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Finding Regulatory Motifs in 

DNA Sequences 

Micro-array experiments indicate that sets of genes are regulated by 
common “transcription factors (TFs)”. These attach to the DNA 
upstream of the coding sequence, at certain binding sites. Such a 
site displays a short motif of DNA that is specific to a given type of 
TF. 
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Combinatorial Gene Regulation 

• A microarray experiment showed that when gene X is knocked out, 
20 other genes are not expressed 

 

• How can one gene have such drastic effects? 
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Regulatory Proteins 

• Gene X encodes regulatory protein, a.k.a. a transcription factor 
(TF) 

 

• The 20 unexpressed genes rely on gene X’s TF to induce 
transcription 

 

• A single TF may regulate multiple genes  
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Regulatory Regions 

• Every gene contains a regulatory region (RR) typically stretching 
100-1000 bp upstream of the transcriptional start site 

 

• Located within the RR are the Transcription Factor Binding 
Sites (TFBS), also known as motifs, specific for a given 
transcription factor 

 

• TFs influence gene expression by binding to a specific location in the 
respective gene’s regulatory region  – TFBS  

 

• So finding the same motif in multiple genes’ regulatory regions 
suggests a regulatory relationship amongst those genes 
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Motifs and Transcriptional Start Sites 
 
 

gene ATCCCG 

gene TTCCGG 

gene ATCCCG 

gene ATGCCG 

gene ATGCCC 

• A TFBS can be located anywhere within the Regulatory Region. 

• TFBS may vary slightly across different regulatory regions since non-
essential bases could mutate 
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Transcription Factors and Motifs 
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Challenge Problem 
(Pevzner and Sze) 

• Find a motif in a sample of  

       -  20 “random” sequences (e.g. 600 nt long) 

       -  each sequence containing an implanted pattern of length 15,  

        - each pattern appearing with 4 mismatches as  (15,4)-motif. 
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Random Sample 

10 random sequences 
  

atgaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatactgggcataaggtaca 
 
tgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttatag 
 
gtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtactgatggaaactttcaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca 
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Implanting Motif AAAAAAAGGGGGGG 

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa 
 
tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa 
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Implanting Motif AAAAAAAGGGGGGG 

 

atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGa 

tgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 

gctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttatag 

gtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 

cggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcat 

aacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaag 

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa 
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Where is the Implanted Motif?  

atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaaggggggga 

tgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 

gctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 

tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttatag 

gtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 

cggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcat 

aacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 

ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaag 

ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga 
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Implanting Motif AAAAAAGGGGGGG  

with Four Mutations 

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa 
 
tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa 
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Where is the Motif???  

atgaccgggatactgatagaagaaaggttgggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcggga 
 
tgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgcaaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatataataaaggaagggcttatag 
 
gtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtataaacaaggagggccaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga 
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Why Finding (15,4) Motif is Difficult?  

atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccg 
 
acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGa 
 
tgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccga 
 
gctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggaga 
 
tcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttatag 
 
gtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaa 
 
cggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcat 
 
aacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgta 
 
ttggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaag 
 
ctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa 

AgAAgAAAGGttGGG 

cAAtAAAAcGGcGGG 
..|..|||.|..||| 
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Defining Motifs  

 
• To define a motif, let us say we know where the motif starts in the 

sequence 

• The motif start positions in their sequences can be represented as   
s = (s 1, s 2, s 3, …, s t ) 
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                 A G G T A C T T 
            C C A T A C G T 
Alignment  A C G T T A G T 
            A C G T C C A T 
            C C G T A C G G 
            __________________ 
       
          A 3 0 1 0 3 1 1 0 
Profile      C  2 4 0 0 1 4 0 0 
          G 0 1 4 0 0 0 3 1 
          T 0 0 0 5 1 0 1 4 
         __________________ 
Consensus   A C G T A C G T 

Motifs: Profiles and Consensus 

• Line up the patterns by their 
start indexes  

    s = (s 1, s 2, s 3, …, s t ) 

 

• Construct matrix profile with 
frequencies of each nucleotide in 
columns 
 

• Consensus nucleotide in each 
position has the highest score in 
the column 
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Consensus 
• Think of consensus as an “ancestor” motif, from which mutated 

motifs emerged 

 

• The distance  between a real motif and the consensus sequence is 
generally less than that for two real motifs 
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Evaluating Motifs 

• We have a guess about the consensus sequence, but how “good” is 
this consensus? 

• Need to introduce a scoring function to compare different guesses 
and choose the “best” one.  

 

• t – number of sample DNA sequences 

• n – length of each DNA sequence 

• DNA – sample of DNA sequences (t x n array) 

• l – length of the motif (l -mer) 

• si – starting position of an l -mer in sequence i 

• s = (s 1, s 2, …, st ) – array of motif’s starting positions 
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Parameters 
 

 
 cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat 

 

 agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 

 

 aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 

 

 agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca 

 

 ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc 

 

l = 8 

t = 5 

s 1 = 26     s 2 = 21     s 3= 3      s 4 = 56    s 5 = 60  s  

DNA 

n = 69  
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                 A G G T A C T T 
            C C A T A C G T 
   A C G T T A G T 
            A C G T C C A T 
            C C G T A C G G 
         __________________ 
       
          A 3 0 1 0 3 1 1 0                                          
          C 2 4 0 0 1 4 0 0 
          G 0 1 4 0 0 0 3 1 
          T 0 0 0 5 1 0 1 4 
       __________________ 
Consensus   A C G T A C G T 
 

Score                   3+4+4+5+3+4+3+4=30 

Scoring Motifs 

 
• Given s = (s 1, … st ) and DNA: 
 
 Score (s,DNA )  = 
 
  

 

 

  
 

 

 

l 

t 
 

l

i GCTAk

ikcount
1 },,,{

),(max

count 
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The Motif Finding Problem 

• If starting positions s = (s1, … st ) are given, finding consensus is 
easy even with mutations in the sequences because we can simply 
construct the profile to find the motif (consensus)  

• But… the starting positions s are usually not given. How can we find 
the “best” profile matrix? 

