
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Finding Regulatory Motifs in

DNA Sequences

Micro-array experiments indicate that sets of genes are regulated by
common “transcription factors (TFs)”. These attach to the DNA
upstream of the coding sequence, at certain binding sites. Such a
site displays a short motif of DNA that is specific to a given type of
TF.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Combinatorial Gene Regulation

• A microarray experiment showed that when gene X is knocked out,
20 other genes are not expressed

• How can one gene have such drastic effects?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Regulatory Proteins

• Gene X encodes regulatory protein, a.k.a. a transcription factor
(TF)

• The 20 unexpressed genes rely on gene X’s TF to induce
transcription

• A single TF may regulate multiple genes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Regulatory Regions

• Every gene contains a regulatory region (RR) typically stretching
100-1000 bp upstream of the transcriptional start site

• Located within the RR are the Transcription Factor Binding
Sites (TFBS), also known as motifs, specific for a given
transcription factor

• TFs influence gene expression by binding to a specific location in the
respective gene’s regulatory region – TFBS

• So finding the same motif in multiple genes’ regulatory regions
suggests a regulatory relationship amongst those genes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motifs and Transcriptional Start Sites

gene ATCCCG

gene TTCCGG

gene ATCCCG

gene ATGCCG

gene ATGCCC

• A TFBS can be located anywhere within the Regulatory Region.

• TFBS may vary slightly across different regulatory regions since non-
essential bases could mutate

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Transcription Factors and Motifs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Challenge Problem
(Pevzner and Sze)

• Find a motif in a sample of

 - 20 “random” sequences (e.g. 600 nt long)

 - each sequence containing an implanted pattern of length 15,

 - each pattern appearing with 4 mismatches as (15,4)-motif.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Random Sample

10 random sequences

atgaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatactgggcataaggtaca

tgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttatag

gtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtactgatggaaactttcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Implanting Motif AAAAAAAGGGGGGG

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa

tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag

gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Implanting Motif AAAAAAAGGGGGGG

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa

tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag

gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Where is the Implanted Motif?

atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga

tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag

gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Implanting Motif AAAAAAGGGGGGG

with Four Mutations

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa

tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag

gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Where is the Motif???

atgaccgggatactgatagaagaaaggttgggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcggga

tgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcaaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatataataaaggaagggcttatag

gtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtataaacaaggagggccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Why Finding (15,4) Motif is Difficult?

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa

tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga

gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag

gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat

aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

AgAAgAAAGGttGGG

cAAtAAAAcGGcGGG
..|..|||.|..|||

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Defining Motifs

• To define a motif, let us say we know where the motif starts in the

sequence

• The motif start positions in their sequences can be represented as
s = (s 1, s 2, s 3, …, s t)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 A G G T A C T T
 C C A T A C G T
Alignment A C G T T A G T
 A C G T C C A T
 C C G T A C G G

 A 3 0 1 0 3 1 1 0
Profile C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

Consensus A C G T A C G T

Motifs: Profiles and Consensus

• Line up the patterns by their
start indexes

 s = (s 1, s 2, s 3, …, s t)

• Construct matrix profile with
frequencies of each nucleotide in
columns

• Consensus nucleotide in each
position has the highest score in
the column

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Consensus
• Think of consensus as an “ancestor” motif, from which mutated

motifs emerged

• The distance between a real motif and the consensus sequence is
generally less than that for two real motifs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Evaluating Motifs

• We have a guess about the consensus sequence, but how “good” is
this consensus?

• Need to introduce a scoring function to compare different guesses
and choose the “best” one.

• t – number of sample DNA sequences

• n – length of each DNA sequence

• DNA – sample of DNA sequences (t x n array)

• l – length of the motif (l -mer)

• si – starting position of an l -mer in sequence i

• s = (s 1, s 2, …, st) – array of motif’s starting positions

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Parameters

 cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

 agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

 aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

 agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

 ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

l = 8

t = 5

s 1 = 26 s 2 = 21 s 3= 3 s 4 = 56 s 5 = 60 s

DNA

n = 69

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 A G G T A C T T
 C C A T A C G T
 A C G T T A G T
 A C G T C C A T
 C C G T A C G G

 A 3 0 1 0 3 1 1 0
 C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

Consensus A C G T A C G T

Score 3+4+4+5+3+4+3+4=30

Scoring Motifs

• Given s = (s 1, … st) and DNA:

 Score (s,DNA) =

l

t 
 

l

i GCTAk

ikcount
1 },,,{

),(max

count

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Motif Finding Problem

• If starting positions s = (s1, … st) are given, finding consensus is
easy even with mutations in the sequences because we can simply
construct the profile to find the motif (consensus)

• But… the starting positions s are usually not given. How can we find
the “best” profile matrix?

