
Bioinformatics Algorithms

Physical Mapping –
Restriction Mapping



Bioinformatics Algorithms

Molecular Scissors

Molecular Cell Biology, 4th edition



Bioinformatics Algorithms

Discovering Restriction Enzymes

• HindII - first restriction enzyme – was discovered accidentally in 

1970 while studying how the bacterium Haemophilus influenzae

takes up DNA from the virus

• Recognizes and cuts DNA at sequences:

• GTGCAC

• GTTAAC 
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Discovering Restriction Enzymes

Werner Arber Daniel Nathans Hamilton Smith

Werner Arber – discovered restriction 
enzymes

Daniel Nathans - pioneered the application 
of restriction for the 
construction of genetic 
maps

Hamilton Smith - showed that restriction 
enzyme cuts DNA in the 
middle of a specific sequence

My father has discovered a servant 
who serves as a pair of scissors. If 
a foreign king invades a bacterium, 
this servant can cut him in small 
fragments, but he does not do any 
harm to his own king. Clever 
people use the servant with the 
scissors to find out the secrets of 
the kings. For this reason my father 
received the Nobel Prize for the 
discovery of the servant with the 
scissors".

Daniel Nathans’ daughter 
(from Nobel lecture)
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Recognition Sites of Restriction Enzymes

Molecular Cell Biology, 4th edition
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Restriction Maps

• A map showing 
positions of restriction 
sites in a DNA 
sequence

• If DNA sequence is 
known then 
construction of 
restriction map is a 
trivial exercise

• In early days of 
molecular biology DNA 
sequences were often 
unknown

• Biologists had to solve 
the problem of 
constructing restriction 
maps without knowing 
DNA sequences
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Physical map, Restriction mapping 
problem
• Definition: Let S be a DNA sequence. A physical map consists of 

a set M of markers and a function p : M → N that assigns each 
marker a position of M in S.

N denotes the set of nonnegative integers

• For a set X of points on the line, let

δ X = { | x1 - x2| : x1, x2 ∈ X }

• denote the multiset of all pairwise distances between points in X. In 
the restriction mapping problem, a subset E ⊆ δ X (of 
experimentally obtained fragment lengths) is given and the task is 
to reconstruct X from E.
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Full Restriction Digest: Multiple Solutions

• Reconstruct the order of the fragments from the sizes of the
fragments {3,5,5,9} 

• Alternative ordering of restriction fragments:

• Reconstruction from the full restriction digest is impossible.
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Measuring Length of Restriction 
Fragments
• Restriction enzymes break DNA into 

restriction fragments. 

• Gel electrophoresis is a process for 
separating DNA by size and measuring 
sizes of restriction fragments 

• Visualization: autoradiography or 
fluorescence

Direction 

of DNA 

movement
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Three different problems

• One (full) digest is not enough
• Use 2 restriction enzymes
• Use 1 restriction enzyme, but differently

1. The double digest problem – DDP
2. The partial digest problem – PDP
3. The simplified partial digest problem – SPDP
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Double Digest Mapping

• Use two restriction enzymes; three full digests:

• ΔA – a complete digest of S using A,

• ΔB – a complete digest of S using B, and

• ΔAB – a complete digest of S using both A and B.

• Computationally, Double Digest problem is more complex than 

Partial Digest problem
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Double Digest: Example
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Double Digest: Example

Without the information about X (i.e. ΔAB ), it is impossible to solve the 

double digest problem as this diagram illustrates
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Double Digest Problem

Input: ΔA – fragment lengths from the complete digest with 

enzyme A.

ΔB – fragment lengths from the complete digest with 

enzyme B.

ΔAB – fragment lengths from the complete digest with

both A and B.

Output: A – location of the cuts in the restriction map for the 
enzyme A.

