#### Multiple Sequence Alignment

Matej Ferenc

Jakub Repický

### Why to use MSA?

- To identify common conserved sequential motives and assess probability of their functional importance
- To obtain information about evolutionary relationships and history
- To construct phylogenetic trees

## Pairwise Alignment

- Aligns two sequences
- We use dynamic programming
- Can be computed in O(nm)
- Parameters: gap penalties, substitution matrix
- We fill the matrix, always using maximum of three previously computed values:

$$f_{i, j} = \max\{f_{i-1, j-1} + s(a_i, b_j), f_{i-1, j} + gap, f_{i, j-1} + gap\}$$

### Pairwise Alignment



 For each cell compute maximum of three neighbouring cells **3-D** Alignment



• For each cell compute maximum of seven neighbouring "cubes"

### **3-D Alignment**



Where s is a 3-dimensional substitution matrix

#### k-D Alignment

- Assume we want to align k sequences, each n symbols long. We need to fill a k-dimensional array, thus running time is O(n<sup>k</sup>).
- Because of exponential running time, we don't usually use k-dimensional multiple alignment
- Although this can be improved by Carrilo-Lipman Heuristic which sets a bound of the score of alignment so that not all regions of the dynamic programming lattice have to be explored

#### Back to pairwise Alignment

- Can we align more than two sequences using only pairwise alignment?
- Idea: assume two aligned sequences, we will call it a profile. We can easily extend the pairwise alignment to work with profiles

AT-AGTTC + TTGAGTC = AT-AGTTCTTGAGT-C

# **Aligning Profiles**

|   | A<br>A | T<br>T | G_ | A<br>A | G <sub>G</sub> | A<br>T | T<br>T | с<br>С |
|---|--------|--------|----|--------|----------------|--------|--------|--------|
|   |        |        |    |        |                |        |        |        |
| Т |        |        |    |        |                |        |        |        |
| G |        |        |    |        |                |        |        |        |
| Α |        |        |    |        |                |        |        |        |
| G |        |        |    |        |                |        |        |        |
| Т |        |        |    |        |                |        |        |        |
| Α |        |        |    |        |                |        |        |        |
| С |        |        |    |        |                |        |        |        |

 The algorithm works similarly, but computing the substitution value is a little different

$$S(a_i, b_j) = \sum_x (P_i(x) \sum_y (P_j(y) \cdot s(x, y)))$$

### **Progressive Multiple Alignment**

- In what order should we add sequences to the profile?
- Generally, a tree model is preferred as it is biologically most relevant. First align most similar sequences and then add them to the rest of the sequences.
- We will need a similarity matrix

# Similarity matrix

|    | s1   | s2   | s3   | s4   | s5   | s6 |
|----|------|------|------|------|------|----|
| s1 | -    | -    | -    | -    | -    | -  |
| s2 | 0.17 | -    | -    | -    | -    | -  |
| s3 | 0.59 | 0.60 | -    | -    | -    | -  |
| s4 | 0.59 | 0.59 | 0.13 | -    | -    | -  |
| s5 | 0.77 | 0.77 | 0.75 | 0.75 | -    | -  |
| s6 | 0.81 | 0.82 | 0.73 | 0.74 | 0.80 | -  |

- At each step we combine two most similar clusters.
- Similarity of two clusters A and B is defined as an average of similarities of pairs of sequences in A and B

$$S(A, B) = \frac{1}{|A| \cdot |B|} \sum_{x \in A} \sum_{y \in B} s(x, y)$$

 This method is called Unweighted Pair Group Method with Arithmetic mean (UPGMA)

#### Dendrograms

- Are created by methods like UPGMA or Neighbour-joining.
- Concern an evolutionary distance of sequences
- Also called Guide Trees

#### Dendrograms - example



## Example

| gi 4557040   | MALFAVFQTTFFLTLLSL <b>R</b> TYQS <mark>EVLAER</mark> LPLTPVSLKVSTLSTRQSLHLQWTVHNLPYHQ <mark>ELK</mark> MVFQ                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| gi 119576380 | MALFAVFQTTFFLTLLSL <b>R</b> TYQSEVLAERLPLTPCVSL <b>R</b> VSTNST <b>R</b> QSLHLQUTVHNLPYHQELKMVFQ                                        |
| gi 109659086 | M L T L Q T U L V Q A L F I F L T T E S T G E L L D P C G Y I S P E S P V V Q L H S N F T A V C V L K E K C M D Y F H V N A N Y I V U K |
| gi 3153816   | MALFSVVLHPAFLLAVLSL <b>RASRSEVLEEPLPLTPEIHKVSFQLKLQEVNLEUTVPALTHEELNMIFQI</b>                                                           |
| gi 261858134 | MALFAVFQTTFFLTLL <mark>SLR</mark> TQSEVLAERL <mark>PLTPVSLRVSTL</mark> ST <mark>R</mark> QSLHLQWTVHNLPYHQELKNVFQ                        |
| gi 162287202 | MAFS VVLHPAFLLAVLSLRASR SEVFEEPLPLTPEIHKVSFQLKLQEVNLEWTVPALTHEELNNIFQI                                                                  |
| gi 119575331 | M L T L Q T U L V Q A L F I F L T T E S T G E L L D P C G Y I S C E S P V V Q L H S N F T A V C V L K E K C M D Y F H V N A N Y I V U K |
| gi 52851389  | MAFSVVLHQVTFLLAVLSL <b>R</b> TSQS <b>K</b> VL <mark>GEPLQLTPEIHTVSLQSALQEANLEWTV</mark> PTFSHQ <mark>ELNIVF</mark> Q                    |
| gi 223460974 | MAFS VVLHPAFLLAVLSLRASR SEVLEEPLPLTPEIHKVSFQLKLQEVNLEWTVPALTHEELNNIFQI                                                                  |
| gi 148232174 | M L T L Q T U V V Q A L F I F L T T K C K G E L L D P C G H I S P E S P V I Q L G S N F T A V C V L K E K C M D H Y H V N A S Y I F U K |
|              |                                                                                                                                         |
|              |                                                                                                                                         |
|              |                                                                                                                                         |





#### **Progressive Multiple Alignment**



| gi 148232174                                              | MLTLQTWVWQALFIFLTTKCKGE-L-LDPCGHISPESPVIQ-LGSNFTAWCVLKEKCMDHYHWNASYIFW                                                                                                                                                                                                                                                                                                                               | Κ                |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| [─[_gi 109659086                                          | MLTLQTWLVQALFIFLTTESTGE-L-LDPCGYISPESPVVQ-LHSNFTAVCVLKEKCMDYFHVNANYIVW                                                                                                                                                                                                                                                                                                                               | K                |
| ∟gi 119575331                                             | MLTLQTULVQALFIFLTTESTGE-L-LDPCGYISCESPVVQ-LHSNFTAVCVLKEKCMDYFHWNANYIVU                                                                                                                                                                                                                                                                                                                               | K                |
| gi 119576380                                              | MALFAV FOTTFFLTLLSL <mark>R</mark> TYOSEVLAERLPLTPCVSLRVSTNS-TROSLHLOWT-VHNLPYHOELKMVFO                                                                                                                                                                                                                                                                                                              | -                |
| ┌┤_gi 4557040                                             | MALFAV FOTTFFLTLLSL <mark>R</mark> TYOSEVLAERLPLTP - VSLKVSTLS-TROSLHLOWT-VHNLP YHOELKMVFO                                                                                                                                                                                                                                                                                                           | -                |
| Ц └gi 261858134                                           | MALFAV FOTTFFLTLLSL <mark>R</mark> T - OS <mark>EVLAERLPLTP - VSLRVSTLS - TROSLHLOWT - VHNLP</mark> YHQ <b>ELKMVF</b> Q                                                                                                                                                                                                                                                                              | -                |
| gi 52851389                                               | MA-FSVVLHQWTFLLAVLSL <mark>R</mark> TS <u>Q</u> SKVLGEPLQLTPEIH-TVSLQ <u>S</u> -ALQEANLEMT-VPTFSHQELNIVFQ                                                                                                                                                                                                                                                                                            | -                |
| µgi 162287202                                             | MA – FSVVLHP – AFLLAVLSL <mark>R</mark> AS <b>R</b> SEVFEEPLPLTPEIH – KVSFQL – KLQEVNLEMT – VPALT – – – – – – HEELNMIFQ                                                                                                                                                                                                                                                                              | Ι                |
| ე_gi 3153816                                              | MALFSVVLHP-AFLLAVLSL <mark>R</mark> AS <b>R</b> SEVLEEPLPLTPEIH-KVSFQL-KLQEVNLEMT-VPALTHEELNMIFQ                                                                                                                                                                                                                                                                                                     | Ι                |
| └gi 223460974                                             | MA – FSWVLHP – AFLLAVLSLRASRSEVLEEPLPLTPETH – KWSFQL – RLQEWNLEMT – WPALT – – – – – – HEELNMIFQ                                                                                                                                                                                                                                                                                                      | Ι                |
| gi 52851389<br>gi 162287202<br>gi 3153816<br>gi 223460974 | MA – FSVVLHQMTFLLAVLSLRTSQSKVLGEPLQLTPEIH – TVSLQS – ALQEANLEWT – VPTFS – – – – – – HQELNIVFQ<br>MA – FSVVLHP – AFLLAVLSLRASRSEVFEEPLPLTPEIH – KVSFQL – KLQEVNLEWT – VPALT – – – – – – HEELNMIFQ<br>MALFSVVLHP – AFLLAVLSLRASRSEVLEEPLPLTPEIH – KVSFQL – KLQEVNLEWT – VPALT – – – – – – HEELNMIFQ<br>MA – FSVVLHP – AFLLAVLSLRASRSEVLEEPLPLTPEIH – KVSFQL – KLQEVNLEWT – VPALT – – – – – – HEELNMIFQ | –<br>I<br>I<br>I |

## **Progressive Multiple Alignment**

- Once we have inserted a gap into sequence, it stays there
- Therefore we have to build strong initial alignments
- Clustal, T-Coffee

# ClustalW

- Distance Matrix (Pairwise Alignments)
- Guide Tree
- Progressive Alignment
- Gap Open Penalty, Gap Extension Penalty
  - Similarity of sequences
  - Lengths of sequences
  - "GOP->(GOP+log(MIN(N,M))) \* (average residue mismatch score) \* (percent identity scaling factor)"
  - "GEP -> GEP\*(1.0+|log(N/M)|)"
- 80-100%: PAM20, 60-80%: PAM60, 40-60%: PAM120, 0-40%: PAM350.
- 80-100%: BLOSUM80, 60-80%: BLOSUM62, 30-60%: BLOSUM45, 0-30%: BLOSUM30

# ClustalW



| Enter or paste a set of seq | uences in any supported format: | Help      |
|-----------------------------|---------------------------------|-----------|
|                             |                                 |           |
|                             |                                 |           |
| Upload a file:              | Browse_                         | Run Reset |

#### Iterative Multiple Alignment

- When constructing alignment, it realigns sequences already aligned
- Variety of methods exists
- For example: after the alignment is done, remove a sequence and add it to the alignment again
- MUSCLE (multiple sequence comparison by log-expectation)

#### Other methods

- Many other methods have been used to align more sequences
- Hidden Markov Models, Motif finding, Genetic algorithms

- How to find out which alignment is better?
- How do we mathematically define "better"?
- Sum of Pairs Score:

$$SP \begin{pmatrix} ATC-TAC \\ ATC-TAG \\ A-CCTTG \\ A-CGTTG \end{pmatrix} = SP(AAAA) + SP(TT--) + SP(CCCC) + SP(--CG) + SP(CCCC) + SP(--CG) + SP(TTTAA) + SP(TTTAA) + SP(CGGG)$$

$$SP(--CG) = s(-,-) + s(-,C) + s(-,G) + s(-,C) + s(-,C) + s(-,G) + s(C,G)$$

• Entropy:

$$Entropy = \sum_{all \ columns} \sum_{x \in Alphabet} p_x \cdot \log(p_x)$$

Alignments with lower entropy are better

 Comparing our own method with Clustal using Entropy objective function

| Protein        | We     | Clustal |
|----------------|--------|---------|
| ccl2           | 36.89  | 39.17   |
| cd147          | 116.43 | 117.39  |
| cd154          | 177.89 | 179.49  |
| Collagen alpha | 659.50 | 656.31  |
| prolactin      | 248.77 | 241.32  |
| resistin       | 58.65  | 59.40   |
| selectinL      | 114.95 | 114.95  |



 Comparing our own method with Clustal using Sum-of-Pairs objective function (Blosum62)

| Protein        | We    | Clustal |
|----------------|-------|---------|
| ccl2           | 35686 | 35782   |
| cd147          | 5279  | 5255    |
| cd154          | 34064 | 36011   |
| Collagen alpha | 78360 | 78534   |
| prolactin      | 32432 | 52804   |
| resistin       | 5064  | 5057    |
| selectinL      | 9481  | 9481    |

