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Finite Automata

Advantages
closed under almost most commonly studied operations (Boolean
operations, concatenation, (inverse) homomorphism, substitution,
etc)
common decidability problems are decidable; mostly in polynomial
time
effective minimization

Disadvantages
limited expressiveness
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Extending Finite Automata

adding storage, but keep as many ‘good’ properties as possible
pushdown automata

nondeterministic version stronger than the deterministic one
some closure properties preserved (union, concatenation, (inverse)
homomorphism, substitution)
some closure properties lost (complement)
some problems still decidable (emptiness, finiteness)
some problems undecidable (equivalence decidable only for
deterministic pushdown automata

queue automata
in general too strong (they accept all recursively enumerable
languages)
quasi real-time queue automata – the number of subsequent
λ-moves is bounded by some constant
a constant number of turns – changes between an enqueuing and a
dequeuing phase
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Extending Finite Automata

bag automata
finite automata with a finite number of bags
bags can store (multiple copies) of symbols
able to simulate some counter automata
“well-formed” bag automata: accept a language class in between
the (deterministic) one-counter and the (D)CFL
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Design Goals

add a set storage to a deterministic finite automaton
set operations

add string
remove string
test whether a string is present in the set

how to design a string
compose it on a write-only tape
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Nondeterministic Set Automaton – Definition

M = (Q,Σ, Γ, /, δ,q0,F )

Q is the finite set of states,
Σ input alphabet,
Γ tape alphabet,
/ 6∈ Σ is the right end-marker,
s0 ∈ Q is the initial state,
F ∈ Q is the set of accepting states, and
δ : Q × (Σ∪ {λ, /})→ (Q × (Γ∗ ∪ {in,out}))∪ (Q × {test} ×Q)
is the partial transition function

in – the instruction to add the content of the tape to the set,
out – the instruction to remove the content of the tape from the set,
and
test – the instruction to test whether or not the content of

the tape is in the set.
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Nondeterministic Set Automaton – Configuration

A configuration of NSA M is (q, v , z,S)

q ∈ Q is the current state,
v ∈ (Σ∗/) ∪ {λ} is the unread part of the input,
z ∈ Γ∗ is the content of the tape, and
S ⊆ Γ∗ is the finite set of stored words.

initial configuration for an input string w is

(q0,w/, λ, ∅)
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Nondeterministic Set Automaton – Step

Let q,q′,q ∈ Q, x ∈ Σ ∪ {λ, /}, v ∈ (Σ∗/) ∪ {λ}, z, z ′ ∈ Γ∗, and S ⊆ Γ∗

one step relation `:
1 (q, xv , z,S) ` (q′, v , zz ′, S), if (q′, z ′) ∈ δ(q, x) – write,
2 (q, xv , z,S) ` (q′, v , λ,S ∪ {z})), if (q′,in) ∈ δ(q, x) – insert,
3 (q, xv , z,S) ` (q′, v , λ,S r z)), if (s′,out) ∈ δ(q, x) – remove (no

check whether z ∈ S),
4 (q, xv , z,S) ` (q′, v , λ,S)), if (q′,test,q) ∈ δ(q, x) and z ∈ S –

positive test,
5 (q, xv , z,S) ` (q, v , λ,S), if (q′,test,q) ∈ δ(q, x) and z 6∈ S –

negative test.

The language accepted by the NSA M is the set

L(M) = {w ∈ Σ∗ | (q0,w/, λ, ∅) `∗ (qf , λ, z, S) with qf ∈ F , z ∈ Γ∗, S ⊆ Γ∗}.
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Deterministic Set Automaton

Deterministic set automaton (DSA) – at most one choice of action for
any configuration
|δ(q, x)| ≤ 1, for any q ∈ Q and x ∈ Σ ∪ {λ, /},
if δ(q, λ) 6= ∅ then δ(q, x) = ∅, for any q ∈ Q, x ∈ Σ ∪ {/}.
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Examples

L1 = {w1$w2$ · · ·wm$w | m ≥ 1,w ,w1,w2, . . . ,wm ∈ {a,b}∗,
and ∃1 ≤ i ≤ m : w = wi}

L1 is accepted by a DSA:
1 read each a and b up to the letter $ and copy it to the tape,
2 reading $, store the word written on the tape in its set,
3 when the input head arrives at /, test whether the contents on the

tape is in the set,
4 if yes, accept, otherwise reject.
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Examples

