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Finding Regulatory Motifs in
DNA Sequences

Micro-array experiments indicate that sets of genes are regulated by
common “transcription factors (TFs)”. These attach to the DNA
upstream of the coding sequence, at certain binding sites. Such a
site displays a short motif of DNA that is specific to a given type of

TF.
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Combinatorial Gene Regulation

A microarray experiment showed that when gene X is knocked out,
20 other genes are not expressed

How can one gene have such drastic effects?
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Regulatory Proteins

Gene X encodes regulatory protein, a.k.a. a transcription factor
(TF)

The 20 unexpressed genes rely on gene X's TF to induce
transcription

A single TF may regulate multiple genes
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Regulatory Regions

Every gene contains a regulatory region (RR) typically stretching
100-1000 bp upstream of the transcriptional start site

Located within the RR are the Transcription Factor Binding
Sites (TFBS), also known as motifs, specific for a given
transcription factor

TFs influence gene expression by binding to a specific location in the
respective gene’s regulatory region — TFBS

So finding the same motif in multiple genes’ regulatory regions
suggests a reqgulatory relationship amongst those genes
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Motifs and Transcriptional Start Sites

A TFBS can be located anywhere within the Regulatory Region.

TFBS may vary slightly across different regulatory regions since non-
essential bases could mutate

ATCCCG gene
TTCCGG I gene I
ATCCCG I gene I
ATGCCG I gene I

ATGCCC gene
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\Transcription Factors and Motifs

/ molit  Transcription Factor
start of transc;ﬂo’n

No Transeription

TRANSCRIPTION BEGINS
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Challenge Problem
(Pevzner and Sze)

Find a motif in a sample of
- 20 “random” sequences (e.g. 600 nt long)
- each sequence containing an implanted pattern of length 15,
- each pattern appearing with 4 mismatches as (15,4)-motif.
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Random Sample

10 random sequences

atgaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgcecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatactgggcataaggtaca
tgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
gctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgecggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttatag
gtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
cggttttggcccttgttagaggcccccgtactgatggaaactttcaattatgagagagctaatctatcgegtgegtgttcat
aacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca
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Implanting Motif AAAAAAAGGGGGGG

atgaccgggatactgatAAAAAAAAGGGGGGGbgcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGG#

tgagtatccctgggatgacttpAAAAAAAGGGGGGGEEgctctcccgatttttgaatatgtaggatcattcgccagggtecga

gctgagaattggatgPAAAAAAAGGGGGGGitccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatpAAAAAAAGGGGGGGCttatag

gtcaatcatgttcttgtgaatggatttphAAAAAAAGGGGGGGGaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtpPAAAAAAAGGGGGGGEcaattatgagagagctaatctatcgegtgegtgttcat

aacttgagttAAAAAAAAGGGGGGthggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGG%ccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGG#
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Implanting Motif AAAAAAAGGGGGGG

atgaccgggatactgatAAAAAAAAGGGGGGGbgcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatahAAAAAAAGGGGGGGR

tgagtatccctgggatgacttAAAAAAAAGGGGGGGEtgctctcccgatttttgaatatgtaggatcattcgeccagggtccga

gctgagaattggatgAAAAAAAAGGGGGGGECccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGCttatag

gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGbaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtpPAAAAAAAGGGGGGGCaattatgagagagctaatctatcgegtgegtgttcat

aacttgagttAAAAAAAAGGGGGGGEtggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGG%Ccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGR
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Where is the Implanted Motif?

atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga
tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgecggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag
gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgegtgegtgttcat
aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga
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Implanting Motif AAAAAAGGGGGGG
with Four Mutations

atgaccgggatactgatAgAAgAAAGGttGGGbgcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGG#

tgagtatccctgggatgacttpAAAtAALGGaGtGGEtgectctcccgatttttgaatatgtaggatcattcgccagggtecga

gctgagaattggatgcAAAAAAAGGGattGitccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatpitAAtAAAGGaaGGGcttatag

gtcaatcatgttcttgtgaatggatttpACAALAAGGGCLGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgtiAtAAACAAGGaGGGdcaattatgagagagctaatctatcgegtgegtgttcat

aacttgagttpAAAAALAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGG%ccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGG#
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Where is the Motif???

atgaccgggatactgatagaagaaaggttgggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgcecg
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcggga
tgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga
gctgagaattggatgcaaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatataataaaggaagggcttatag
gtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa
cggttttggcccttgttagaggcccccgtataaacaaggagggccaattatgagagagctaatctatcgegtgegtgttcat
aacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga
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Why Finding (15,4) Motif is Difficult?

atgaccgggatactgatAgAAgAAAGGttGGGbgcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg

acccctattttttgagcagatkfagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGG#

tgagtatccctgggatgacttAA&AtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgcc gggtccga
\

gctgagaattggatgcAAAAAAAG&gatthccacgcaatcgcgaaccaacgcggacccaaaggcaagac gataaaggaga

tcccttttgcggtaatgtgccggga ctggttacgtagggaagccctaacggacttaatAtAAtAAQéEaaGGGcttatag

gtcaatcatgttcttgtgaatggattth\ACAAtAAGGGCtGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa

cggttttggcccttgttagaggcccccgkAtAAAcAAGGaGGGccaattatgagagagctaa ctatcgcgtgcgtgttcat

aacttgagttpAAAAALAGGGaGccctgggycacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta

ttggcccattggctaaaagcccaacttgaca atggaagatagaatccttgcatAc;KQAAAGGaGcGG%ccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaat gcacgaagcttActAAAAAGGaGcGG#

AgAAGAAAGGt GGG

colo LT T
CAATAAAACGGCGGG
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Defining Motifs