 

• Goal: Given a set of DNA sequences, find a set of l -mers, one from 
each sequence, that maximizes the consensus score 

 

• Input: A t xn matrix of DNA, and l, the length of the pattern to find 

 

• Output: An array of t  starting positions  s = (s 1, … st ) maximizing 
Score (s ,DNA ) 
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The Motif Finding Problem: Brute Force 
Solution 
 
• Compute the scores for each possible combination of starting 

positions s 

• The best score will determine the best profile and the consensus 
pattern in DNA 

• The goal is to maximize Score (s,DNA) by varying the starting 
positions si , where: 

si = [1, …, n – l + 1] 

i = [1, …, t ] 
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BruteForceMotifSearch 

BruteForceMotifSearch(DNA, t, n, l) 

bestScore  0 

for each s = (s 1, … st ) from (1,1 . . . 1)  to (n- l +1, . . ., n- l +1) 

 if (Score (s,DNA ) > bestScore ) 

  bestScore  Score (s, DNA ) 

  bestMotif   (s 1, … st )  

return bestMotif 
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Running Time of BruteForceMotifSearch 

• Varying (n - l + 1) positions in each of t sequences, we are 
looking at (n - l + 1)t sets of starting positions 

 

• For each set of starting positions, the scoring function makes lt  
operations, so complexity is  

 lt (n - l + 1)t  = O (lt n t ) 

 

• That means that for t = 8, n = 1000, l = 10 we must perform 

approximately 1025 computations – it will take thousands of years 

 

• !!! NOT USABLE !!! 
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The Median String Problem 

 
• Given a set of t DNA sequences find a pattern that appears in all t 

sequences with the minimum number of mutations  

 

• This pattern will be the motif 
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Hamming Distance 

• The minimal number of mutattions = Hamming distance:  

• dH (v,w ) is the number of nucleotide pairs that do not match when v 

and w are aligned. For example: 

 

dH (AAAAAA, ACAAAC) = 2 
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Total Distance: An Example 

• Given v = “acgtacgt” and s = (s 1, … st )  

     

  

                           acgtacgt 

cctgatagacgctatctggctatccacgtacAtaggtcctctgtgcgaatctatgcgtttccaaccat 

                    acgtacgt 

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 

  acgtacgt 

aaaAgtCcgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 

                                                       acgtacgt 

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca 

                                                           acgtacgt 

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtaGgtc 

 

v  is the sequence in red, x  is the sequence in blue 
 

• TotalDistance (v,DNA ) = 1+0+2+0+1 = 4 

 

dH (v, x) = 2 

dH (v, x) = 1 

dH (v, x) = 0 

dH (v, x) = 0 

dH (v, x) = 1 
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Total Distance: Definition 

 

• For each DNA sequence DNAi , compute all dH (v, x ), where x is an 

l -mer with starting position si  (1 < si <  n – l + 1) 

• Find minimum of dH (v, x ) among all l -mers in sequence DNAi 

TotalDistance (v,DNA ) is the sum of the minimum Hamming 

distances for each DNA sequence DNAi  

• TotalDistance (v,DNA ) = mins dH (v, s ), where s is the set of 

starting positions s1, s2,… st 
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The Median String Problem:  
Formulation 

• Goal: Given a set of DNA sequences, find a median string 

• Input: A t x n matrix DNA, and l, the length of the pattern to find 

• Output: A string v of l nucleotides that minimizes 

TotalDistance (v,DNA ) over all strings of that length 
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Median String Search Algorithm 

MedianStringSearch(DNA, t, n, l ) 

bestWord  AAA…A 

bestDistance 

    for each l -mer s from AAA…A to TTT…T    

      if TotalDistance (s,DNA ) < bestDistance 

      bestDistance TotalDistance (s,DNA )  

      bestWord  s 

  return bestWord 
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Motif Finding Problem  
= Median String Problem 
 

• The Motif Finding is a maximization problem while Median String is a 
minimization problem  

• However, the Motif Finding problem and Median String problem are 
computationally equivalent 

• We will show that minimizing TotalDistance is equivalent to 
maximizing Score 
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We are looking for the same thing 

              a G g t a c T t 

              C c A t a c g t 

Alignment     a c g t T A g t 

              a c g t C c A t 

              C c g t a c g G 

             _________________ 

    

           A  3 0 1 0 3 1 1 0 

Profile    C  2 4 0 0 1 4 0 0 

           G  0 1 4 0 0 0 3 1  

           T  0 0 0 5 1 0 1 4 

             _________________ 

 

Consensus     a c g t a c g t 

 

Score         3+4+4+5+3+4+3+4 

 

TotalDistance 2+1+1+0+2+1+2+1 

 

• At any column i 

Scorei + TotalDistancei = t   

• Because there are l columns     

Score + TotalDistance = l * t  

• Rearranging:          

Score = l * t - TotalDistance  

• l * t  is constant the 

minimization of the right side is 

equivalent to the maximization 

of the left side 

 

l 

t 

                 A G G T A C T T 
            C C A T A C G T 
     Alignment       A C G T T A G T 
            A C G T C C A T 
            C C G T A C G G 
         __________________ 
       
            A 3 0 1 0 3 1 1 0                                           
     Profile        C 2 4 0 0 1 4 0 0 
            G 0 1 4 0 0 0 3 1   
            T  0 0 0 5 1 0 1 4 
       __________________ 
     Consensus   A C G T A C G T 
 

     Score               3+4+4+5+3+4+3+4 
 
     TotalDistance       2 1 1 0 2 1 2 1 
 
     Sum                5 5 5 5 5 5 5 5 
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Motif Finding Problem vs.  
Median String Problem 

• Why bother reformulating the Motif Finding problem into the Median 
String problem? 