B – location of the cuts in the restriction map for the 
enzyme B.
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Double Digest: Multiple Solutions
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Double digest

• The decision problem of the DDP is NP-complete.
• All algorithms have problems with more than 10 restriction sites for 

each enzyme.
• A solution may not be unique and the number of solutions grows 

exponentially.
• DDP is a favourite mapping method since the experiments are easy

to conduct.
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DDP is NP-complete

1) DDP is in NP (easy)
2) given a set of integers X = {x1, . . . , xn }. The Set Partitioning 

Problem (SPP) is to determine whether we can partition X into 
two subsets X1 and X2 such that 

This problem is known to be NP-complete.
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DDP is NP-complete

• Let X be the input of the SPP, assuming that the sum of all 
elements of X is even. Then set

• ΔA = X,

• ΔB = . with , and

• ΔAB = ΔA.

• then there exists an integer n0 and indices ji  with 

because of the choice of ΔB and ΔAB. Thus a solution for the SPP 

exists.
• thus SPP is a DDP in which one of the two enzymes produced 

only two fragments of equal length.
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Partial Restriction Digest

• The sample of DNA is exposed to the restriction enzyme for only a 

limited amount of time to prevent it from being cut at all restriction 

sites.

• This experiment generates the set of all possible restriction 

fragments between every two (not necessarily consecutive) cuts.

• This set of fragment sizes is used to determine the positions of the 

restriction sites in the DNA sequence.
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Multiset of Restriction Fragments

• We assume that 
multiplicity of a 
fragment can be 
detected, i.e., the 
number of 
restriction 
fragments of the 
same length can 
be determined 
(e.g., by observing 
twice as much 
fluorescence 
intensity for a 
double fragment 
than for a single 
fragment) 

Multiset: {3, 5, 5, 8, 9, 14, 14, 17, 19, 22}
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Partial Digest Fundamentals

the set of n integers representing the location of all cuts in the 

restriction map, including the start and end

the total number of cuts

X:

n:

δX: the multiset of integers representing lengths of each of the    

fragments produced from a partial digest
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One More Partial Digest Example
X 0 2 4 7 10
0 2 4 7 10

2 2 5 8
4 3 6
7 3

10

Representation of δX = {2, 2, 3, 3, 4, 5, 6, 7, 8, 10} as a two 
dimensional table, with elements of 

X = {0, 2, 4, 7, 10} 

along both the top and left side.  The elements at (i, j ) in the table is
xj – xi for 1 ≤ i < j ≤ n.
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Partial Digest Problem: Formulation

• Goal: Given all pairwise distances between points on a line, 
reconstruct the positions of those points.

• Input: The multiset of pairwise distances L, containing 
n (n -1)/2   integers.

• Output: A set X, of n integers, such that δ X = L.
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Partial Digest: Multiple  Solutions
• It is not always possible to uniquely reconstruct a set X based 

only on δX.

• For example, the set X = {0, 2, 5} 

and (X + 10) = {10, 12, 15} 

both produce δX={2, 3, 5} as their partial digest set.

• The sets {0,1,2,5,7,9,12} and {0,1,5,7,8,10,12} present a less 
trivial example of non-uniqueness.  They both digest into:

{1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12}
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Homometric Sets

0 1 2 5 7 9 12

0 1 2 5 7 9 12

1 1 4 6 8 11

2 3 5 7 10

5 2 4 7

7 2 5

9 3

12

0 1 5 7 8 10 12

0 1 5 7 8 10 12

1 4 6 7 9 11

5 2 3 5 7

7 1 3 5

8 2 4

10 2

12
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Partial Digest: Brute Force

1. Find the restriction fragment of maximum length M.  M is the 
length of the DNA sequence.

2. For every possible set 

X = {0, x2 , … ,xn-1 , M}

compute the corresponding δX

3. If δX is equal to the experimental partial digest L, then X  is 
the correct restriction map
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BruteForcePDP

BruteForcePDP(L, n):
M ← maximum element in L
for every set of n – 2 integers 0 < x2 < … xn -1 < M

X ← {0,x2,…,xn -1,M}
Form δX from X
if δX = L

return X
output “no solution”

• BruteForcePDP takes O (M n − 2) time since it must examine all possible 
sets of positions.