To define a motif, let us say we know where the motif starts in the
sequence

The motif start positions in their sequences can be represented as
S= (51, Sy S3; -1 Sp)

motif start index
gene start

S - =
So - |
= - =
— =
St o |
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Motifs: Profiles and Consensus

AGGTACTT Line up the patterns by their
CCATACGT nd
Alignment ACGTTAGT start indexes
ACGTCCAT S= (5, Sy, S3y o0y Sy)
CCGTACGG
. 11 Construct matrix profile with
A 30103 0 : PP
Profile c 240012400 frelquenaes of each nucleotide in
G 01400031 columns
T 00051014
Consensus nucleotide in each
Consensus ACGTACGT g ) :
position has the highest score in
the column
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Consensus

Think of consensus as an “ancestor” motif, from which mutated
motifs emerged

The distance between a real motif and the consensus sequence is
generally less than that for two real motifs

d =4

[ClccTAfACKE] AlcleTAacacEl
\zg / _,

d =6 ACGTAGCAGT d =3
/=3 \ =2

AGICITCIcACT AGTACAET



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Evaluating Motifs

We have a guess about the consensus sequence, but how “good” is
this consensus?

Need to introduce a scoring function to compare different guesses
and choose the “best” one.

t— number of sample DNA sequences
n — length of each DNA sequence

DNA — sample of DNA sequences (£ x n array)
| — length of the motif (I -mer)

s;— starting position of an | -mer in sequence /
s=(sy S5, ..., S;) — array of motif's starting positions
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Parameters

[“cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat,

i agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

tcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt:

' aaacgtTAgtgcaccctcy)

| agcctcsgatgtaag¥catagctgtaactattacctgccacccctattacatcttacgtCcAtataca

: ctgttatacaasd atggcggggtatgcgttttggtcgtcgtacget atcgttachtachc

—/ N ”69//

5{ =26 s5,=21 s53=3 =56 S§;= }




An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Scoring Motifs

a I
Given s = (s, ... 5;) and DNA: AGGTACTT,
| CCATACGT
. ACGTTAGT
Score (s,DNA) = max count(k,i) ACGTCCAT ot

L KSATCE) CCGTACGG |
A 30103110
C 24001400

G 01400031 [count
T 00051014
Consensus ACGTACGT

Score 3+4+4+5+3+4+3+4=30
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The Motif Finding Problem

If starting positions s = (s, ... s;) are given, finding consensus is
easy even with mutations in the sequences because we can simply
construct the profile to find the motif (consensus)

But... the starting positions s are usually not given. How can we find
the “best” profile matrix?

Goal: Given a set of DNA sequences, find a set of |-mers, one from
each sequence, that maximizes the consensus score

Input: A £xn matrix of DNA, and |, the length of the pattern to find

Output: An array of ¢ starting positions s = (s, ... S;) maximizing
Score (s,DNA )
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The Motif Finding Problem: Brute Force
Solution

Compute the scores for each possible combination of starting
positions s

The best score will determine the best profile and the consensus
pattern in DNA

The goal is to maximize Score (s,DNA) by varying the starting
positions s;, where:

s;s=1[1, .., n-1+1]
i=1[1, .., t]
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BruteForceMotifSearch

BruteForceMotifSearch(DNA, ¢, n, |)

bestScore < 0
foreachs =(sy, ... s)from (1,1 ...1) to(n-1+1,..., n-1+1)

if (Score (s,DNA) > bestScore)
bestScore < Score (s, DNA )

bestMotif & (S, ... S;)
return bestMotif
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Running Time of BruteForceMotifSearch

Varying (n -1 + 1) positions in each of ¢sequences, we are
looking at (n7 -1 + 1)?sets of starting positions

For each set of starting positions, the scoring function makes I ¢
operations, so complexity is

1it(n-1+1Dt=0(tn?)

That means that for £ =8, 7= 1000, | = 10 we must perform
approximately 102> computations — it will take thousands of years

11 NOT USABLE !!!
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The Median String Problem

Given a set of £ DNA sequences find a pattern that appears in all ¢
sequences with the minimum number of mutations

This pattern will be the motif
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Hamming Distance

The minimal number of mutattions = Hamming distance:

d,(v,w) is the number of nucleotide pairs that do not match when v
and w are aligned. For example:

d., (AAAAAA, ACAAAC) = 2
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Total Distance: An Example

Given v="acgtacgt”and s =(s4, ... 5;)

Ay (Vi X) =1~ oeremeees

'a¢gtacgt,
cctgatagacgctatctggctatccacgtacAtaggticctctgtgcgaatctatgegtttccaaccat

""""""""""""" P R ——

acotacgt
aaaAgtccgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt
dy (v, X) =2 dy (v, X) = 0, lacgtacgt;

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

dy (v, X) =1 "~ acgtacgt
ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttapcgtaggtc

__________

v is the sequence in red, x is the sequence in blue

TotalDistance (v,DNA) = 1+0+2+0+1 =4
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Total Distance: Definition

For each DNA sequence DNA;, compute all g, (v, x), where xis an
| -mer with starting position 5; (1 <s,< n—-1+1)

Find minimum of d, (v, x) among all | -mers in sequence DNA,
TotalDistance (v,DNA ) is the sum of the minimum Hamming
distances for each DNA sequence DNA;

TotalDistance (v,DNA ) = min, d,(v, s), where sis the set of
starting positions s, S,,... S;
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The Median String Problem:

Formulation

Goal: Given a set of DNA sequences, find a median string
Input: A £x nmatrix DNA, and |, the length of the pattern to find

Output: A string v of | nucleotides that minimizes
TotalDistance (v,DNA ) over all strings of that length
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Median String Search Algorithm