• Goal: Given a set of DNA sequences, find a set of l -mers, one from
each sequence, that maximizes the consensus score

• Input: A t xn matrix of DNA, and l, the length of the pattern to find

• Output: An array of t starting positions s = (s 1, … st) maximizing
Score (s ,DNA)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Motif Finding Problem: Brute Force
Solution

• Compute the scores for each possible combination of starting

positions s

• The best score will determine the best profile and the consensus
pattern in DNA

• The goal is to maximize Score (s,DNA) by varying the starting
positions si , where:

si = [1, …, n – l + 1]

i = [1, …, t]

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

BruteForceMotifSearch

BruteForceMotifSearch(DNA, t, n, l)

bestScore  0

for each s = (s 1, … st) from (1,1 . . . 1) to (n- l +1, . . ., n- l +1)

 if (Score (s,DNA) > bestScore)

 bestScore  Score (s, DNA)

 bestMotif  (s 1, … st)

return bestMotif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Running Time of BruteForceMotifSearch

• Varying (n - l + 1) positions in each of t sequences, we are
looking at (n - l + 1)t sets of starting positions

• For each set of starting positions, the scoring function makes lt
operations, so complexity is

 lt (n - l + 1)t = O (lt n t)

• That means that for t = 8, n = 1000, l = 10 we must perform

approximately 1025 computations – it will take thousands of years

• !!! NOT USABLE !!!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Median String Problem

• Given a set of t DNA sequences find a pattern that appears in all t

sequences with the minimum number of mutations

• This pattern will be the motif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Hamming Distance

• The minimal number of mutattions = Hamming distance:

• dH (v,w) is the number of nucleotide pairs that do not match when v

and w are aligned. For example:

dH (AAAAAA, ACAAAC) = 2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Total Distance: An Example

• Given v = “acgtacgt” and s = (s 1, … st)

 acgtacgt

cctgatagacgctatctggctatccacgtacAtaggtcctctgtgcgaatctatgcgtttccaaccat

 acgtacgt

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

 acgtacgt

aaaAgtCcgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

 acgtacgt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

 acgtacgt

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtaGgtc

v is the sequence in red, x is the sequence in blue

• TotalDistance (v,DNA) = 1+0+2+0+1 = 4

dH (v, x) = 2

dH (v, x) = 1

dH (v, x) = 0

dH (v, x) = 0

dH (v, x) = 1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Total Distance: Definition

• For each DNA sequence DNAi , compute all dH (v, x), where x is an

l -mer with starting position si (1 < si < n – l + 1)

• Find minimum of dH (v, x) among all l -mers in sequence DNAi

TotalDistance (v,DNA) is the sum of the minimum Hamming

distances for each DNA sequence DNAi

• TotalDistance (v,DNA) = mins dH (v, s), where s is the set of

starting positions s1, s2,… st

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Median String Problem:
Formulation

• Goal: Given a set of DNA sequences, find a median string

• Input: A t x n matrix DNA, and l, the length of the pattern to find

• Output: A string v of l nucleotides that minimizes

TotalDistance (v,DNA) over all strings of that length

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Median String Search Algorithm

MedianStringSearch(DNA, t, n, l)

bestWord  AAA…A

bestDistance 

 for each l -mer s from AAA…A to TTT…T

 if TotalDistance (s,DNA) < bestDistance

 bestDistance TotalDistance (s,DNA)

 bestWord  s

 return bestWord

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif Finding Problem
= Median String Problem

• The Motif Finding is a maximization problem while Median String is a
minimization problem

• However, the Motif Finding problem and Median String problem are
computationally equivalent

• We will show that minimizing TotalDistance is equivalent to
maximizing Score

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

We are looking for the same thing

 a G g t a c T t

 C c A t a c g t

Alignment a c g t T A g t

 a c g t C c A t

 C c g t a c g G

 A 3 0 1 0 3 1 1 0

Profile C 2 4 0 0 1 4 0 0

 G 0 1 4 0 0 0 3 1

 T 0 0 0 5 1 0 1 4

Consensus a c g t a c g t

Score 3+4+4+5+3+4+3+4

TotalDistance 2+1+1+0+2+1+2+1

• At any column i

Scorei + TotalDistancei = t

• Because there are l columns

Score + TotalDistance = l * t

• Rearranging:

Score = l * t - TotalDistance

• l * t is constant the

minimization of the right side is

equivalent to the maximization

of the left side

l

t

 A G G T A C T T
 C C A T A C G T
 Alignment A C G T T A G T
 A C G T C C A T
 C C G T A C G G

 A 3 0 1 0 3 1 1 0
 Profile C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

 Consensus A C G T A C G T

 Score 3+4+4+5+3+4+3+4

 TotalDistance 2 1 1 0 2 1 2 1

 Sum 5 5 5 5 5 5 5 5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif Finding Problem vs.
Median String Problem

• Why bother reformulating the Motif Finding problem into the Median
String problem?

• The Motif Finding Problem needs to examine all the combinations for s.
That is (n - l + 1)t combinations!!!

• The Median String Problem needs to examine all 4l combinations for v.
This number is relatively smaller

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif Finding: Improving the Running
Time
Recall the BruteForceMotifSearch:

1. BruteForceMotifSearch(DNA, t, n, l)

2. bestScore  0

3. for each s=(s 1 ,s 2 , . . ., s t) from (1,1 . . . 1) to (n- l +1, . . ., n- l+1)

4. if (Score (s,DNA) > bestScore)

5. bestScore  Score (s, DNA)

6. bestMotif  (s 1 ,s 2 , . . . , s t)

7. return bestMotif

Branch-bound searching

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Structuring the Search

• How can we perform the line

for each s=(s 1 ,s 2 , . . . , s t) from (1,1 . . . 1) to (n- l +1, . . ., n- l+1)?