 

• The Motif Finding Problem needs to examine all the combinations for s. 
That is (n - l + 1)t combinations!!!  

 

• The Median String Problem needs to examine all 4l combinations for v. 
This number is relatively smaller 
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Motif Finding: Improving the Running 
Time 
Recall the BruteForceMotifSearch: 

 

1. BruteForceMotifSearch(DNA, t, n, l ) 

2.  bestScore  0 

3. for each s=(s 1 ,s 2 , . . ., s t  ) from (1,1 . . . 1) to (n- l +1, . . ., n- l+1) 

4.  if (Score (s,DNA) > bestScore ) 

5.   bestScore  Score (s, DNA ) 

6.   bestMotif  (s 1 ,s 2 , . . . , s t )  

7. return bestMotif 

 

Branch-bound searching  
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Structuring the Search 

• How can we perform the line 
 

for each s=(s 1 ,s 2 , . . . , s t  ) from (1,1 . . . 1) to (n- l +1, . . ., n- l+1)? 

 

• We need a method for efficiently structuring and navigating the many 
possible motifs  

• This is not very different than exploring all t -digit numbers 
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Median String: Improving the Running 
Time 
1. MedianStringSearch (DNA, t, n, l ) 

2. bestWord  AAA…A 

3. bestDistance  ∞ 

4.     for each l -mer s from AAA…A to TTT…T     

5.       if TotalDistance (s,DNA  ) < bestDistance 

6.       bestDistance TotalDistance (s,DNA )  

7.       bestWord  s 

8.   return bestWord 
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Structuring the Search 

• For the Median String Problem we need to consider all 4l possible     
l -mers: 
 

 
 

aa… aa 

aa… ac 

aa… ag 

aa… at 

. 

. 

tt… tt 

 

         How to organize this search? 

 

l 
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Alternative Representation of the Search 
Space 

• Let A = 1, C = 2, G = 3, T = 4 

• Then the sequences from AA…A to TT…T become: 

 
11…11 

11…12 

11…13 

11…14 

. 

. 

44…44 

• Notice that the sequences above simply list all numbers as if we were 
counting on base 4 without using 0 as a digit 

l 
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Search Tree 

 
 

 
       a-             c-            g-            t- 

 

 
aa  ac  ag  at  ca  cc  cg  ct  ga  gc  gg  gt  ta  tc  tg  tt 

 

 

-- 

root 
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Analyzing Search Trees 

• Characteristics of the search trees: 

• The sequences are contained in its leaves 

• The parent of a node is the prefix of its children 

• How can we move through the tree? 
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Moving through the Search Trees 

• Four common moves in a search tree that we are about to explore: 

• Move to the next leaf 

• Visit all the leaves 

• Visit the next node 

• Bypass the children of a node 
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Visit the Next Leaf 

 
1. NextLeaf( a,L,k )        // a : the array of digits 
2. for i  L downto 1  // L: length of the array 

3.     if ai < k                  // k : max digit value 
4.        ai  ai + 1 

5.            return a 
6.        ai  1 

7. return a 

 
• The algorithm is common addition in radix k: 
• Increment the least significant digit 
• “Carry the one” to the next digit position when the digit is at 

maximal value 
 

Given a current leaf a, we need to compute the “next” leaf: 
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NextLeaf: Example 

• Moving to the next leaf: 

 
 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 
Current Location 
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NextLeaf: Example (cont’d) 

• Moving to the next leaf: 

 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 
Next Location 
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Visit All Leaves 

• Printing all permutations in ascending order: 

 

1.  AllLeaves(L,k)     // L: length of the sequence 

2.  a  (1,...,1)        // k : max digit value 

3.     while forever      // a : array of digits 

4.        output a 

5.        a  NextLeaf(a,L,k) 

6.        if a = (1,...,1) 

7.            return 
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Visit All Leaves: Example 

• Moving through all the leaves in order: 

 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

     1     2     3    4    5    6    7     8    9    10    11    12   13   14   15 

-- 

Order of steps 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Depth First Search 

 
• So we can search leaves 

 

• How about searching all vertices of the tree? 

 

• We can do this with a depth first search 
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Visit the Next Vertex 

1. NextVertex(a,i,L,k)      // a : the array of digits 
2.   if i < L                      // i  : prefix length  
3.     a i+1  1                 // L: max length 

4.     return ( a, i +1)        // k : max digit value 
5.   else 
6.     for j  l  to 1 
7.       if aj < k 
8.         aj  aj +1 
9.         return( a , j ) 
10.   return(a, 0) 
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Example 

• Moving to the next vertex: 

 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 
Current Location 
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Example 

• Moving to the next vertices: 

 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 

Location after 5 
next vertex moves 
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Bypass Move 

• Given a prefix (internal vertex), find next vertex after skipping all 
its children 

 

1. Bypass (a,i,L,k)       // a : array of digits 

2.  for j  i  to 1         // i  : prefix length 

3.         if aj < to k           // L : maximum length 

4.            aj  aj +1     // k : max digit value 

5.            return(a,j) 

6.    return(a,0) 
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Bypass Move: Example 

• Bypassing the descendants of “2-”: 

 

 

 

 
        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 
Current Location 
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Example 

• Bypassing the descendants of “2-”: 

 

 

 
 

 

        1-              2-              3-             4- 

 

 
11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

 

 

-- 
Next Location 
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Brute Force Search Again 

 

1.  BruteForceMotifSearchAgain(DNA, t, n, l ) 

2.  s  (1,1,…, 1) 

3.  bestScore  Score(s,DNA) 

4.  while forever 

5.   s   NextLeaf (s, t, n - l +1) 

6.   if (Score (s,DNA ) > bestScore) 

7.    bestScore  Score (s, DNA ) 

8.    bestMotif  (s1,s2 , . . . , st)  

9.  return bestMotif 
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Can We Do Better? 