• One way to improve the algorithm is to limit the values of xi to only those 
values which occur in L.



Bioinformatics Algorithms

AnotherBruteForcePDP

AnotherBruteForcePDP(L, n)
M ← maximum element in L
for every set of n – 2 integers 0 < x2 < … xn -1 < M from L

X ← { 0,x2,…,xn -1,M }
Form δX from X
if δX = L;

return X
output “no solution”

• It is more efficient, but still slow
• If L = {2, 998, 1000} (n = 3, M = 1000), BruteForcePDP will be 

extremely slow, but AnotherBruteForcePDP will be quite fast
• Fewer sets are examined, but runtime is still exponential:      

O(n 2n – 4 )
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Branch and Bound Algorithm for PDP

• Begin with X = {0}
• Remove the largest element in L and place it in X
• See if the element fits on the right or left side of the restriction 

map
• When it fits, find the other lengths it creates and remove those

from L
• Go back to step 1 until L is empty
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Branch and Bound Algorithm for PDP

1. Begin with X = {0}
2. Remove the largest element in L and place it in X
3. See if the element fits on the right or left side of the restriction 

map
4. When it fits, find the other lengths it creates and remove those

from L
5. Go back to step 2 until L is empty

WRONG ALGORITHM
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Defining D(y, X) 

• Before describing PartialDigest,  first define 

D(y, X ) 

as the multiset of all distances between point y and all other points in 
the set X

D(y, X ) = {|y – x1|, |y – x2|, …, |y – xn |}

for X = {x1, x2, …, xn }
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PartialDigest Algorithm

PartialDigest(L ):

width ← Maximum element in L

DELETE(width, L)

X ← {0, width }

PLACE(L, X )

• S. Skiena
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PartialDigest Algorithm (cont’d)
PLACE(L, X ):

if L is empty
output X
return

y ← maximum element in L   
Delete(y, L )
if D(y, X ) ⊆ L

Add y to X and remove lengths D(y, X ) from L
PLACE(L, X )
Remove y from X and add lengths D(y, X ) to L

if D(width – y, X ) ⊆ L
Add width –y to X and remove lengths D(width – y, X ) from L
PLACE(L, X )
Remove width –y from X and add lengths D(width – y, X ) to L

return analysis
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0 }

analysis
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0 }

Remove 10 from L and insert it into X.  We know this must be
the length of the DNA sequence because it is the largest
fragment.



Bioinformatics Algorithms

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

Take 8 from L and make y = 2 or 8.  But since the two cases are 
symmetric, we can assume y = 2.  
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

We find that the distances from y=2  to other elements in X are           
D(y, X ) = {8, 2}, so we remove {8, 2} from L and add 2 to X.



Bioinformatics Algorithms

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

Take 7 from L and make y = 7 or y = 10 – 7 = 3.  We will explore  
y = 7 first, so D(y, X ) = {7, 5, 3}.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

For y = 7 first, D(y, X ) = {7, 5, 3} = {|7 – 0|, |7 – 2|, |7 – 10|}. 
Therefore we remove {7, 5 ,3} from L and add 7 to X.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

Take 6 from L and make y = 6.  Unfortunately 
D(y, X ) = {6, 4, 1 ,4}, which is not a subset of L.  Therefore we won’t 
explore this branch.

6
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

This time make y = 4. D(y, X ) = {4, 2, 3 ,6}, which is a 
subset of L so we will explore this branch.  We remove 
{4, 2, 3 ,6} from L and add 4 to X.