• We need a method for efficiently structuring and navigating the many
possible motifs

• This is not very different than exploring all t -digit numbers

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Median String: Improving the Running
Time
1. MedianStringSearch (DNA, t, n, l)

2. bestWord  AAA…A

3. bestDistance  ∞

4. for each l -mer s from AAA…A to TTT…T

5. if TotalDistance (s,DNA) < bestDistance

6. bestDistance TotalDistance (s,DNA)

7. bestWord  s

8. return bestWord

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Structuring the Search

• For the Median String Problem we need to consider all 4l possible
l -mers:

aa… aa

aa… ac

aa… ag

aa… at

.

.

tt… tt

 How to organize this search?

l

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Alternative Representation of the Search
Space

• Let A = 1, C = 2, G = 3, T = 4

• Then the sequences from AA…A to TT…T become:

11…11

11…12

11…13

11…14

.

.

44…44

• Notice that the sequences above simply list all numbers as if we were
counting on base 4 without using 0 as a digit

l

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Search Tree

 a- c- g- t-

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt

--

root

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Analyzing Search Trees

• Characteristics of the search trees:

• The sequences are contained in its leaves

• The parent of a node is the prefix of its children

• How can we move through the tree?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Moving through the Search Trees

• Four common moves in a search tree that we are about to explore:

• Move to the next leaf

• Visit all the leaves

• Visit the next node

• Bypass the children of a node

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Visit the Next Leaf

1. NextLeaf(a,L,k) // a : the array of digits
2. for i  L downto 1 // L: length of the array

3. if ai < k // k : max digit value
4. ai  ai + 1

5. return a
6. ai  1

7. return a

• The algorithm is common addition in radix k:
• Increment the least significant digit
• “Carry the one” to the next digit position when the digit is at

maximal value

Given a current leaf a, we need to compute the “next” leaf:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

NextLeaf: Example

• Moving to the next leaf:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--
Current Location

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

NextLeaf: Example (cont’d)

• Moving to the next leaf:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--
Next Location

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Visit All Leaves

• Printing all permutations in ascending order:

1. AllLeaves(L,k) // L: length of the sequence

2. a  (1,...,1) // k : max digit value

3. while forever // a : array of digits

4. output a

5. a  NextLeaf(a,L,k)

6. if a = (1,...,1)

7. return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Visit All Leaves: Example

• Moving through all the leaves in order:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

--

Order of steps

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Depth First Search

• So we can search leaves

• How about searching all vertices of the tree?

• We can do this with a depth first search

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Visit the Next Vertex

1. NextVertex(a,i,L,k) // a : the array of digits
2. if i < L // i : prefix length
3. a i+1  1 // L: max length

4. return (a, i +1) // k : max digit value
5. else
6. for j  l to 1
7. if aj < k
8. aj  aj +1
9. return(a , j)
10. return(a, 0)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Example

• Moving to the next vertex:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--
Current Location

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Example

• Moving to the next vertices:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--

Location after 5
next vertex moves

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Bypass Move

• Given a prefix (internal vertex), find next vertex after skipping all
its children

1. Bypass (a,i,L,k) // a : array of digits

2. for j  i to 1 // i : prefix length

3. if aj < to k // L : maximum length

4. aj  aj +1 // k : max digit value

5. return(a,j)

6. return(a,0)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Bypass Move: Example

• Bypassing the descendants of “2-”:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--
Current Location

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Example

• Bypassing the descendants of “2-”:

 1- 2- 3- 4-

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

--
Next Location

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Brute Force Search Again

1. BruteForceMotifSearchAgain(DNA, t, n, l)

2. s  (1,1,…, 1)

3. bestScore  Score(s,DNA)

4. while forever

5. s  NextLeaf (s, t, n - l +1)

6. if (Score (s,DNA) > bestScore)

7. bestScore  Score (s, DNA)

8. bestMotif  (s1,s2 , . . . , st)

9. return bestMotif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Can We Do Better?

• Sets of s = (s 1, s 2, …,s t) may have a weak profile for the first i

positions (s 1, s 2, …,s i)

• Every row of alignment may add at most l to Score

• New notation: Score (s,i,DNA) denotes a partial consensus score of

the i x l alignment matrix involving only the first i rows of DNA with

starting positions (s 1, s 2, …,s i)

• Optimism: if all subsequent (t – i) positions (s i+1, …s t) add

 (t – i) * l to Score (s,i,DNA)

• If Score (s,i,DNA) + (t – i) * l < BestScore, it makes no sense to

search in vertices of the current subtree

• Use ByPass ()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Branch and Bound Algorithm for Motif
Search
• Since each level of the tree goes

deeper into search, discarding a
prefix discards all following
branches

• This saves us from looking at
 (n – l + 1)t-i leaves

• Use NextVertex() and
ByPass() to navigate the tree

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Branch and Bound Motif Search
1. BranchAndBoundMotifSearch(DNA,t,n,l)
2. s  (1,…,1)

3. bestScore  0

4. i  1

5. while i > 0

6. if i < t
7. optimisticScore  Score (s, i, DNA) +(t – i) * l

8. if optimisticScore < bestScore

9. (s, i)  Bypass(s,i, n- l+1) //examine next prefix

10. //of length i if possible

11. else

12. (s, i)  NextVertex(s, i, n- l+1) //enlarge the prefix if

13. //possible

14. else

15. if Score(s,DNA) > bestScore
16. bestScore  Score(s)
17. bestMotif  (s1 , s2 , s3 , …, st)

18. (s,i)  NextVertex(s,i,t, n - l+ 1)

19. return bestMotif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Median String Search Improvements

• Recall the computational differences between motif search and
median string search

• The Motif Finding Problem needs to examine all (n –l +1)t

combinations for s.