MedianStringSearch(DNA, & n, 1)
bestWord €< AAA..A

bestDistance €< «
for each | -mer sfrom AAA.LAtO TTT..T

if TotalDistance (s,DNA) < bestDistance
bestDistance < TotalDistance (s,DNA)
bestWord €« s
return bestWord
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Motif Finding Problem
= Median String Problem

The Motif Finding is a maximization problem while Median String is a
minimization problem

However, the Motif Finding problem and Median String problem are
computationally equivalent

We will show that minimizing 7otal/Distance is equivalent to
maximizing Score
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We are looking for the same thing
1

Alignment

Profile

Consensus

Score
JTotalDistance

Sum

0OrXr>»0nr

N
oNeoNaNeN)
OO0 PO

e e I
>0 -4> >
OnND X 0nn
o> 06+

o447

1o 0N >

OO N W

oORrs~O

OPhLhOR
1O OO
RORFRPW

SO~

RwopR
AR OO

A

C

G

T

A

C

G

T

3+4+4+5+3+4+3+4

21102121

555555505

At any column /
Score;+ TotalDistance; = t

Because there are | columns
Score + TotalDistance = | * ¢

Rearranging:
Score= | *t - TotalDistance

| * ¢ is constant the
minimization of the right side is
equivalent to the maximization
of the left side
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Motif Finding Problem vs.
Median String Problem

Why bother reformulating the Motif Finding problem into the Median
String problem?

The Motif Finding Problem needs to examine all the combinations for s.
Thatis (n -1 + 1) combinations!!!

The Median String Problem needs to examine all 4/ combinations for v.
This number is relatively smaller
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\Motif Finding: Improving the Running
Time

Recall the BruteForceMotifSearch:

1. BruteForceMotifSearch(DNA, ¢ n, |)
bestScore < 0

™

3, for each s=(s,,5,, ..., s,)from(1,1...1)to(n-1+1,..., n-1+1)
4, if (Score(s,DNA) > bestScore)

5. bestScore €< Score(s, DNA.)

6. bestMotif < (5,5, , . - ., S¢)

return bestMotif

~

Branch-bound searching
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Structuring the Search

How can we perform the line

for each s=(s,,5,,...,8; )from(1,1... 1) to(n-1+1, ..., n-1+1)?

We need a method for efficiently structuring and navigating the many
possible motifs

This is not very different than exploring all ¢-digit numbers
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\Median String: Improving the Running
Time

1. MedianStringSearch (DNA, £, n, |)
bestWord € AAA...A
3. bestDistance < oo

N

a, for each |-mer sfrom AAA..Ato TTT...T

5, if TotalDistance (s,DNA) < bestDistance

6. bestDistance < TotalDistance(s,DNA )
7. bestWord €« s

8. return bestWord
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Structuring the Search

www.bioalgorithms.info

For the Median String Problem we need to consider all 4' possible

| -mers:

—

/

dd...
dd...
dad...
dad...

tt..

How to organize this search?

dad
acC

a9
at

tt
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\Alternative Representation of the Search
Space

letA=1,C=2,G=3,T=4
Then the sequences from AA...A to TT...T become:
|

f_/%

11...11
11...13

11...14

44...44

Notice that the sequences above simply list all numbers as if we were
counting on base 4 without using 0 as a digit
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Search Tree

root

/z({ Wiy
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Analyzing Search Trees

Characteristics of the search trees:

The sequences are contained in its leaves

The parent of a node is the prefix of its children
How can we move through the tree?
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Moving through the Search Trees

Four common moves in a search tree that we are about to explore:
Move to the next leaf
Visit all the leaves
Visit the next node
Bypass the children of a node
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Visit the Next Leaf

Given a current leaf a, we need to compute the “next” leaf:

NextLeaf( g,L,k) // a: the array of digits
for /< [ downto 1 // L: length of the array
if a <k // k : max digit value

a< a+l
return a
a<1
return a

The algorithm is common addition in radix &:

Increment the least significant digit
“Carry the one” to the next digit position when the digit is at
maximal value
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NextLeaf: Example

Moving to the next leaf:

BNV 5 N/
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NextLeaf: Example (contd)

A
NN

Moving to the next leaf:

Next Location

WIN
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Visit All Leaves

Printing all permutations in ascending order:

AllLeaves(L, k) // L: length of the sequence
a<(1,..,1) // k : max digit value
while forever /[ a: array of digits

output a

a € NextlLeaf(a,L,k)

ifa=(1,...,1)

return
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\Visit All Leaves: Example

Moving through all the leaves in order:

(-2

N
LSADD

6 7 8

Order of steps

11
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Depth First Search

So we can search leaves
How about searching all vertices of the tree?

We can do this with a depth first search



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Visit the Next Vertex

NextVertex(a,/ L, k) // a: the array of digits
ifi<L // i : prefix length
g, < 1 // L: max length
return ( g, / +1) // k : max digit value
else
for j< | to !
if a,< k
a< a+l
return( a, j)
0. return(g, 0

W ©® N o~ W DN
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Example

Moving to the next vertex:

Current Location

N
9.0
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\ Example

Moving to the next vertices:

Location after 5
next vertex moves

SO

VUAR AU A
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Bypass Move

Given a prefix (internal vertex), find next vertex after skipping all

its children
Bypass (a,i,L,k) /[ a: array of digits
for j&< /to 1 /[ 7 : prefix length
if ;< to k // L : maximum length
a; < a,+1 [/ k:maxdigit value
return(g,))

return(g,0)
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Bypass Move: Example

Bypassing the descendants of “2-":

Current Location

N
.0
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\ Example

Bypassing the descendants of “2-":

Next Location @

/5

/ <
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Brute Force Search Again

BruteForceMotifSearchAgain(DNA, £ n, 1)
s<(1,1,...,1)
bestScore < Score(s,DNA)

while forever
s& Nextleaf(s, £ n-1+1)

if (Score (s,DNA ) > bestScore)
bestScore < Score (s, DNA)

bestMotif < (5,55, ..., S)
return bestMotif
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Can We Do Better?