• Sets of s = (s 1, s 2, …,s t ) may have a weak profile for the first i 

positions (s 1, s 2, …,s i ) 

• Every row of alignment may add at most l  to Score 

• New notation: Score (s,i,DNA ) denotes a partial consensus score of 

the i x l alignment matrix involving only the first i rows of DNA with 

starting positions (s 1, s 2, …,s i )  

• Optimism: if all subsequent  (t – i ) positions (s i+1, …s t ) add  

             (t – i ) * l   to  Score (s,i,DNA ) 

• If Score (s,i,DNA ) + (t – i ) * l  < BestScore, it makes no sense to 

search in vertices of the current subtree 

• Use ByPass () 
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Branch and Bound Algorithm for Motif 
Search 
• Since each level of the tree goes 

deeper into search, discarding a 
prefix discards all following 
branches 

 

• This saves us from looking at    
 (n – l + 1)t-i  leaves 

• Use NextVertex() and 
ByPass() to navigate the tree 
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Branch and Bound Motif Search 
1. BranchAndBoundMotifSearch(DNA,t,n,l ) 
2. s  (1,…,1) 

3. bestScore  0 

4. i  1 

5. while i > 0 

6.  if i < t 
7.   optimisticScore  Score ( s, i, DNA ) +(t – i ) * l 

8.   if optimisticScore < bestScore 

9.      (s, i )  Bypass(s,i, n- l+1)  //examine next prefix 

10.                                                                        //of length i  if possible  

11.   else  

12.      (s, i )  NextVertex(s, i, n- l+1) //enlarge the prefix if 

13.                                                                          //possible 

14.  else  

15.   if Score(s,DNA ) > bestScore 
16.       bestScore  Score(s) 
17.       bestMotif  (s1 , s2 , s3 , …, st) 

18.                (s,i )  NextVertex(s,i,t, n - l+ 1) 

19. return bestMotif 
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Median String Search Improvements 

• Recall the computational differences between motif search and 
median string search 

 

• The Motif Finding Problem needs to examine all (n –l +1)t  

combinations for s.  

 

• The Median String Problem needs to examine 4 l combinations of 
v. This number is relatively small 

 

• We want to use median string algorithm with the Branch and Bound 
trick! 
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Branch and Bound Applied to Median 
String Search 

• Note that if the total distance for a prefix is greater than that for the 
best word so far: 

 

 TotalDistance (prefix, DNA ) > BestDistance  

 

  there is no use exploring the remaining part of the word 

 

• We can eliminate that branch and BYPASS exploring that branch 
further  
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Bounded Median String Search 

 

 

 

 

1. BranchAndBoundMedianStringSearch(DNA,t,n,l ) 
2. s  (1,…,1) 

3. bestDistance  

4.  i  1 

5. while i > 0 

6.    if i < l 
7.        prefix   string corresponding to the first i nucleotides of s 
8.        optimisticDistance  TotalDistance(prefix,DNA) 

9.   if optimisticDistance > bestDistance 
      (s, i )  Bypass(s,i, l, 4 )    

 //examine next prefix 

                                                                         //of length i  if 

possible  
1.   else  

      (s, i )  NextVertex(s, i, l, 4)    //enlarge the 

prefix if possible 
1.   else  
2.   word  nucleotide string corresponding to s 
3.   if  TotalDistance(s,DNA) < bestDistance 
4.       bestDistance  TotalDistance(word, DNA) 

5.       bestWord  word 
6.   (s,i )  NextVertex(s,i, l, 4) 

7. return bestWord 
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 Improving the Bounds 

• Given an l -mer w, divided into two parts at point i 

• u : prefix w1, …, wi ,  

• v : suffix wi +1, ..., wl  

 

• Find minimum distance for u  in a sequence   

 

• No instances of u  in the sequence have distance less than the 
minimum distance 

 

• Note this doesn’t tell us anything about whether u  is part of any 
motif.  We only get a minimum distance for prefix u 
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Improving the Bounds (cont’d) 

• Repeating the process for the suffix v  gives us a minimum distance 
for v 

 

• Since u  and v  are two substrings of w,  and included in motif w, 
we can assume that the minimum distance of u plus minimum 
distance of v can only be less than the minimum distance for w  
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Better Bounds 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Better Bounds (cont’d) 

• If d(prefix) + d(suffix) > bestDistance: 

 

• Motif w (prefix ∙ suffix) cannot give a better (lower) score than 
d(prefix) + d(suffix)  

 

• In this case, we can ByPass() 
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Better Bounded Median String Search 
1. ImprovedBranchAndBoundMedianString(DNA,t,n,l ) 
2.   s = (1, 1, …, 1) 
3.   bestdistance  = ∞ 
4.   i = 1 
5.   while i > 0 
6.  if i < l 
7.    prefix = nucleotide string corresponding to (s1, s2, s3, …, si ) 
8.    optimisticPrefixDistance = TotalDistance (prefix, DNA) 
9.        if (optimisticPrefixDistance < bestsubstring [ i ]) 
10.            bestsubstring [ i  ] = optimisticPrefixDistance 
11.            if (l - i < i ) 
12.                       optimisticSufxDistance = bestsubstring [l -i ]  
13.            else 
14.               optimisticSufxDistance = 0;     
15.            if optimisticPrefixDistance + optimisticSufxDistance > bestDistance 
16.                (s, i ) = Bypass(s, i, l, 4) 

17.            else 
18.                (s, i ) = NextVertex(s, i, l, 4) 