• The Median String Problem needs to examine 4 l combinations of
v. This number is relatively small

• We want to use median string algorithm with the Branch and Bound
trick!

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Branch and Bound Applied to Median
String Search

• Note that if the total distance for a prefix is greater than that for the
best word so far:

 TotalDistance (prefix, DNA) > BestDistance

 there is no use exploring the remaining part of the word

• We can eliminate that branch and BYPASS exploring that branch
further

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Bounded Median String Search

1. BranchAndBoundMedianStringSearch(DNA,t,n,l)
2. s  (1,…,1)

3. bestDistance  

4. i  1

5. while i > 0

6. if i < l
7. prefix  string corresponding to the first i nucleotides of s
8. optimisticDistance  TotalDistance(prefix,DNA)

9. if optimisticDistance > bestDistance
 (s, i)  Bypass(s,i, l, 4)

 //examine next prefix

 //of length i if

possible
1. else

 (s, i)  NextVertex(s, i, l, 4) //enlarge the

prefix if possible
1. else
2. word  nucleotide string corresponding to s
3. if TotalDistance(s,DNA) < bestDistance
4. bestDistance  TotalDistance(word, DNA)

5. bestWord  word
6. (s,i)  NextVertex(s,i, l, 4)

7. return bestWord

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Improving the Bounds

• Given an l -mer w, divided into two parts at point i

• u : prefix w1, …, wi ,

• v : suffix wi +1, ..., wl

• Find minimum distance for u in a sequence

• No instances of u in the sequence have distance less than the
minimum distance

• Note this doesn’t tell us anything about whether u is part of any
motif. We only get a minimum distance for prefix u

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Improving the Bounds (cont’d)

• Repeating the process for the suffix v gives us a minimum distance
for v

• Since u and v are two substrings of w, and included in motif w,
we can assume that the minimum distance of u plus minimum
distance of v can only be less than the minimum distance for w

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Better Bounds

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Better Bounds (cont’d)

• If d(prefix) + d(suffix) > bestDistance:

• Motif w (prefix ∙ suffix) cannot give a better (lower) score than
d(prefix) + d(suffix)

• In this case, we can ByPass()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Better Bounded Median String Search
1. ImprovedBranchAndBoundMedianString(DNA,t,n,l)
2. s = (1, 1, …, 1)
3. bestdistance = ∞
4. i = 1
5. while i > 0
6. if i < l
7. prefix = nucleotide string corresponding to (s1, s2, s3, …, si)
8. optimisticPrefixDistance = TotalDistance (prefix, DNA)
9. if (optimisticPrefixDistance < bestsubstring [i])
10. bestsubstring [i] = optimisticPrefixDistance
11. if (l - i < i)
12. optimisticSufxDistance = bestsubstring [l -i]
13. else
14. optimisticSufxDistance = 0;
15. if optimisticPrefixDistance + optimisticSufxDistance > bestDistance
16. (s, i) = Bypass(s, i, l, 4)

17. else
18. (s, i) = NextVertex(s, i, l, 4)

19. else
20. word = nucleotide string corresponding to (s1,s2, s3, …, st)
21. if TotalDistance(word, DNA) < bestDistance
22. bestDistance = TotalDistance(word, DNA)
23. bestWord = word
24. (s,i) = NextVertex(s, i, l, 4)

25. return bestWord

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

More on the Motif Problem

• Exhaustive Search and Median String are both exact algorithms

• They always find the optimal solution, though they may be too slow
to perform practical tasks

• Many algorithms sacrifice optimal solution for speed

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

CONSENSUS: Greedy Motif Search

• Find two closest l -mers in sequences 1 and 2 and forms 2 x l
alignment matrix with Score (s,2,DNA)

• At each of the following t-2 iterations CONSENSUS finds a “best”
l-mer in sequence i from the perspective of the already constructed
(i -1) x l alignment matrix for the first (i -1) sequences

• In other words, it finds an l-mer in sequence i maximizing

 Score (s,i,DNA)

 under the assumption that the first (i -1) l -mers have been already

chosen

• CONSENSUS sacrifices optimal solution for speed: in fact the bulk
of the time is actually spent locating the first two l -mers

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Some Motif Finding Programs

• CONSENSUS

 Hertz, Stromo (1989)

• GibbsDNA

 Lawrence et al (1993)

• MEME

Bailey, Elkan (1995)

• RandomProjections

Buhler, Tompa (2002)

• MULTIPROFILER Keich,

Pevzner (2002)

• MITRA

 Eskin, Pevzner (2002)

• Pattern Branching

 Price, Pevzner (2003)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Planted Motif Challenge

• Input:

• n sequences of length m each

• l,d

• Output:

• Motif M, of length l

• Variants of interest have a hamming distance of d from M

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

When is the Problem Solvable?