Sets of s = (54, S5, ...,5¢) may have a weak profile for the first /
positions (s, S>, ...,S;)

Every row of alignment may add at most | to Score

New notation: Score (s,/,DNA ) denotes a partial consensus score of
the /7 x| alignment matrix involving only the first i rows of DNA with
starting positions (s, S5, ...,S;)

Optimism: if all subsequent (¢-/) positions (s,,,, ...s,) add
(t—=7) *1 to Score(s,iDNA)

If Score (s,,DNA) +(t—17) *| < BestScore, it makes no sense to
search in vertices of the current subtree

- Use ByPass ()
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Branch and Bound Algorithm for Motif
Search

Since each level of the tree goes root
deeper into search, discarding a

prefix discards all following

branches S

This saves us from looking at
(n—=1+ 1) leaves

Use NextVertex() and
ByPass() to navigate the tree S3
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\Branch and Bound Motif Search

W ©® N9 N e

o S e S e S =
o v &> L N = O

17.

18

10 return_bestMotii

BranchAndBoundMotifSearch( DNA,£n,/ )

s < (1,...,1)
bestScore < 0
i€ 1
while / >0
if /<t
optimisticScore < Score (s, i, DNA) +(t—7) */
if optimisticScore < bestScore
(s, /) € Bypass(s,i n-1+1) //examine next prefix
//of length / if possible
else
(s, /) € NextVertex(s, ; n-1+1) //enlarge the prefix if
//possible
else

if Score(s,DNA) > bestScore
bestScore < Score(s)
bestMotif < (s;, S,, S3, ..., S})

(s,/) € NextVertex(s,it n- 1+ 1)
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Median String Search Improvements

Recall the computational differences between motif search and
median string search

The Motif Finding Problem needs to examine all (n—-1 +1)¢
combinations for s.

The Median String Problem needs to examine 4! combinations of
v. This number is relatively small

We want to use median string algorithm with the Branch and Bound
trick!
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Branch and Bound Applied to Median
String Search

Note that if the total distance for a prefix is greater than that for the
best word so far:

TotalDistance (prefix, DNA ) > BestDistance
there is no use exploring the remaining part of the word

We can eliminate that branch and BYPASS exploring that branch
further
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Bounded Median String Search

BranchAndBoundMedianStringSearch( DNA, t,n,1.)
s<(1,...,1)
bestDistance € «
i€ 1
while / >0
if / <l
prefix € string corresponding to the first / nucleotides of s
optimisticDistance < TotalDistance(prefix, DNA)
if optimisticDistance > bestDistance
(s, /) € Bypass(s,/ |, 4)
[lexamine next prefix

/lof length i if

possible
else
(s, /) € NextVertex(s, /|, 4 /llenlarge the
prefix if possible
else
word € nucleotide string corresponding to s
if TotalDistance(s, DNA) < bestDistance
bestDistance < TotalDistance(word, DNA)
bestWord < word
(s,/) &€ NextVertex(s,/, 1, 9)
return bestWord
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Improving the Bounds

Given an | -mer w, divided into two parts at point /
u: prefix wy, ..., w,
v suffix wi,y, ..., w,

Find minimum distance for ¢ in a sequence

No instances of ¢ in the sequence have distance less than the
minimum distance

Note this doesn't tell us anything about whether ¢ is part of any
motif. We only get a minimum distance for prefix v
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Improving the Bounds (contd)

Repeating the process for the suffix v gives us a minimum distance
for v

Since v and v are two substrings of w, and included in motif w,
we can assume that the minimum distance of v plus minimum
distance of v can only be less than the minimum distance for w
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Better Bounds

Searching for prefix

We may find many instances of prefix " with a
minimum distance ¢

mind(¥) = ¢ mind (¥) = ¢ mind(¥) = ¢

DMA sequence

Likewise for 7

But for U and V combined, U is not at its
minimum distance location, neither is ¥V

mnd{g+1 2+2)

But at least we know w (prefix # suffix v) cannot
have distance fessthan ;d(v) + ;d®@)
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Better Bounds (contd)

If d(prefix) + d(suffix) > bestDistance:

Motif w (prefix - suffix) cannot give a better (lower) score than
d(prefix) + d(suffix)

In this case, we can ByPass()
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Better Bounded Median String Search

ImprovedBranchAndBoundMedianString(DNA, £.n,l )
s=(,1,..,1)
bestdistance = o
i=1
while /> 0
if / <l
prefix = nucleotide string corresponding to (s, S, S3 ..., S;)
optimisticPrefixDistance = TotalDistance (prefix, DNA)
if (optimisticPrefixDistance < bestsubstring [ /1)
bestsubstring [ i | = optimisticPrefixDistance
if(l-/<7/)
optimisticSurxDistance = bestsubstring [ -/ ]
else
optimisticSurxDistance = 0;
if optimisticPrefixDistance + optimisticSufxDistance > bestDistance
(s, /) = Bypass(s, /|, 4)
else
(s, 7) = NextVertex(s, ; 1, 4)

else
word = nucleotide string corresponding to (5,5, S3 ..., S)
if TotalDistance( word, DNA) < bestDistance
bestDistance = TotalDistance(word, DNA)
bestWord = word
(s,/) = NextVertex(s, / |, 4)
return bestWord
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More on the Motif Problem

Exhaustive Search and Median String are both exact algorithms

They always find the optimal solution, though they may be too slow
to perform practical tasks