19.  else 
20.     word = nucleotide string corresponding to (s1,s2, s3, …, st) 
21.     if TotalDistance( word, DNA) < bestDistance 
22.       bestDistance = TotalDistance(word, DNA) 
23.       bestWord = word 
24.       (s,i ) = NextVertex(s, i, l, 4) 

25. return bestWord 
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More on the Motif Problem 

• Exhaustive Search and Median String are both exact algorithms 

 

• They always find the optimal solution, though they may be too slow 
to perform practical tasks 

 

• Many algorithms sacrifice optimal solution for speed 
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CONSENSUS: Greedy Motif Search 

• Find two closest l -mers in sequences 1 and 2 and forms 2 x l 
alignment matrix with Score (s,2,DNA ) 

• At each of the following t-2 iterations CONSENSUS finds a “best”    
l-mer in sequence i  from the perspective of the already constructed 
(i -1 ) x l alignment matrix for the first (i -1) sequences 

• In other words, it finds an l-mer in sequence i  maximizing  

                                   Score (s,i,DNA )  

 under the assumption that the first (i -1) l -mers have been already 

chosen  

• CONSENSUS sacrifices optimal solution for speed:  in fact the bulk 
of the time is actually spent locating the first two l -mers 
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Some Motif Finding Programs 

• CONSENSUS 

 Hertz, Stromo (1989) 

 

• GibbsDNA 

 Lawrence et al (1993) 

 

• MEME 

Bailey, Elkan (1995) 

 

• RandomProjections 

Buhler, Tompa (2002) 

• MULTIPROFILER Keich, 

Pevzner (2002) 

 

• MITRA 

    Eskin, Pevzner (2002) 

 

• Pattern Branching 

 Price, Pevzner (2003) 
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Planted Motif Challenge 

• Input: 

• n sequences of length m each 

• l,d 

 

• Output:  

• Motif M, of length l 

• Variants of interest have a hamming distance of d  from M  

 

 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

When is the Problem Solvable? 
 
• Assume that the background sequences are independent and 

identically-distributed (i.i.d.) 

• the probability that a given l -mer C  occurs with up to d 
substitutions at a given position of a random sequence is: 

 

 

• the expected number of length l motifs that occur with up to d 
substitutions at least once in each of the t random length n 
sequences is: 

 

• Very rough estimate – overlapping motifs not modelled, and the 
assumption of i.i.d. background distribution is usually incorrect.  
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When is the Problem Solvable? 
 
•the expected number of length l  motifs that occur with up to d  
substitutions at least once in each of the t  random length n  
sequences is: 

Probability that a l -mer 

at a given position has 

Hamming distance > d 

from a given l -mer 

Probability that a sequence 

of length n contains an / -mer 

with Hamming distance at 

most d from a given l -mer 

tln
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When is the Problem Solvable? 
 
• 20 random sequences of length 600 are expected to contain more 

than one (9, 2)-motif by chance, whereas the chances of finding a 

random (10, 2)-motif are less than 10−7. 

• So, the (9, 2) problem is impossible to solve, because “random 

motifs” are as likely as the planted motif. However, for the (10, 2) 

the probability of a random motif occurring is very small. 
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How to proceed? 

• Exhaustive search? 

 

 

 

 

 

 

 

 

 

• Run time is high 
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Heuristic search 

• Searching the space of starting positions 

• Gibbs sampling 

• The Projection Algorithm 

• Searching the space of motifs 

• Pattern Branching 

• Profile Branching 
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Notation 

• t  sequences DNA1,…,DNAt , each of length n 

• l >0  integer; the goal is to find an l -mer in each of the sequences 
such that the „similarity“ between these l -mers is maximized 

• Let (a1, . . . , at ) be a list of l -mers contained in DNA1 , … , DNAt . 
These form a t × l  alignment matrix. 

• Let X (a ) = (xij ) denote the corresponding 4×l  profile, where xij 

denotes the frequency with which we observe nucleotide i at 
position j. Usually, we add pseudo counts to ensure that X does not 
contain any zeros (Laplace correction) 

• Let         denote the number of occurrences of nucleotide ai at position 
j,        denote the probability of the occurrence of nucleotide a in all 

DNA1,…,DNAt  

•  is a weight of the correction 
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Greedy profile search 

• the probability that a given l -mer z=z1…zl was generated by a given 

profile X 

 

 

• Any l -mer that is similar to the consensus string of X  will have a 

“high” probability, while dissimilar ones will have “low” probabilities. 
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Greedy profile search 

 

 

 

 

 

 

 

• P(CAGGTAAGT | X) = 0.02417294365920 and 

• P(TCCGTCCCA | X) = 0.00000000982800 

1 2 3 4 5 6 7 8 9 

A .33 .60 .08 0 0 .49 .71 .06 .15 

C .37 .13 .04 0 0 .03 .07 .05 .19 

G .18 .14 .81 1 0 .45 .12 .84 .20 

T .12 .13 .07 0 1 .03 .09 .05 .46 
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Greedy profile search 

• For a given profile X and a sequence s we can find the X-most 
probable l -mer in s 

 

• Algorithm: “start with a random seed profile and then attempt to 
improve on it using a greedy strategy” 

• Given sequences DNA1,…,DNAt of length n, randomly select one l -mer ai  

from each sequence DNAi and construct an initial profile X. For each 
sequence DNAi , determine the X-most probable l -mer a'i . Set X equal 

to the profile obtained from a’1 ,…, a’t and repeat. 

• Does not work well  

• the number of possible seeds is huge 

• In each iteration, the greedy profile search method can change any or 
all t of the profile l -mers and thus will jump around in the search space. 

)|(maxarg XzPz 
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Gibbs Sampling 

• “start with a random seed profile, then change one l-mer per 
iteration.” 

• Randomly select an l -mer ai in each input sequence DNAi . 

• Randomly select one input sequence DNAh . 

• Build a 4 × l profile X  from a1 ,…, ah−1 , ah+1 ,…, at . 