• Assume that the background sequences are independent and

identically-distributed (i.i.d.)

• the probability that a given l -mer C occurs with up to d
substitutions at a given position of a random sequence is:

• the expected number of length l motifs that occur with up to d
substitutions at least once in each of the t random length n
sequences is:

• Very rough estimate – overlapping motifs not modelled, and the
assumption of i.i.d. background distribution is usually incorrect.
































d

i

ili

dl
i

l
p

0

),(
4

1

4

3

tln

dl

l pntdlE))1(1(4),,,(1

),(



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

When is the Problem Solvable?

•the expected number of length l motifs that occur with up to d
substitutions at least once in each of the t random length n
sequences is:

Probability that a l -mer

at a given position has

Hamming distance > d

from a given l -mer

Probability that a sequence

of length n contains an / -mer

with Hamming distance at

most d from a given l -mer

tln
dl

l pntdlE))1(1(4),,,(1
),(



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

When is the Problem Solvable?

• 20 random sequences of length 600 are expected to contain more

than one (9, 2)-motif by chance, whereas the chances of finding a

random (10, 2)-motif are less than 10−7.

• So, the (9, 2) problem is impossible to solve, because “random

motifs” are as likely as the planted motif. However, for the (10, 2)

the probability of a random motif occurring is very small.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How to proceed?

• Exhaustive search?

• Run time is high

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Heuristic search

• Searching the space of starting positions

• Gibbs sampling

• The Projection Algorithm

• Searching the space of motifs

• Pattern Branching

• Profile Branching

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Notation

• t sequences DNA1,…,DNAt , each of length n

• l >0 integer; the goal is to find an l -mer in each of the sequences
such that the „similarity“ between these l -mers is maximized

• Let (a1, . . . , at) be a list of l -mers contained in DNA1 , … , DNAt .
These form a t × l alignment matrix.

• Let X (a) = (xij) denote the corresponding 4×l profile, where xij

denotes the frequency with which we observe nucleotide i at
position j. Usually, we add pseudo counts to ensure that X does not
contain any zeros (Laplace correction)

• Let denote the number of occurrences of nucleotide ai at position
j, denote the probability of the occurrence of nucleotide a in all

DNA1,…,DNAt

•  is a weight of the correction








t

pn
x ii

i

aja

ja

jai
n

ia
p

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy profile search

• the probability that a given l -mer z=z1…zl was generated by a given

profile X

• Any l -mer that is similar to the consensus string of X will have a

“high” probability, while dissimilar ones will have “low” probabilities.





l

1

),(
i

iw i
zXzP

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy profile search

• P(CAGGTAAGT | X) = 0.02417294365920 and

• P(TCCGTCCCA | X) = 0.00000000982800

1 2 3 4 5 6 7 8 9

A .33 .60 .08 0 0 .49 .71 .06 .15

C .37 .13 .04 0 0 .03 .07 .05 .19

G .18 .14 .81 1 0 .45 .12 .84 .20

T .12 .13 .07 0 1 .03 .09 .05 .46





l

1

),(
i

iw i
zXzP

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy profile search

• For a given profile X and a sequence s we can find the X-most
probable l -mer in s

• Algorithm: “start with a random seed profile and then attempt to
improve on it using a greedy strategy”

• Given sequences DNA1,…,DNAt of length n, randomly select one l -mer ai

from each sequence DNAi and construct an initial profile X. For each
sequence DNAi , determine the X-most probable l -mer a'i . Set X equal

to the profile obtained from a’1 ,…, a’t and repeat.

• Does not work well

• the number of possible seeds is huge

• In each iteration, the greedy profile search method can change any or
all t of the profile l -mers and thus will jump around in the search space.

)|(maxarg XzPz 

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Gibbs Sampling

• “start with a random seed profile, then change one l-mer per
iteration.”

• Randomly select an l -mer ai in each input sequence DNAi .

• Randomly select one input sequence DNAh .

• Build a 4 × l profile X from a1 ,…, ah−1 , ah+1 ,…, at .

• Compute background frequencies Q from input sequences
 DNA1 ,…, DNAh−1 , DNAh+1 ,…, DNAt .

• For each l -mer a  DNAh , compute

• Set ah = a, for some a  DNAh chosen randomly with probability

• Repeat until “converged”

)|(

)|(
)(

QaP

XaP
aw 

  h'
)'(

)(

DNAa
aw

aw

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Gibbs Sampling

• often works well in practice

• difficulties:

• finding subtle motifs

• its performance degrades if the input sequences are skewed, that is, if
some nucleotides occur much more often than others. The algorithm
may be attracted to low complexity regions like AAAAAA....