Many algorithms sacrifice optimal solution for speed
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CONSENSUS: Greedy Motif Search

Find two closest | -mers in sequences 1 and 2 and forms 2 x|
alignment matrix with Score (s,2,DNA )

At each of the following ¢-2 iterations CONSENSUS finds a “best”
I-mer in sequence / from the perspective of the already constructed
(/-1 ) x| alignment matrix for the first (/-1) sequences

In other words, it finds an I-mer in sequence / maximizing
Score (s,[,DNA )

under the assumption that the first (/-1) | -mers have been already
chosen

CONSENSUS sacrifices optimal solution for speed: in fact the bulk
of the time is actually spent locating the first two | -mers
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Some Motif Finding Programs

CONSENSUS MULTIPROFILER Keich,
Hertz, Stromo (1989) Pevzner (2002)
GibbsDNA MITRA

Lawrence et al (1993) Eskin, Pevzner (2002)

MEME Pattern Branching

Bailey, Elkan (1995) Price, Pevzner (2003)

RandomProjections
Buhler, Tompa (2002)
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Planted Motif Challenge

Input:
n sequences of length /7 each

l,d

Output:
Motif M, of length |

Variants of interest have a hamming distance of d from M
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When is the Problem Solvable?

Assume that the background sequences are independent and
identically-distributed (i.i.d.)

the probability that a given | -mer C occurs with up to d
substitutions at a given position of a random sequence is:

S

the expected number of length | motifs that occur with up to ¢
substitutions at least once in each of the £random length »
sequences is:

E(I , d1t1 n) — 4I (1_ (1_ p(l,d))n_l+l)t

Very rough estimate — overlapping motifs not modelled, and the
assumption of i.i.d. background distribution is usually incorrect.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

When is the Problem Solvable?

the expected number of length / motifs that occur with up to ¢
substitutions at least once in each of the £ random length »

Sequences IS. Probability that a sequence
of length n contains an / -mer
with Hamming distance at
most d from a given | -mer

A

E(// d,t, /7) = 4/(1 - (1 — p(/,d))n_/+1)t
\ J

Ny
Probability that a | -mer
at a given position has
Hamming distance > d
from a given | -mer
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When is the Problem Solvable?

20 random sequences of length 600 are expected to contain more
than one (9, 2)-motif by chance, whereas the chances of finding a
random (10, 2)-motif are less than 107,

So, the (9, 2) problem is impossible to solve, because “random
motifs” are as likely as the planted motif. However, for the (10, 2)
the probability of a random motif occurring is very small.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

\How to proceed?

- Exhaustive search?

AGh A TG TGCCAGAGCCCCAAAAAGT GGCTGCTAAAGT

GTTGGGTGTTCTCTCAAAATGATGACGAAGCTGGGTCT GAGACAGA
AGTGTCCTGCTATAATTTAACTGATTTGAACCGCAACACT TCCGAA
GGGGATCGGATCCCATGCGCTGAGT TAGGACTCCACAGT CAGAGAC
AAGCAAACCAT TTTCTATCGGAGCCCCGGCCT TAACCCCACGATTC
ATGTGAAAGTCCATTTTTCGTAT CAGACGAGATGTGAGCATTTAGC
TGCTAGGAT CAGAGT CAGAGT GACACT TAGT CAGAATGGGTCCCTG
GTTGCGACCACTTCCGAGGACCT TAAGACCTGAGCATAACGACTAC

- Run time is high
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Heuristic search

Searching the space of starting positions
Gibbs sampling
The Projection Algorithm
Searching the space of motifs
Pattern Branching
Profile Branching

www.bioalgorithms.info
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Notation

t sequences DNA,,...,DNA,, each of length n

| >0 integer; the goal is to find an | -mer in each of the sequences
such that the ,similarity™ between these | -mers is maximized

Let (@, ..., a;) be a list of | -mers contained in DNA,, ... , DNA,.
These form a ¢ x | alignment matrix.

Let X(a) = (x;) denote the corresponding 4xI profile, where x;
denotes the frequency with which we observe nucleotide /at
position j. Usually, we add pseudo counts to ensure that X does not
contain any zeros (Laplace correction)
Let 77, ;, denote the number of occurrences of nucleotide g; at position
J, P, denote the probability of the occurrence of nucleotide a in all
DNA,,...,DNA,

Sis a weight of the correction X . = N, + PP,
i t+
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Greedy profile search

the probability that a given | -mer z=z,...Z was generated by a given
profile X

I
P(z,X)=]]z.,
/=1

Any | -mer that is similar to the consensus string of X will have a
“high” probability, while dissimilar ones will have “low” probabilities.
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Greedy profile search

I
P(z,X)=]]2z..
/=1

1 2 3 4 S 6 I 8 9
A 33 |.60 [.08 |0 0 49 |1./1 .06 |.15
C 37 .13 (.04 |0 0 .03 |.07 (.05 |.19
G 18 |14 |81 |1 0 45 .12 |.84 |.20
T A2 .13 |.07 |0 1 03 |.09 |.05 |.46

P(CAGGTAAGT | X) = 0.02417294365920 and
P(TCCGTCCCA | X) = 0.00000000982800



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Greedy profile search

For a given profile X'and a sequence swe can find the X-most
probable | -merin s
Z=argmaxP(z| X)

Algorithm: "start with a random seed profile and then attempt to
Improve on it using a greedy strategy”

Given sequences DNA,,...,DNA, of length n, randomly select one | -mer g,
from each sequence DNA; and construct an initial profile X. For each
sequence DNA;, determine the X-most probable | -mer a’.. Set X equal
to the profile obtained from a7%,..., a’ and repeat.