Bioinformatics Algorithms

An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 4, 7, 10 }
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 4, 7, 10 }

L is now empty, so we have a solution, which is X.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 7, 10 }

To find other solutions, we backtrack.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

More backtrack.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 2, 10 }

This time we will explore y = 3.  D(y, X) = {3, 1, 7}, which is
not a subset of L, so we won’t explore this branch.
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An Example

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }
X = { 0, 10 }

We backtracked back to the root.  Therefore we have found all the 
solutions.
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Analyzing PartialDigest Algorithm

• Still exponential in worst case, but is very fast on average
• Informally, let T(n) be time PartialDigest takes to place n cuts

• No branching case:  T(n) < T(n-1) + O(n)

• Quadratic

• Branching case:       T(n) < 2T(n-1) + O(n)

• Exponential

algorithm
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PDP analysis

• No polynomial time algorithm is known for PDP. In fact, the 
complexity of PDP is an open problem.

• PartialDigest Algorithm by S. Skiena performs well in practice, but 
may require exponential time.

• This approach is not a popular mapping method, as it is difficult to 
reliably produce all pairwise distances between restriction sites.
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Simplified partial digest problem

• Given a target sequence S and a single restriction enzyme A. Two 
different experiments are performed

• on two sets of copies of S:
• In the short experiment, the time span is chosen so that each copy of the 

target sequence is cut precisely once by the restriction enzyme. Let Γ = {γ1, . 
. . , γ 2N } be the multi-set of all fragment lengths obtained by the short 
experiment, where N  is the number of restriction sites in S, and

• In the long experiment, a complete digest of S by A is performed. Let Λ = 
{λ1, . . . , λN+1} be the multi-set of all fragment lengths obtained by the long 
experiment.
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• Example: Given these (unknown) restriction sites (in kb): 

0 2 8  9              13 16

• We obtain Λ = {2kb, 6kb, 1kb, 4kb, 3kb} from the long experiment.

• The  short experiment yields:

2                             14

8                               8

9                               7

13                              3

• Γ = {2kb, 14kb, 8kb, 8kb, 9kb, 7kb, 13kb, 3kb} 

SPDP
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SPDP

• In the following we assume that Γ = {γ1, . . . , γ2N } is sorted in non-
decreasing order.

• For each pair of fragment lengths γi and γ2N −i+1, we have 

γi + γ 2N −i+1 = L, where L is the length of S.

• Each such pair {γi , γ2N −i+1 } of complementary lengths corresponds 
to precisely one restriction site in the target sequence S, which is 
either at position γi or at position γ2N −i+1.

• Let Pi = 〈 γi , γ 2N −i+1 〉 and P2N −i+1 = 〈 γ2N −i+1 , γ i 〉 denote the two 
possible orderings of the pair {γi , γ2N −i+1 }. We call the first 
component a of any such ordered pair P = 〈 a, b 〉 the prefix of P.
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SPDP

• We obtain a set X of putative restriction site positions as follows: 
For each complementary pair {γi , γ 2N −i+1}, we choose one of the 
two possible orderings Pi  and P2N −i+1, and then add the 
corresponding prefix to X.

• Any such ordered choice X = 〈x1, . . . , xN 〉 of putative restriction 
sites gives rise to a multi-set of integers R = {r1, . . . , rN +1}, with

xi if i =1

• ri :=  xi − xi −1 if  i = 2, . . . ,N

L − xN if  i = N + 1.{
{
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SPDP
• Simplified Partial Digest Problem (SPDP): Given multi-sets Γ

and Λ of fragment lengths, determine a choice of orderings of all 
complementary fragment lengths in Γ such that the arising set R 
equals Λ.

• Example: In the example above we have

• Γ = {2kb, 3kb, 7kb, 8kb, 8kb, 9kb, 13kb, 14kb}
• Λ = {2kb,,6kb, 1kb, 4kb, 3kb}
• We obtain P1 = 〈 2, 14 〉, P8 = 〈 14, 2 〉, 

P2 = 〈 3, 13 〉, P7 = 〈 13, 3 〉,
P3 = 〈 7, 9 〉, P6 = 〈 9, 7 〉,
P4 = 〈 8, 8 〉, P5 = 〈 8, 8 〉. 