• modifications:

• use “relative entropies” rather than frequencies

• Another modification is the use of “phase shifts”: The algorithm can get
trapped in local minima that are shifted up or down a few positions from
the strongest pattern. To address this, in every M th iteration the
algorithm tries shifting some ai up or down a few positions

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm

• “choose k of l positions at random, then use the k selected positions
of each l-mer x as a hash function h (x). When a sufficient number
of l-mers hash to the same bucket, it is likely to be enriched for the
planted motif”

• Viewing x as a point in l -dimensional Hamming space, h(x) is the

projection of x onto a k-dimensional subspace.

s1

s2

s3

s4

xxxxoxox

xxxxxxox

xxxxoxox

xxxxoxox

Hashed to the same bucket

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif finding

Motif finding

Definition

Consensus

Profile

Scoring

Median string problem

Total distance

Algorithms

Exact

Approximate

BruteForceSearch

MedianSttringSearch

BranchAndBound

BruteForceSearch

BranchAndBound

MedianStringSearch

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif finding

Motif finding

Approximate search

Definition

Consensus

Profile

Scoring

Median string problem

Total distance

Algorithms

Exact

BruteForceSearch

MedianSttringSearch

BranchAndBoundBruteForceSe

arch

BranchAndBound

MedianStringSearch

Space of start. positions Space of motifs

Greedy profile search

Gibbs sampling

ProjectionAlgorithm

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm

• Choose distinct k of the l positions at random. For an l -mer x, the
hash function h (x) is obtained by concatenating the selected k
residues of x.

• If M is the (unknown) motif, then we call the bucket with hash
value h (M) the planted bucket.

• The key idea is that, if k < l − d, then there is a good chance that
some of the t planted instances of M will be hashed to the planted
bucket, namely all planted instances for which the k hash positions
and d substituted positions are disjoint.

• So, there is a good chance that the planted bucket will be enriched
for the planted motif, and will contain more entries than an average
bucket.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm – an example

• s1 cagtaat

• s2 ggaactt

• s3 aagcaca

• and the (unknown) (3, 1)-motif M = aaa, hashing with k = 2 using
the first 2 of l = 3 positions produces the following hash table:

• The motif M is planted at positions (1, 5), (2, 3) and (3, 1) and in this

example, all three instances hash to the planted bucket h (M) =aa.

h(x) positions h(x) positions h(x) positions

aa (1,5), (2,3), (3,1) cg - ta (1,4)

ac (2,4), (3,5) ct (2,5) tc -

ag (1,2), (3,2) ga (2,2) tg -

at (1,6) gc (3,3) tt (2,6)

ca (1,1), (3,4), (3,6) gg (2.1)

cc - gt (1.2)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm
– finding the planted bucket
• the algorithm does not know which bucket is the planted bucket.

• it attempts to recover the motif from every bucket that contains at
least s elements, where s is a threshold that is set so as to identify
buckets that look as if they may be the planted bucket.

• In other words, the first part of the Projection algorithm is a
heuristic for finding promising sets of l-mers in the sequence. It

must be followed by a refinement step that attempts to generate a
motif from each such set.

• The algorithm has three main parameters:

• the projection size k,

• the bucket (inspection) threshold s, and

• and the number of independent trails m.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm
– projection size

• the algorithm should hash a significant number of instances of the
motif into the planted bucket, while avoiding contamination of the
planted bucket by random background l-mers.

• What k to choose so that the average bucket will contain less than 1
random l -mer?

• Since we are hashing t (n − l + 1) l-mers into 4k buckets, if we
choose k such that 4 k > t (n − l + 1), then the average bucket will
contain less than one random l-mer.

• For example, in the Challenge (15, 4)-problem, with t = 20 and n =
600, we must choose k to satisfy k < l − d = 15 − 4 = 11 and

76,6
)4log(

))115600(20log(

)4log(

))1(log(








n-lt
k

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm
– bucket threshold
• In the Challenge Problem, a bucket size of s = 3 or 4 is practical, as

we should not expect too many instances to hash to the same
bucket in a reasonable number of trials.

• If the total amount of sequence is very large, then it may be that
one cannot choose k to satisfy both

 k < l −d and 4 k > t (n −l +1).

 In this case, set k = l −d −1, as large as possible, and set the

bucket threshold s to twice the average bucket size

 t (n − l + 1)/4k.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm
– Number of independent trials
 • Our goal: to choose m so that the probability is at least q = 0.95

that the planted bucket contains s or more planted motif instances
in at least one of the m trials.

• let p’ (l, d, k) be the probability that a given planted motif instance
hashes to the planted bucket, that is:

• Then the probability that fewer than s planted instances hash to the

planted bucket in a given trial is Bt,p’ (l,d,k)(s) . Here, Bt,p’ (s) is the

probability that there are fewer than s successes in t independent
Bernoulli trials, each trial having probability p of success (binomial
probability distribution function).

















 



k

l

k

dl

kdlp'),,(

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Projection Algorithm
– Number of independent trails
 • Binomial distribution

• If the algorithm is run for m trails, the probability that s or more
planted instances hash to the planted bucket in at least one trial is:

 1 − (Bt,p’ (l,d,k)(s)) m  q.

• To satisfy this equation, choose:

• Using this criterion for m, the choices for k and s above require at
most thousands of trails, and usually many fewer, to produce a
bucket containing sufficiently many instances of the planted motif.