L2 = {x$w | x ,w ∈ {a,b}∗ and w is a factor of x}

L2 is accepted by a NSA:
1 read a’a and b’s, do not write on the tape,
2 nondeterministically guess that the factor w starts and continue

with copying a’s and b’s into the tape
3 nondeterministically guess that the factor w has ended, perform

an in-operation
4 stop copying input onto the tape and read until $

5 after symbol $, copy the input again into the tape
6 at the right endmarker, test whether the content on the tape is in

the set,
7 if yes, accept, otherwise reject.
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Examples

L3 = {anbm$0cn | m,n ≥ 1} ∪ {anbm$1cm | m,n ≥ 1}

L3 is accepted by a DSA:
copy a’a into the tape
on the first b insert the word from the tape into the set
copy b’s into the tape
on $0 or $1, insert the word from the tape into the set
depending on whether there has been a $0 or a $1 in the input,
write an a or a b for each c in the input on the tape,
at /, check whether the word on the tape is in the set,
if yes, accept, otherwise reject.
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Examples

L4 = {anbncn | n ≥ 1}

L4 is accepted by a DSA:
copy every a in the input onto the tape,
at the first b, add the content of the tape to the set,
for every b in the input write an a on the tape
at the first c, test whether the word on the tape is in the set
if not, reject, otherwise, for every c in the input write an a on the
tape,
at /, if the word on the tape is in the set, then accept, otherwise
reject.
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Unary Languages

Theorem 1
Every unary language accepted by a DSA is semilinear, thus regular.

Proof:
let M = (Q, {a}, Γ, /, δ,q0,F ) be a DSA
if M accepts a finite language

done, as each finite language is semilinear
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Unary Languages

Theorem 2
Every unary language accepted by a DSA is semilinear, thus regular.

Proof (cont.):
let M accept an infinite language

k = the length of a longest word that M can write in one step on the tape
on input longer than |Q|, the automaton enters a loop

1 no in-, out-, or test-operation within the loop – we can transform the
automaton into an equivalent deterministic finite automaton

2 M performs an in-, out, or test-operation
after such operation the content of the tape is deleted
in each computation step, M can write at most k symbols on the tape
(unary input) M can distinguish between at most |S| different situations⇒ the
words on the tape of length at most k · |S|
a DFA can simulate M by storing the content on the tape and the finite number
of words in the set in its state

⇒ L(M) can be accepted by a finite automaton, it is semilinear

F. Mráz Set Automata
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Comparison to quasi-real-time queue automata

Theorem 3
The family of languages accepted by DSA is incomparable with the family of
languages accepted by quasi-real-time queue automata.

Proof:
1 the non-semilinear unary language {an | n is a Fibonacci number} is

accepted by some quasi-real-time queue automaton1

2 L3 cannot be accepted by a quasi-real-time queue automaton (by
contradiction)

let M be a quasi-real-time queue automaton accepting L3 with the set of
states Q
input w = ajbj′v , where v ∈ {$0, $1}c∗
after aj is read, the length of z written in the queue depends on j

otherwise, for some i 6= i ′ there are two accepted words w ′ = aib$0c i and
w ′′ = ai′b$0c i′ such that after reading b the aut. M is in the same configuration
on both words⇒ M accepts also aib$0c i′

1 A. Cherubini, C. Citrini, S. Crespi-Reghizzi and D. Mandrioli, QRT FIFOautomata, breadth-first grammars and their relations, Theoret. Comput. Sci. 85 (1991)
171âĂŞ203.
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Comparison to quasi-real-time queue automata

Theorem 4
The family of languages accepted by DSA is incomparable with the family of
languages accepted by quasi-real-time queue automata.

Proof (cont.):
similarly, after ajbj ′ is read a word z ′ is appended to the queue and |z ′|
depends on j ′

let after reading aibj$0c i , i , j ≥ |Q| the queue contains z of length
> 2j · |Q|
M must be in an accepting state after reading aibj$0c i and in the front of
the queue there is still a word z̄ such that z = z̄ ′z̄ and |z̄| > j · |Q|
⇒ ∃ a word aibj$0c i+j with i , j ≥ |Q| and j ′ ≥ 1: M is in the same
accepting state – a contradiction

F. Mráz Set Automata



Introduction Definition Examples Computational Capacity of Deterministic Set Automata Closure Properties Regularity and Emptiness Descriptional Complexity Nondeterminism and Non-Recursive Trade-OffsNormal Forms

Action Normal Form

A DSA M is in action normal form, if
the initial state of M is only visited once
each other state indicates uniquely which action the automaton M
did in the last computation step

the state set is (disjointly) partitioned
Q = Qin ∪Qout ∪Qtest+ ∪Qtest- ∪Qwrite

Lemma 5
Any DSA M can be converted into an equivalent DSA M ′ in action
normal form.
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Action Normal Form

Lemma 6
Any DSA M can be converted into an equivalent DSA M ′ in action
normal form.

a new initial state which is visited only at the beginning of a
computation is added
original states are marked as writing states and instead of, e.g.
δ(p,a) = (q,in) a detour is used δ′(p,a) = (qin,in) and
δ′(qin, λ) = (q, λ)

similar “detours” are added for all transitions with operations on
the set

F. Mráz Set Automata
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Infinite Action Normal Form

A DSA M = (Q,Σ, Γ, /, δ,q0,F ) in action normal form
Q = Qin ∪Qout ∪Qtest ∪Qwrite, where Qtest = Qtest+ ∪Q)test-
let qi ∈ {q0} ∪Qin ∪Qout ∪Qtest

let qj ∈ Qin ∪Qout ∪Qtest

Lqi ,qj = {wn ∈ Γ∗ | there is u ∈ Σ∗ such that (qi ,u, ,S) ` (qi+1,u1,w1,S)

`∗ (qi+(n−1),un−1,wn−1,S) ` (qi+n,un,wn,S) ` (qj , λ, λ, S′),
and qi+1,qi+2, . . . ,qi+n 6∈ Qin ∪Qout ∪Qtest}.

all such Lqi ,qj are regular

A DSA M is in infinite action normal form if M is in action normal form and all
sets Lqi ,qj are infinite.

F. Mráz Set Automata
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Infinite Action Normal Form

Lemma 7
Any DSA M can be converted into an equivalent DSA M ′ in infinite
action normal form.

all Lqi ,qj are constructed and their finiteness is tested
let k be the maximal length of a word in all finite Lqi ,qj

no set operation on words of length less or equal k should be
performed – such operations can be simulated in states of the
control unit
M ′ simulates all operations on word of length at most k in states
and write to the tape only if a word longer than k is written
M ′ is deterministic and in infinite action normal form

F. Mráz Set Automata
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Comparison to DCFL

Theorem 8
The family of languages accepted by DSA is incomparable with the
(deterministic) context-free languages.

L4 = {anbncn | n ≥ 1} non-context-free and is accepted by a DSA
L = {wcwR | w ∈ {a,b}∗} is not accepted by any DSA can be
shown by contradiction

idea:
1 if L is accepted by a DSA M, then all possible set operation on the

first part of the input are a finite number of in-operations, and on the
second part are a finite number of test-operations

2 based on M an equivalent one-way multi-head finite automaton
accepting L can be constructed – a contradiction

F. Mráz Set Automata
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Comparison to Finite-Turn Queue Automata

Theorem 9
The family of languages accepted by DSA is incomparable with the
family of languages accepted by finite-turn queue automata.

L4 = {anbncn | n ≥ 1}
L4 is accepted by a DSA (see above)
L4 cannot be accepted by any finite-turn deterministic queue
automaton (it follows from some other papers)

let L = L′ ∪ L” with L′ = {anbmcn | m,n ≥ 1} and
L” = {anbmcn+m | m,n ≥ 1}

L is accepted by a one-turn deterministic queue automaton (easy)
L is not accepted by any DSA – by a contradiction

a long proof
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Closure Under Complementation

Lemma 10
The family of languages accepted by DSA is closed under complementation.

problems with simply interchanging accepting and rejecting states
1 the given DSA may not read its input completely – no next move from a

configurations is defined,
2 the given DSA may not read its input completely – by entering an infinite λ-loop,
3 the given DSA may perform λ-steps from an accepting state to a rejecting state

and back.
solution:

(1) – missing transitions replaced by a transition to a new rejecting state qrej;
additionally staying in qrej, the automaton will continue to read the rest of input
(3) – after entering an accepting state after reading the right sentinel, the
automaton immediately enters a new accepting state qacc
the modified automaton (without problems (1) and (3)) is converted into the
infinite action normal form

the resulting automaton still does not have problems (1) and (3)
infinite λ-cycles still possible

F. Mráz Set Automata
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Closure Under Complementation

Lemma 11
The family of languages accepted by DSA is closed under
complementation.

solution (cont,):
the modified automaton (without problems (1) and (3)) is
converted into the infinite action normal form
infinite λ-cycles still possible

1 if in an infinite λ-cycle only states from Qwrite can be visited
we can check it in advance and instead of entering the infinite λ-cycle
we modify the automaton to enter qrej

2 if in an infinite λ-cycle a state q1 ∈ Qin ∪Qout ∪Qtest can be visited
let q2 be the next non-writing state in the λ-cycle
Lq1,q2 should be infinite (infinite action normal form)
however, starting from q1, the tape is empty, at q2 the tape is also
empty, and no symbol is read, hence Lq1,q2 is finite (having one
elemnet) – a contradiction

finally, switching accepting and non-accepting states works
F. Mráz Set Automata
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Union, Intersection and Intersection with Regular
Languages

Lemma 12
The family of languages accepted by DSA is not closed under union
and intersection.

L = L′ ∪ L′′ 6∈ L(DSA), where
L′ = {anbmcn | m,n ≥ 1} ∈ L(DSA)
L′′ = {anbmcn+m | m,n ≥ 1} ∈ L(DSA)

L(DSA) not closed under union – de Morgan rule

Lemma 13
The family of languages accepted by DSA is closed under intersection
with regular languages and under union with regular languages.

easy
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Regularity

regularity
decidable for deterministic pushdown automata
not even semi-decidable for deterministic real-time queue automata

Theorem 14
It is decidable whether or not a given deterministic set automaton accepts a regular
language.

Given a DSA M in infinite action normal form, it is possible to determine
whether M performs a test-operation that matches for infinitely many strings
inserted in the set by a related in-operation. If this is the case for accepting
computations, the language accepted cannot be regular because there are
infinitely many pairs of related input factors.
a meta automaton M ′ and the computation tree built from the state graph of M ′

up to a certain depth. The nodes of the computation tree are labeled by some
information that is used to test the finitely many paths in the tree. The results of
these tests allow to determine the regularity of the language accepted by M.
a complex proof
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Emptiness, Finiteness, Infiniteness, and Universality

Theorem 15
The questions of emptiness, finiteness, infiniteness, and universality
are decidable for deterministic set automata.
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Descriptional Complexity

Theorem 16
Let M be an n-state DSA with set of tape symbols Γ that accepts a
regular language. Then an equivalent DFA with at most 2|Γ|

O(n2)
states

can effectively be constructed.

Ln = {$∗w1$+w2$+ · · ·wm$+w | m ≥ 1,w ,w1,w2, . . . ,wm ∈ {a,b}n,
and ∃1 ≤ i ≤ m : w = wi}

Theorem 17
For n ≥ 1, language Ln is accepted by an (n + 2)-state DSA, but any
equivalent DFA needs at least 22n

states.

Corollary 18
For every n ≥ 1, there are regular languages Ln which are accepted by
an (n + 2)-state DSA with tape alphabet Γ such that any equivalent
DFA needs at least 2|Γ|

n
states.
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Nondeterminism and Non-Recursive Trade-Offs

VALC(M) is the set of valid (accepting) computations of M
w0#wR

1 #w2#wR
3 # · · ·#w2n#wR

2n+1, where # 6∈ T ∪Q,
wi ,0 ≤ i ≤ 2n + 1, are instantaneous description of M, w0 is an initial
ID, w2n+1 is an accepting (hence halting) configuration, wi+1 is the
successor configuration of wi , 0 ≤ i ≤ 2n. Similarly, the set VALC’(M)
consists of all finite strings of the form w0#w1#w2# · · ·#w2n+1. The
set of invalid computations INVALC(M) respectively INVALC’(M) is the
complement of VALC(M) respectively VALC’(M) with respect to the
alphabet T ∪Q ∪ {#}.
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Nondeterminism and Non-Recursive Trade-Offs

Lemma 19
Let M be a Turing machine. Then

1 INVALC(M) is a context-free language and a pushdown
automaton accepting it can effectively be constructed,

2 INVALC(M) belongs to L(DSA) if and only if L(M) is finite,
3 INVALC’(M) belongs to L(NSA) and an NSA accepting it can

effectively be constructed,
4 INVALC’(M) belongs to L(DSA) if and only if L(M) is finite, and
5 INVALC’(M) is a deterministic context-free language if and only if

L(M) is finite.
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Nondeterminism and Non-Recursive Trade-Offs

Theorem 20
The trade-offs between

1 NSA and DSA,
2 NSA and deterministic pushdown automata, and
3 pushdown automata and DSA

are non-recursive.

Theorem 21
For NSA the questions of universality, equivalence with regular sets,
equivalence, inclusion, and regularity are not semi-decidable.
Furthermore, it is not semi-decidable whether the language accepted
by some NSA belongs to L(DSA).
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