• Compute background frequencies Q  from input sequences 
 DNA1 ,…, DNAh−1 , DNAh+1 ,…, DNAt . 

• For each l -mer a  DNAh , compute  

 

• Set ah = a, for some a  DNAh chosen randomly with probability  

 

 

• Repeat until “converged” 
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Gibbs Sampling 
 
• often works well in practice 

• difficulties: 

• finding subtle motifs 

• its performance degrades if the input sequences are skewed, that is, if 
some nucleotides occur much more often than others. The algorithm 
may be attracted to low complexity regions like AAAAAA.... 

• modifications:  

• use “relative entropies” rather than frequencies 

• Another modification is the use of “phase shifts”: The algorithm can get 
trapped in local minima that are shifted up or down a few positions from 
the strongest pattern. To address this, in every M th iteration the 
algorithm tries shifting some ai up or down a few positions 
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The Projection Algorithm 

• “choose k of l positions at random, then use the k selected positions 
of each l-mer x as a hash function h (x ). When a sufficient number 
of l-mers hash to the same bucket, it is likely to be enriched for the 
planted motif” 

 

 

 

 

 

 

• Viewing x as a point in l -dimensional Hamming space, h(x) is the 

projection of x onto a k-dimensional subspace. 

 

s1 

s2 

s3 

s4 

xxxxoxox 

xxxxxxox 

xxxxoxox 

xxxxoxox 

Hashed to the same bucket 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Motif finding 

Motif finding 
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Profile 
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Median string problem 

Total distance 
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Approximate 
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MedianSttringSearch 

BranchAndBound

BruteForceSearch 

BranchAndBound 

MedianStringSearch 
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Motif finding 

Motif finding 

Approximate search 

Definition 

Consensus 

Profile 

 
Scoring 

Median string problem 

Total distance 

Algorithms 

Exact 

BruteForceSearch 

MedianSttringSearch 

BranchAndBoundBruteForceSe

arch 

BranchAndBound 

MedianStringSearch 

Space of start. positions Space of motifs 

Greedy profile search 

Gibbs sampling 

ProjectionAlgorithm 
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The Projection Algorithm 

• Choose distinct k of the l positions at random. For an l -mer x, the 
hash function h (x ) is obtained by concatenating the selected k 
residues of x. 

• If M  is the (unknown) motif, then we call the bucket with hash 
value h (M ) the planted bucket. 

• The key idea is that, if k < l − d, then there is a good chance that 
some of the t planted instances of M will be hashed to the planted 
bucket, namely all planted instances for which the k  hash positions 
and d  substituted positions are disjoint. 

• So, there is a good chance that the planted bucket will be enriched 
for the planted motif, and will contain more entries than an average 
bucket. 
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The Projection Algorithm – an example 

• s1 cagtaat 

• s2 ggaactt 

• s3 aagcaca 

• and the (unknown) (3, 1)-motif M = aaa, hashing with k = 2 using 
the first 2 of l = 3 positions produces the following hash table: 

 

 

 

 

 

 
• The motif M  is planted at positions (1, 5), (2, 3) and (3, 1) and in this 

example, all three instances hash to the planted bucket h (M ) =aa. 

h(x) positions h(x) positions h(x) positions 

aa (1,5), (2,3), (3,1) cg - ta (1,4) 

ac (2,4), (3,5) ct (2,5) tc - 

ag (1,2), (3,2) ga (2,2) tg - 

at (1,6) gc (3,3) tt (2,6) 

ca (1,1), (3,4), (3,6) gg (2.1) 

cc - gt (1.2) 
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The Projection Algorithm  
– finding the planted bucket 
• the algorithm does not know which bucket is the planted bucket. 

• it attempts to recover the motif from every bucket that contains at 
least s  elements, where s  is a threshold that is set so as to identify 
buckets that look as if they may be the planted bucket. 

• In other words, the first part of the Projection algorithm is a 
heuristic for finding promising sets of l-mers in the sequence. It 

must be followed by a refinement step that attempts to generate a 
motif from each such set. 

• The algorithm has three main parameters: 

• the projection size k, 

• the bucket (inspection) threshold s, and 

• and the number of independent trails m. 
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The Projection Algorithm  
– projection size 

• the algorithm should hash a significant number of instances of the 
motif into the planted bucket, while avoiding contamination of the 
planted bucket by random background l-mers. 

• What k to choose so that the average bucket will contain less than 1 
random l -mer? 

• Since we are hashing t (n − l + 1)  l-mers into 4k buckets, if we 
choose k such that 4 k > t (n − l + 1), then the average bucket will 
contain less than one random l-mer. 

• For example, in the Challenge (15, 4)-problem, with t = 20 and n = 
600, we must choose k to satisfy k < l − d = 15 − 4 = 11 and 

76,6
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The Projection Algorithm  
– bucket threshold 
• In the Challenge Problem, a bucket size of s = 3 or 4 is practical, as 

we should not expect too many instances to hash to the same 
bucket in a reasonable number of trials. 

• If the total amount of sequence is very large, then it may be that 
one cannot choose k to satisfy both 

  k < l −d  and  4 k > t (n −l +1).  

 In this case, set k = l −d −1, as large as possible, and set the 

bucket threshold s  to twice the average bucket size  

     t (n − l + 1)/4k. 
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The Projection Algorithm  
– Number of independent trials 
 • Our goal: to choose m so that the probability is at least q = 0.95 

that the planted bucket contains s  or more planted motif instances 
in at least one of the m trials. 

• let p’ (l, d, k ) be the probability that a given planted motif instance 
hashes to the planted bucket, that is: 

 

 

 

 

• Then the probability that fewer than s planted instances hash to the 

planted bucket in a given trial is Bt,p’ (l,d,k)(s) . Here, Bt,p’ (s ) is the 

probability that there are fewer than s successes in t independent 
Bernoulli trials, each trial having probability p of success (binomial 
probability distribution function). 
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The Projection Algorithm  
– Number of independent trails 
 • Binomial distribution 

 

 

• If the algorithm is run for m  trails, the probability that s  or more 
planted instances hash to the planted bucket in at least one trial is: 

   1 − (Bt,p’ (l,d,k )(s ) ) m  q. 

• To satisfy this equation, choose: 

     

 

• Using this criterion for m, the choices for k  and s  above require at 
most thousands of trails, and usually many fewer, to produce a 
bucket containing sufficiently many instances of the planted motif. 
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Projection Algorithm 

1. Choose k of the l positions at random 

2. Hash all l -mers of the given sequences into buckets 

3. Inspect all buckets with more than s  positions and refine the 
found motifs 

4. Repeat m times, return the motif with the best score 
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Motif refinement 

• we have already found k of the planted motif residues. These, together with 
the remaining l − k residues, should provide a strong signal that makes it 

easy to obtain the motif in only a few iterations of refinement. 

• We will process each bucket of size s to obtain a candidate motif. Each of 
these candidates will be “refined” and the best refinement will be returned 
as the final solution. 

• Candidate motifs are refined using the expectation maximization (EM) 
algorithm. This is based on the following probabilistic model: 

• An instance of some length-l motif occurs exactly once per input sequence. 

• Instances are generated from a 4 × l  weight matrix model W, whose (i, j )-th 

entry gives the probability that base i  occurs in position j  of an instance, 
independent of its other positions. 

• The remaining n−l  residues in each sequence are chosen randomly and 

independently according to some background distribution. 
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Motif refinement 
 - expectation maximization 

• Based on the following probabilistic model: 

• An instance of some length-l motif occurs exactly once per input 

sequence. 

• Instances are generated from a 4 × l  weight matrix model W, whose  

(i, j )-th entry gives the probability that base i  occurs in position j  of 
an instance, independent of its other positions. 

• The remaining n −l  residues in each sequence are chosen randomly 

and independently according to some background distribution. 

• Let S be a set of t input sequences, and let P  be the background 
distribution. EM-based refinement seeks a weight matrix model W 
that maximizes the likelihood ratio 

 

 that is, a motif model that explains the input sequences much better than 
P  alone. 
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Motif refinement 

 

• The position at which the motif occurs in each sequence is not fixed 
a priori, making the computation of W * difficult, because 
Pr  (S | W,  P ) must be summed over all possible locations of the 
instances. 

• To address this, the EM algorithm uses an iterative calculation that, 
given an initial guess W0  at the motif model, converges linearly to a 
locally maximum-likelihood model in the neighbourhood of W0 . 

• An initial guess Wh for a bucket h is formed as follows: set Wh  (i, j ) 
to the frequency of base i among the j -th positions of all l -mers in 
h. 

• This guess forms a centroid for h, in the sense that positions that 
are well conserved in h  are strongly biased in Wh , while poorly 
conserved positions are less biased. To avoid zero entries in Wh , 
add a Laplace correction of bi , to Wh (i, j ), where bi is the 
background probability of residue i  in the input. 
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Motif refinement 

• Once we have used the EM algorithm to obtain a refinement Wh
*  of 

Wh , the final step is to identify the planted motif from Wh
*. (Details 

of EM skipped.) 

• To do so, we select from each input sequence the l-mer x with the 

largest likelihood ratio: 

 

 

• The resulting multiset T  of l-mers represents the motif in the input 

that is most consistent with Wh
*. 

• Let CT  be the consensus of T, and let s (T ) be the number of 

elements of T  whose Hamming distance to CT  is d. The algorithm 

returns the sequence CT
*  that minimizes s (T ), over all considered 

buckets h  and over all trials. 

 
 Px
Wx h
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Summary of Projection Algorithm 

Input: sequences s1 , . . . , st , parameters k, s  and m 

Output: best guess motif 

for i = 1 to m  do 

choose k  different positions Ik  {1, 2, . . . , l }  

for each l-mer x  s1 , . . . , st  do 

compute hash value hIk (x) 

Store x  in hash bucket 

for each bucket with s  elements do 

refine bucket using EM algorithm 

return consensus pattern of the best refined bucket 
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Performance of Projection Algorithm 

• The performance of PROJECTION compared to other motif finders 
on the (l, d )-motif problem. The measure is the average 
performance defined as | K  P | / | K  P | where K  is the set of 
the lt  residue positions of the planted motif instances, and P  is the 

corresponding set of positions predicted by the algorithm. 

l d Gibbs WINNOWER SP-STAR PROJECTION 

10 2 0.20 0.78 0.56 0.82 

11 2 0.68 0.90 0.94 0.91 

12 3 0.03 0.75 0.33 0.81 

13 3 0.60 0.92 0.92 0.92 

14 4 0.02 0.02 0.20 0.77 

15 4 0.19 0.92 0.73 0.93 

16 5 0.02 0.03 0.04 0.70 

17 5 0.28 0.03 0.69 0.93 

18 6 0.03 0.03 0.03 0.74 

19 6 0.05 0.03 0.40 0.96 
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Pattern Branching Algorithm 

• let M  be an unknown motif of length l, and let A0  be an occurrence 

of M  in the sample with exactly k  substitutions. 

• Given A0 , how do we determine M ? Since the Hamming distance 
d (M,A0 ) = k, we have M  D=k(A0 ), defined as the set of patterns 
of distance exactly k  from A0 . 

• We could look at all  

 

 

 elements of D=k (A0 ) and score each pattern as a guess of M. 
However, as this must be applied to all sample strings A0 of length l, 

it would be too slow. 
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How to search motif space? 