Because of the long experiment we obtain Q = {P1, P7, P6, P4} and X = {2, 
8, 9, 13}, from which we get R = {2, 6, 1, 4, 3}, our restriction site map.

{



Bioinformatics Algorithms

SPDP
• Simplified Partial Digest Problem (SPDP): Given multi-sets Γ

and Λ of fragment lengths, determine a choice of orderings of all 
complementary fragment lengths in Γ such that the arising set R 
equals Λ.

• Example: In the example above we have

• Γ = {2kb, 3kb, 7kb, 8kb, 8kb, 9kb, 13kb, 14kb}
• Λ = {2kb,,6kb, 1kb, 4kb, 3kb}
• We obtain P1 = 〈 2, 14 〉, P8 = 〈 14, 2 〉, 

P2 = 〈 3, 13 〉, P7 = 〈 13, 3 〉,
P3 = 〈 7, 9 〉, P6 = 〈 9, 7 〉,
P4 = 〈 8, 8 〉, P5 = 〈 8, 8 〉. 

Because of the long experiment we obtain Q = {P1, P7, P6, P4} and X = {2, 
8, 9, 13}, from which we get R = {2, 6, 1, 4, 3}, our restriction site map.

{
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SPDP – algorithm

• the algorithm generates all possible choices of ordered pairs – when called 
with variable i, it considers both alternatives Pi  and P2N −i +1.

• During a call, the current list of restriction sites X = 〈 x1, . . . , xk 〉 and the 
list R = 〈 r1, . . . , rk , rk+1 〉 of all fragment lengths are passed as a 
parameter. Note that x1<x2< . . . < xk .

• When processing a new corresponding pair of fragment lengths, the last 
element rk+1 of the list R is replaced by two new fragment lengths that arise 
because the last fragment is split by the new restriction site.

• Initially, X and R are empty.

• SPDP (X = 〈 x1, . . . , xk 〉, R = 〈 r1, . . . , rk , rk+1 〉, i ){

Already placed
restriction sites

Corresponding
fragments

The last fragment can be
split by further restrictions
sites

Index of the
next pair
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SPDP – algorithm
Algorithm SPDP (X = 〈 x1, . . . , xk 〉, R = 〈 r1, . . . , rk , rk+1 〉, i ):

if k = N and R = Λ then print X // output putative restriction sites
else if i ≤ 2N  then

Consider Pi = 〈 a, b 〉
if b ∉ X  then // the reversed ordering of Pi was 

// not used
if k = 0 then

Set R’ = 〈 a, b 〉, X’ = 〈 a 〉
if a ∈ Λ then call SPDP(X’,R’, i +1)

else
Set p = a − (L − rk+1) and q = L − a // new fragment lengths, 

// a - (L - rk+1) equals a – xk for k ≥1
if p ∈ Λ then

Set R’ = 〈 r1, . . . , rk, p, q 〉
Set X’ = 〈 x1, . . . , xk, a 〉 // add a to the set of restriction sites
Call SPDP(X’,R’, i + 1) // continue using a in this tree’s lineage

Call SPDP(X,R, i + 1) // consider other alternative

{
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SPDP – algorithm
• Clearly, the worst case running time complexity of this algorithm is 

exponential. However, it seems to work quite well in practice.
• This algorithm is designed for ideal data. In practice there are two 

problems:
1. Fragment length determination by gels leads to imprecise measurements, 

down to about 2 − 7% in good experiments. This can be addressed by using 
interval arithmetic in the above algorithm.

2. The second problem is missing fragments. The SPDP does not suffer from 
this problem much because both digests are easy to perform. Moreover, the 
short experiment must give rise to complementary values and any failure to 
do so can be detected. The long experiment should give rise to precisely 

N + 1 fragments.

{
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