Does not work well
the number of possible seeds is huge

In each iteration, the greedy profile search method can change any or
all £of the profile | -mers and thus will jump around in the search space.
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Gibbs Sampling

'start with a random seed profile, then change one |-mer per
iteration.”

Randomly select an | -mer g;in each input sequence DNA,.
Randomly select one input sequence DNA, .
Build a 4 x| profile X from a,,..., a,_;, @,.7,---, a;-

Compute background frequencies Q from input sequences
DNA,,..., DNA,_,, DNA,.,,..., DNA,.

For each | -mer a € DNA,,, compute w(a) = P(al| X)
P(al Q)
Set a, = g, for some a € DNA, chosen randomly with probability
w(a)
w(a’)

1 W ” 'eDNA
Repeat until “converged e
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Gibbs Sampling

often works well in practice

difficulties:
finding subtle motifs

its performance degrades if the input sequences are skewed, that is, if
some nucleotides occur much more often than others. The algorithm
may be attracted to low complexity regions like AAAAAA....

modifications:
use “relative entropies” rather than frequencies

Another modification is the use of “phase shifts”: The algorithm can get
trapped in local minima that are shifted up or down a few positions from
the strongest pattern. To address this, in every Mth iteration the
algorithm tries shifting some &, up or down a few positions
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\The Projection Algorithm

‘choose k of | positions at random, then use the k selected positions
of each |-mer x as a hash function h (x). When a sufficient number
of I-mers hash to the same bucket, it is likely to be enriched for the

planted motif”

XXXXOXOX

5
s XXXXXXOX \
Hashed to the same bucket
XXXXOXOX /
XXXXOXOX

Viewing x as a point in | -dimensional Hamming space, /(x)is the
projection of x onto a A~dimensional subspace.

54
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Motif finding
. .

Definition \

Scoring

Motif finding Median string problem

Total distance

BruteForceSearch

BranchAndBound
BruteForceSearch

{ MedianSttringSearch

Algorithms

BranchAndBound

MedianStringSearch

Approximate
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Motif finding

Consensus

Profile

Scoring

Median string problem

Total distance

‘ BruteForceSearch
‘ MedianSttringSearch
BranchAndBoundBruteForceSe

arch

Motif finding

BranchAndBound
MedianStringSearch

Algorithms

Space of start. positions

Space of motifs

Greedy profile search

Gibbs sampling

ProjectionAlgorithm
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The Projection Algorithm

Choose distinct & of the /positions at random. For an /-mer x, the
hash function / (x ) is obtained by concatenating the selected &
residues of x.

If M is the (unknown) motif, then we call the bucket with hash
value A2 (M) the planted bucket.

The key idea is that, if kK </ — g, then there is a good chance that
some of the ¢ planted instances of M will be hashed to the planted
bucket, namely all planted instances for which the & hash positions
and d substituted positions are disjoint.

So, there is a good chance that the planted bucket will be enriched
for the planted motif, and will contain more entries than an average
bucket.
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The Projection Algorithm - an example

S, cagtaat
S, ggaactt
S; aagcaca

and the (unknown) (3, 1)-motif M = aaa, hashing with k£ = 2 using
the first 2 of | = 3 positions produces the following hash table:

h(x) | positions h(x) | positions h(x) | positions
aa |((1,5),(2,3),(3,1) |cg |- ta |(1,4)
ac |(2,4), (3,5 ct |(2,5) tc |-

ag |(1,2), (3,2 ga |(2,2) tg |-

at [(1,6) gc |(3,3) tt [ (2,6)
ca |(1,1),(3,4),(3,6) |gg |(2.1)

CcC |- gt [(1.2)

The motif M is planted at positions (1, 5), (2, 3) and (3, 1) and in this
example, all three instances hash to the planted bucket A (M) =aa.
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The Projection Algorithm
— finding the planted bucket

the algorithm does not know which bucket is the planted bucket.

it attempts to recover the motif from every bucket that contains at
least s elements, where s is a threshold that is set so as to identify
buckets that look as if they may be the planted bucket.

In other words, the first part of the Projection algorithm is a
heuristic for finding promising sets of I-mers in the sequence. It

must be followed by a refinement step that attempts to generate a
motif from each such set.

The algorithm has three main parameters:
the projection size x;,
the bucket (inspection) threshold s, and
and the number of independent trails m.
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The Projection Algorithm
— projection size

the algorithm should hash a significant number of instances of the
motif into the planted bucket, while avoiding contamination of the
planted bucket by random background I-mers.

What & to choose so that the average bucket will contain less than 1
random | -mer?

Since we are hashing £(n— | + 1) I-mers into 4% buckets, if we
choose ksuch that 44> t(n -1+ 1), then the average bucket will
contain less than one random I-mer.

For example, in the Challenge (15, 4)-problem, with £ =20 and n =
600, we must choose kto satisfy k<1 —d=15-4 =11 and
s log(t(n-1 +1)) _ log(20(600-15+1))
log(4) log(4)

~0,/6
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The Projection Algorithm
— bucket threshold

In the Challenge Problem, a bucket size of s = 3 or 4 is practical, as
we should not expect too many instances to hash to the same
bucket in a reasonable number of trials.