Start from random 
sample strings (A0 ) 

Search motif space 
for the star 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Motif finding 
Approximate search 

Space of motifs 

Space of start. positions 

Greedy profile search 

Gibbs sampling 

ProjectionAlgorithm 

PaternBranching 

ProfileBranching 
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Search small neighborhoods 
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Exhaustive local search 

A lot of work, most 
of it unnecessary 
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Best Neighbor 

Branch from the seed 
strings 

Find best neighbor − 
highest score 

Don’t consider  
branches where the 
upper bound is not as 
good as best score so 
far – in each step 
move to the “best 
neighbor” in D=1 (Ai )  
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Scoring 

• PatternBranching uses total distance score: 

• For each sequence Si  in the sample DNA = {DNA1, . . . , DNAn}, let 

   d (A, DNAi ) = min {d (A, P ) | P  DNAi }. 

• Then the total distance of pattern A  from the sample is 

   d  (A, S ) =       d ( A, DNAi   ). 

 

• For a pattern A, let D=Neighbor (A ) be the set of patterns which 
differ from A  in exactly 1 position.  

• We define BestNeighbor (A ) as the pattern B  D=Neighbor (A ) 
with lowest total distance d (B, DNA ). 


DNA DNAi
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PatternBranching Algorithm 

• PatternBranching (DNA,l,k ): 

 Motif = arbitrary motif pattern 

 For each l -mer A0 in DNA 

  For j = 0  to k 

   If d (Aj ,DNA ) < d (Motif, DNA ) 

    Motif = Aj 

   Aj+1  = BestNeighbor (Aj ) 

 Output Motif 

 

• More  thorough search: instead of single pattern we can keep r 
patterns B  D=1 (Aj ) with the lowest total distance d (B ,DNA ) . 
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PatternBranching Performance 

• PatternBranching is faster than other pattern-based algorithms 

• Motif Challenge Problem:  

• sample of n = 20 sequences 

• N = 600 nucleotides long 

• implanted pattern of length l = 15  

• k = 4 mutations 
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Profile Branching 

• Profile Branching algorithm is similar to the Pattern Branching 
Algorithm. However, the search is in the space of motif 
profiles, instead of motif patterns. The algorithm is obtained 
from the Pattern Branching Algorithm by making the following 
changes: 

1. convert each sample string A0 to a profile X (A0 ), 

2. generalize the scoring method to score profiles, 

3. modify the branching method to apply to profiles, and 

4. use the top-scoring profile found as a seed for the EM algorithm. 

• Details omitted 
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Profile Branching 

• Profile Branching is about 5 times slower than the Pattern 
Branching algorithm 

• The Pattern Branching Algorithm clearly outperforms the 
Profile Branching Algorithm on Challenge-like problems. 
However, pattern-based algorithms have difficulty finding 
motifs with many degenerate positions. 
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PMS (Planted Motif Search) 

• Generate all possible l-mers out of the input sequence DNAi . Let Ci  

be the collection of these l-mers. 

• Example: 

AAGTCAGGAGT 

Ci = 3-mers: 

AAG AGT GTC TCA CAG AGG GGA GAG AGT 
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All patterns at Hamming distance d = 1   

AAGTCAGGAGT  

 

AAG  AGT  GTC  TCA  CAG  AGG  GGA  GAG  AGT 

CAG  CGT ATC ACA AAG CGG AGA AAG CGT 

GAG  GGT CTC CCA GAG TGG CGA CAG GGT 

TAG TGT TTC GCA TAG GGG TGA TAG TGT 

ACG ACT GAC TAA CCG ACG GAA GCG ACT 

AGG ATT GCC TGA CGG ATG GCA GGG ATT 

ATG AAT GGC TTA CTG AAG GTA GTG AAT 

AAC AGA GTA TCC CAA AGA GGC GAA AGA 

AAA AGC GTG TCG CAC AGT GGG GAC AGC 

AAT AGG GTT TCT CAT AGC GGT GAT AGG 
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Sort the lists 

AAG  AGT  GTC  TCA  CAG  AGG  GGA  GAG  AGT 

AAA AAT ATC ACA AAG AAG AGA AAG AAT 

AAC ACT CTC CCA CAA ACG CGA CAG ACT 

AAT AGA GAC GCA CAC AGA GAA GAA AGA 

ACG AGC GCC TAA CAT AGC GCA GAC AGC 

AGG AGG GGC TCC CCG AGT GGC GAT AGG 

ATG ATT GTA TCG CGG ATG GGG GCG ATT 

CAG  CGT GTG TCT CTG CGG GGT GGG CGT 

GAG  GGT GTT TGA GAG GGG GTA GTG GGT 

TAG TGT TTC TTA TAG TGG TGA TAG TGT 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Eliminate duplicates 

AAG  AGT  GTC  TCA  CAG  AGG  GGA  GAG  AGT 

AAA AAT ATC ACA AAG AAG AGA AAG AAT 

AAC ACT CTC CCA CAA ACG CGA CAG ACT 

AAT AGA GAC GCA CAC AGA GAA GAA AGA 

ACG AGC GCC TAA CAT AGC GCA GAC AGC 

AGG AGG GGC TCC CCG AGT GGC GAT AGG 

ATG ATT GTA TCG CGG ATG GGG GCG ATT 

CAG  CGT GTG TCT CTG CGG GGT GGG CGT 

GAG  GGT GTT TGA GAG GGG GTA GTG GGT 

TAG TGT TTC TTA TAG TGG TGA TAG TGT 

Let L denote the obtained list of l -mers 
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Find motif common to all lists 

• Follow this procedure for all sequences 

• Find the motif common to all Li  (once duplicates have been 

eliminated) 

• This is the planted motif 
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PMS Running Time 

• It takes time to 

• Generate variants    

• Sort lists 

• Find and eliminate duplicates 

 

 (m  denotes the number of different l-mers which are in the first DNA 

sequence) 

 

•  Running time of this algorithm: 

w  is the word length of the computer 
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