 
 










 


)(log

1log

),,(', sB

q
m

kdlpt

    iti
s

=i

spt, pp
i

t
=B











 1

0

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Projection Algorithm

1. Choose k of the l positions at random

2. Hash all l -mers of the given sequences into buckets

3. Inspect all buckets with more than s positions and refine the
found motifs

4. Repeat m times, return the motif with the best score

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif refinement

• we have already found k of the planted motif residues. These, together with
the remaining l − k residues, should provide a strong signal that makes it

easy to obtain the motif in only a few iterations of refinement.

• We will process each bucket of size s to obtain a candidate motif. Each of
these candidates will be “refined” and the best refinement will be returned
as the final solution.

• Candidate motifs are refined using the expectation maximization (EM)
algorithm. This is based on the following probabilistic model:

• An instance of some length-l motif occurs exactly once per input sequence.

• Instances are generated from a 4 × l weight matrix model W, whose (i, j)-th

entry gives the probability that base i occurs in position j of an instance,
independent of its other positions.

• The remaining n−l residues in each sequence are chosen randomly and

independently according to some background distribution.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif refinement
 - expectation maximization

• Based on the following probabilistic model:

• An instance of some length-l motif occurs exactly once per input

sequence.

• Instances are generated from a 4 × l weight matrix model W, whose

(i, j)-th entry gives the probability that base i occurs in position j of
an instance, independent of its other positions.

• The remaining n −l residues in each sequence are chosen randomly

and independently according to some background distribution.

• Let S be a set of t input sequences, and let P be the background
distribution. EM-based refinement seeks a weight matrix model W
that maximizes the likelihood ratio

 that is, a motif model that explains the input sequences much better than
P alone.

)|Pr(

),|Pr(*

PS

PWS

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif refinement

• The position at which the motif occurs in each sequence is not fixed
a priori, making the computation of W * difficult, because
Pr (S | W, P) must be summed over all possible locations of the
instances.

• To address this, the EM algorithm uses an iterative calculation that,
given an initial guess W0 at the motif model, converges linearly to a
locally maximum-likelihood model in the neighbourhood of W0 .

• An initial guess Wh for a bucket h is formed as follows: set Wh (i, j)
to the frequency of base i among the j -th positions of all l -mers in
h.

• This guess forms a centroid for h, in the sense that positions that
are well conserved in h are strongly biased in Wh , while poorly
conserved positions are less biased. To avoid zero entries in Wh ,
add a Laplace correction of bi , to Wh (i, j), where bi is the
background probability of residue i in the input.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif refinement

• Once we have used the EM algorithm to obtain a refinement Wh
* of

Wh , the final step is to identify the planted motif from Wh
*. (Details

of EM skipped.)

• To do so, we select from each input sequence the l-mer x with the

largest likelihood ratio:

• The resulting multiset T of l-mers represents the motif in the input

that is most consistent with Wh
*.

• Let CT be the consensus of T, and let s (T) be the number of

elements of T whose Hamming distance to CT is d. The algorithm

returns the sequence CT
* that minimizes s (T), over all considered

buckets h and over all trials.

 
 Px
Wx h

|Pr

|Pr *

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Summary of Projection Algorithm

Input: sequences s1 , . . . , st , parameters k, s and m

Output: best guess motif

for i = 1 to m do

choose k different positions Ik  {1, 2, . . . , l }

for each l-mer x  s1 , . . . , st do

compute hash value hIk (x)

Store x in hash bucket

for each bucket with s elements do

refine bucket using EM algorithm

return consensus pattern of the best refined bucket

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Performance of Projection Algorithm

• The performance of PROJECTION compared to other motif finders
on the (l, d)-motif problem. The measure is the average
performance defined as | K  P | / | K  P | where K is the set of
the lt residue positions of the planted motif instances, and P is the

corresponding set of positions predicted by the algorithm.

l d Gibbs WINNOWER SP-STAR PROJECTION

10 2 0.20 0.78 0.56 0.82

11 2 0.68 0.90 0.94 0.91

12 3 0.03 0.75 0.33 0.81

13 3 0.60 0.92 0.92 0.92

14 4 0.02 0.02 0.20 0.77

15 4 0.19 0.92 0.73 0.93

16 5 0.02 0.03 0.04 0.70

17 5 0.28 0.03 0.69 0.93

18 6 0.03 0.03 0.03 0.74

19 6 0.05 0.03 0.40 0.96

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Pattern Branching Algorithm

• let M be an unknown motif of length l, and let A0 be an occurrence

of M in the sample with exactly k substitutions.

• Given A0 , how do we determine M ? Since the Hamming distance
d (M,A0) = k, we have M  D=k(A0), defined as the set of patterns
of distance exactly k from A0 .

• We could look at all

 elements of D=k (A0) and score each pattern as a guess of M.
However, as this must be applied to all sample strings A0 of length l,

it would be too slow.

k

k

l
3








An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

How to search motif space?

Start from random
sample strings (A0)

Search motif space
for the star

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif finding
Approximate search

Space of motifs

Space of start. positions

Greedy profile search

Gibbs sampling

ProjectionAlgorithm

PaternBranching

ProfileBranching

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Search small neighborhoods

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Exhaustive local search

A lot of work, most
of it unnecessary

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Best Neighbor

Branch from the seed
strings

Find best neighbor −
highest score

Don’t consider
branches where the
upper bound is not as
good as best score so
far – in each step
move to the “best
neighbor” in D=1 (Ai)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Scoring

• PatternBranching uses total distance score:

• For each sequence Si in the sample DNA = {DNA1, . . . , DNAn}, let

 d (A, DNAi) = min {d (A, P) | P  DNAi }.

• Then the total distance of pattern A from the sample is

 d (A, S) = d (A, DNAi).

• For a pattern A, let D=Neighbor (A) be the set of patterns which
differ from A in exactly 1 position.

• We define BestNeighbor (A) as the pattern B  D=Neighbor (A)
with lowest total distance d (B, DNA).


DNA DNAi

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

PatternBranching Algorithm

• PatternBranching (DNA,l,k):

 Motif = arbitrary motif pattern

 For each l -mer A0 in DNA

 For j = 0 to k

 If d (Aj ,DNA) < d (Motif, DNA)

 Motif = Aj

 Aj+1 = BestNeighbor (Aj)

 Output Motif

• More thorough search: instead of single pattern we can keep r
patterns B  D=1 (Aj) with the lowest total distance d (B ,DNA) .

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

PatternBranching Performance

• PatternBranching is faster than other pattern-based algorithms

• Motif Challenge Problem:

• sample of n = 20 sequences

• N = 600 nucleotides long

• implanted pattern of length l = 15

• k = 4 mutations

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Profile Branching

• Profile Branching algorithm is similar to the Pattern Branching
Algorithm. However, the search is in the space of motif
profiles, instead of motif patterns. The algorithm is obtained
from the Pattern Branching Algorithm by making the following
changes:

1. convert each sample string A0 to a profile X (A0),

2. generalize the scoring method to score profiles,

3. modify the branching method to apply to profiles, and

4. use the top-scoring profile found as a seed for the EM algorithm.

• Details omitted

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Profile Branching

• Profile Branching is about 5 times slower than the Pattern
Branching algorithm

• The Pattern Branching Algorithm clearly outperforms the
Profile Branching Algorithm on Challenge-like problems.
However, pattern-based algorithms have difficulty finding
motifs with many degenerate positions.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

PMS (Planted Motif Search)

• Generate all possible l-mers out of the input sequence DNAi . Let Ci

be the collection of these l-mers.

• Example:

AAGTCAGGAGT

Ci = 3-mers:

AAG AGT GTC TCA CAG AGG GGA GAG AGT

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

All patterns at Hamming distance d = 1

AAGTCAGGAGT

AAG AGT GTC TCA CAG AGG GGA GAG AGT

CAG CGT ATC ACA AAG CGG AGA AAG CGT

GAG GGT CTC CCA GAG TGG CGA CAG GGT

TAG TGT TTC GCA TAG GGG TGA TAG TGT

ACG ACT GAC TAA CCG ACG GAA GCG ACT

AGG ATT GCC TGA CGG ATG GCA GGG ATT

ATG AAT GGC TTA CTG AAG GTA GTG AAT

AAC AGA GTA TCC CAA AGA GGC GAA AGA

AAA AGC GTG TCG CAC AGT GGG GAC AGC

AAT AGG GTT TCT CAT AGC GGT GAT AGG

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sort the lists

AAG AGT GTC TCA CAG AGG GGA GAG AGT

AAA AAT ATC ACA AAG AAG AGA AAG AAT

AAC ACT CTC CCA CAA ACG CGA CAG ACT

AAT AGA GAC GCA CAC AGA GAA GAA AGA

ACG AGC GCC TAA CAT AGC GCA GAC AGC

AGG AGG GGC TCC CCG AGT GGC GAT AGG

ATG ATT GTA TCG CGG ATG GGG GCG ATT

CAG CGT GTG TCT CTG CGG GGT GGG CGT

GAG GGT GTT TGA GAG GGG GTA GTG GGT

TAG TGT TTC TTA TAG TGG TGA TAG TGT

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Eliminate duplicates

AAG AGT GTC TCA CAG AGG GGA GAG AGT

AAA AAT ATC ACA AAG AAG AGA AAG AAT

AAC ACT CTC CCA CAA ACG CGA CAG ACT

AAT AGA GAC GCA CAC AGA GAA GAA AGA

ACG AGC GCC TAA CAT AGC GCA GAC AGC

AGG AGG GGC TCC CCG AGT GGC GAT AGG

ATG ATT GTA TCG CGG ATG GGG GCG ATT

CAG CGT GTG TCT CTG CGG GGT GGG CGT

GAG GGT GTT TGA GAG GGG GTA GTG GGT

TAG TGT TTC TTA TAG TGG TGA TAG TGT

Let L denote the obtained list of l -mers

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Find motif common to all lists

• Follow this procedure for all sequences

• Find the motif common to all Li (once duplicates have been

eliminated)

• This is the planted motif

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

PMS Running Time

• It takes time to

• Generate variants

• Sort lists

• Find and eliminate duplicates

 (m denotes the number of different l-mers which are in the first DNA

sequence)

• Running time of this algorithm:

w is the word length of the computer





















 d

d

l
mO 3























w

l

d

l
mtO d3