If the total amount of sequence is very large, then it may be that
one cannot choose £ to satisfy both

kK<l —-d and 4> t(n -l +1).
In this case, set k=1 —d —1, as large as possible, and set the
bucket threshold s to twice the average bucket size
t(n -1+ 1)/4%
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The Projection Algorithm

— Number of independent trials

Our goal: to choose m so that the probability is at least g = 0.95

that the planted bucket contains s or more planted motif instances
in at least one of the m trials.

let p’(l, d, k) be the probability that a given planted motif instance
hashes to the planted bucket, that is: 4
N

B

Then the probability that fewer than s planted instances hash to the
planted bucket in a given trial is B, ,. 4415 - HEre, B, /(5 is the
probability that there are fewer than s successes in ¢independent

Bernoulli trials, each trial having probability p of success (binomial
probability distribution function).

p'(l,d, k) =
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The Projection Algorithm

— Number of independent trails
Binomial distribution

Bio) = Zom p'(L—p)”

If the algorithm is run for m trails, the probability that s or more
planted instances hash to the planted bucket in at least one trial is:

1= Bpiarys) )™ 2 4
To satisfy this equation, choose: {

log(1-q) w
log (Bt,p'(l,d,k) (5))
Using this criterion for m, the choices for & and s above require at

most thousands of trails, and usually many fewer, to produce a
bucket containing sufficiently many instances of the planted motif.
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Projection Algorithm

Choose £ of the | positions at random
Hash all | -mers of the given sequences into buckets

Inspect all buckets with more than s positions and refine the
found motifs

Repeat m times, return the motif with the best score



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Motif refinement

we have already found 4 of the planted motif residues. These, together with
the remaining | — k residues, should provide a strong signal that makes it
easy to obtain the motif in only a few iterations of refinement.

We will process each bucket of size sto obtain a candidate motif. Each of
these candidates will be “refined” and the best refinement will be returned
as the final solution.

Candidate motifs are refined using the expectation maximization (EM)
algorithm. This is based on the following probabilistic model:
An instance of some length-I motif occurs exactly once per input sequence.
Instances are generated from a 4 x | weight matrix model W, whose (/, j)-th

entry gives the probability that base / occurs in position j of an instance,
independent of its other positions.

The remaining n—l residues in each sequence are chosen randomly and
independently according to some background distribution.
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Motif refinement
- expectation maximization

Based on the following probabilistic model:
An instance of some length-I motif occurs exactly once per input
sequence.

Instances are generated from a 4 x | weight matrix model W, whose
(/, 7)-th entry gives the probability that base / occurs in position j of
an instance, independent of its other positions.

The remaining n -l residues in each sequence are chosen randomly
and independently according to some background distribution.

Let Sbe a set of finput sequences, and let P be the background
distribution. EM-based refinement seeks a weight matrix model W
that maximizes the likelihood ratio PH(S |W", P)

Pr(S | P)
that is, a motif model that explains the input sequences much better than
P alone.
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Motif refinement

The position at which the motif occurs in each sequence is not fixed
a priori, making the computation of W™ difficult, because

Pr (S| W, P) must be summed over all possible locations of the
instances.

To address this, the EM algorithm uses an iterative calculation that,
given an initial guess W/, at the motif model, converges linearly to a
locally maximum-likelihood model in the neighbourhood of W/,,.

An initial guess W, for a bucket A is formed as follows: set W, (/, j)
to the frequency of base /among the j +th positions of all | -mers in
h.

This guess forms a centroid for /4, in the sense that positions that
are well conserved in /7 are strongly biased in W, , while poorly
conserved positions are less biased. To avoid zero entries in W/,
add a Laplace correction of b;, to W, (/, j), where b;is the
background probability of residue / in the input.
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Motif refinement

Once we have used the EM algorithm to obtain a refinement W,” of
W, , the final step is to identify the planted motif from W,". (Details
of EM skipped.)

To do so, we select from each input sequence the I-mer x with the

largest likelihood ratio: )
Pr(x | W)

Pr(x | P)

The resulting multiset 7 of I-mers represents the motif in the input
that is most consistent with W/,

Let C be the consensus of 7, and let s(7) be the number of
elements of 7 whose Hamming distance to (- is <d. The algorithm
returns the sequence ¢ that minimizes s(7), over all considered
buckets # and over all trials.
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Summary of Projection Algorithm

Input: sequences s,, . .., S;, parameters &, s and /m
Output: best guess motif

fori=1tom do
choose k different positions 7, < {1,2,...,1}

for each I-mer xe s;, ..., s, do

compute hash value Ay (x)
Store x in hash bucket

for each bucket with >s elements do
refine bucket using EM algorithm

return consensus pattern of the best refined bucket
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Performance of Projection Algorithm

The performance of PROJECTION compared to other motif finders

on the (I, d)-motif problem. The measure is the average

performance definedas | Kn P| /| Ku P| where K is the set of
the It residue positions of the planted motif instances, and P is the

corresponding set of positions predicted by the algorithm.

| d Gibbs WINNOWER SP-STAR PROJECTION
10 2 0.20 0.78 0.56 0.82
11 2 0.68 0.90 0.94 0.91
12 3 0.03 0.75 0.33 0.81
13 3 0.60 0.92 0.92 0.92
14 4 0.02 0.02 0.20 0.77
15 4 0.19 0.92 0.73 0.93
16 5 0.02 0.03 0.04 0.70
17 5 0.28 0.03 0.69 0.93
18 6 0.03 0.03 0.03 0.74
19 6 0.05 0.03 0.40 0.96
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Pattern Branching Algorithm

let M be an unknown motif of length I, and let A, be an occurrence
of M in the sample with exactly £ substitutions.

Given A,, how do we determine M ? Since the Hamming distance
d(M,A,) = k, we have M  D_,(A,), defined as the set of patterns
of distance exactly k& from A,.

We could look at all
A
k

elements of D_,(A,) and score each pattern as a guess of M.
However, as this must be applied to all sample strings A, of length |,
it would be too slow.
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How to search motif space?

