP

- Team role-play motivates (Brom et al., 2016, Int J Comp-Sup Collab Learn)
 - edu-LARP: Live Action Role Play

Example: Motivation to play vs. motivation to learn within edu-LARP

- Domain/topic interest
 - key role in motivational theories
 - as checked in the context of simulation-based learning (Brom et al., 2017, Comp & Edu)

interest in

interest in

<section-header><text><text><text>

Self-determination theory

- Autonomous vs. controlled motivation (Deci & Ryan, 1985; Ryan et al., 2006; Vansteenkiste et al., 2009)
- Autonomous
 - needs for autonomy, competence, and relatedness
 - intrinsic motivation
 - identified regulation
- idea: game-driven intrinsic motivation \rightarrow learning-driven identified regulation

- Correlational study
- Within-subject comparison
- Heterogeneous sample (young adults; N = 128)

 interest in LARP-like games

- Controlled
 - introjected regulation ("I don't want to be ashamed")
 - external regulation ("I want money")

• lecture & hands-on

The device

- Controlling motors on a generation spaceship
- Game motivation: needed for winning the game
- Fictitious
- Each learner own device

Exploratory factor analysis & PA/flow residua

Loadings for three-factor solution with communalities shown in the last column (exploratory

factor analysis)

(dilable		Communalities		
	Autonomous motivation to play	Autonomous motivation to learn	Cognitive load	
Game-induced PA	.08	.86	.03	.75
Game-induced flow	03	.84	19	.74
Learning-induced PA ^a	.78	06	15	.64
Learning-induced flow ^a	.81	.02	13	.68
Learning enjoyment	.65	.23	41	.64
Intrinsic load	27	06	.52	.34
Extraneous load	13	06	.99	1.00
Note: Loadings over .50	highlighted.			
Pre-/Post-learning resid	119			
The /T out rearing resid				

- Retrospective judgment
- Observations

* p < .05 ** p < .01 *** p < .001

 Motivation to learn partly mediates the effect of "techies" on learning outcomes

Objective process measures

- Eye tracker
- Cognitive load:
 dual-task paradigm
 pupil dilatation (but!)

Eye tracking measures by Mayer

Name	Description	Cognitive process
Integrative transitions	Number of times the learner moves eye fixation from the text to the diagram or vice versa	Integrating: Attempts to integrate words and pictures
Text-to-diagram transitions	Number of times the learner moves eye fixation from the text to the diagram	Integrating: Attempts to integrate words and pictures
Corresponding transitions	Number of times the learner moves eye fixation from the text to the corresponding part of the diagram	Integrating: Successful integration of words and pictures
Proportion of corresponding transitions	Number of corresponding transitions divided by number of text-to-diagram transitions	Integrating: Successful integration of words and pictures
Proportion of fixations on diagram	Number of fixations on diagrams divided by total number of fixations	Selecting: Attentional focus on words or pictures
Proportion of fixations on text	Number of fixations on text divided by total number of fixations	Selecting: Attentional focus on words or pictures
Total fixation time on diagram (sec)	Total number of seconds learner looked at the diagram	Selecting: Attentional focus on words or pictures
Total fixation time on text (sec)	Total number of seconds learner looked at the text	Selecting: Attentional focus on words or pictures

Biofeedback sensors

• Al: Emotion detection

(Johnson & Mayer, 2012, J Exp Psych Appl)