Start from random
. sample strings (A,)

Search motif space
for the star
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Motif finding

Space of start. positions

Greedy profile search
Gibbs sampling

ProjectionAlgorithm

Space of motifs

PaternBranching

ProfileBranching
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Search small neighborhoods

f’“‘n
'a,f
f"“‘\l

I '1.5%__-_-_.__;

| .
1%._- ___; |IH--1 -.;.'I

7N
S

f”“‘ﬂ
.hg
f”“\

"mx




An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Exhaustive local search

A lot of work, most
of it unnecessary
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Best Neighbor

X X X

www.bioalgorithms.info

Branch from the seed
strings

Find best neighbor —
highest score

Don't consider
branches where the
upper bound is not as
good as best score so
far — in each step
move to the “best
neighbor” in D_, (A4;)
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Scoring

PatternBranching uses total distance score:

For each sequence S; in the sample DNA ={DNA,, ..., DNA_}, let
d(A DNA;) =min{d (A P) | Pe DNA}.

Then the total distance of pattern A from the sample is
d (A S)=) d(A DNA ).

DNA e DNA

For a pattern A, let D=Neighbor (A ) be the set of patterns which
differ from A in exactly 1 position.

We define BestNeighbor (A ) as the pattern B € D=Neighbor (A)
with lowest total distance d (B, DNA).
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PatternBranching Algorithm

PatternBranching (DNA| k).
Motif = arbitrary motif pattern
For each | -mer A,In DNA
For j= 0 to k
If d(A;,DNA) < d(Motif, DNA)
Motif = A;
Ai.; = BestNeighbor (A;)
Output Motif

More thorough search:. instead of single pattern we can keep r
patterns B € D_, (A; ) with the lowest total distance d(8,0NA ) .
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PatternBranching Performance

PatternBranching is faster than other pattern-based algorithms
Motif Challenge Problem:

sample of 7 = 20 sequences

/N = 600 nucleotides long

implanted pattern of length | = 15
. kK= 4 mutations

Algorithm Success Rate  Runming Time
PROJECTION about 100% 2 nunutes
MITRA 100% 5 nunutes
MULTIPROFILER 99.7% 1 minute
PatternBranching 99 7% 3 seconds
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Profile Branching

Profile Branching algorithm is similar to the Pattern Branching
Algorithm. However, the search is in the space of motif
profiles, instead of motif patterns. The algorithm is obtained
from the Pattern Branching Algorithm by making the following
changes:

1. convert each sample string A, to a profile X (4,),
2. generalize the scoring method to score profiles,
3. modify the branching method to apply to profiles, and
4.  use the top-scoring profile found as a seed for the EM algorithm.

Details omitted
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Profile Branching

Profile Branching is about 5 times slower than the Pattern
Branching algorithm

The Pattern Branching Algorithm clearly outperforms the
Profile Branching Algorithm on Challenge-like problems.
However, pattern-based algorithms have difficulty finding
motifs with many degenerate positions.
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\PMS (Planted Motif Search)

Generate all possible I-mers out of the input sequence DNA;. Let C;
be the collection of these I-mers.
Example:

AAGTCAGGAGT

C; = 3-mers:

AAG AGT GTC TCA CAG AGG GGA GAG AGT
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All patterns at Hamming distance d=1

AAGTCAGGAGT
AAG AGT
CAG CGT
GAG GGT
TAG TGT
ACG ACT
AGG ATT
ATG AAT
AAC AGA
AAA AGC
AAT AGG

GTC
ATC
CTC
TTC
GAC
GCC
GGC
GTA
GTG
GTT

TCA
ACA
CCA
GCA
TAA

TGA
TTA

TCC
TCG
TCT

CAG
AAG
GAG
TAG

CCG
CGG
CTG
CAA
CAC
CAT

AGG
CGG
TGG
GGG
ACG
ATG

AGA
AGT
AGC

GGA
AGA
CGA
TGA

GAA
GCA
GTA

GGC
GGG
GGT

GAG

CAG
TAG

GCG
GGG
GTG
GAA
GAC
GAT

AGT
CGT
GGT
TGT
ACT
ATT

AAT

AGA
AGC
AGG
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Sort the lists

AAG AGT GTC TCA CAG AGG GGA GAG AGT
AAA AAT ATC ACA AAG AAG AGA AAG AAT

AAC ACT CTC CCA CAA ACG CGA CAG AcCT
AAT AGA GAC GCA CAC AGA GAA GAA AGA
ACG AGC GCC TAA CAT AGC GCA GAC AGC
AGG AGG GGC TCC CCG AGT GGC GAT AGG
ATG ATT GTA TCG CGG ATG GGG GCG ATT

CAG CGT GTG TCT CTG CGG GGT GGG CGT
GAG GGT GTT TGA GAG GGG GTA GIG GGT
TAG TGT TTC TTA TAG TGG TGA TAG TGT
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Eliminate duplicates

AGT
AAT
ACT
AGA
AGC
AGG
ATT
CGT
GGT
TGT

GTC
ATC
CTC
GAC
GCC
GGC
GTA
GTG
GTT
TTC

TCA
ACA
CCA
GCA
TAA

TCC
TCG
TCT

TGA
TTA

CAG

CAA
CAC
CAT
CCG
CGG
CTG
GAG
TAG

AGG

AGC
AGT
ATG"
CGG
GGG
TGG

www.bioalgorithms.info

GGA

CGA

Let L denote the obtained list of | -mers

GAG

GAA

GAT
GCG
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Find motif common to all lists

Follow this procedure for all sequences

Find the motif common to all ; (once duplicates have been
eliminated)

This is the planted motif
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PMS Running Time

It takes time to
Generate variants
Sort lists

Find and eliminate duplicates o(m(;j:@dj

(m denotes the number of different |-mers which are in the first DNA

sequence)
1Y, 4 |
Ol tm 3 —
d W

w is the word length of the computer

Running time of this algorithm:



