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Outline 
 
• Comparing genomes 

• Transforming cabbage into turnip 

• Genome rearrangements 

• Sorting by reversals 

• Pancake flipping problem 

• Greedy algorithm for sorting by reversals 

• Approximation algorithms 

• Breakpoints: a different face of greed 

• Breakpoint graphs 
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Comparing genome 

• What is a genome? The complete inventory of all heritable nucleic 

acids that determines the genetic identity of an organism is called 

genome. 

• Viral genomes – DNA and RNA viruses. 

• Bacteria – Circular DNA. 

• Eukaryotes – distributed over linear DNA pieces (chromosomes). 
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Types of comparison 

• Within-genome comparisons focus on the genome of a single 

species.  

• Variations on base composition 

• k-tuple frequency 

• gene density 

• numbers and kinds of transposable elements 

• numbers and kinds of segmental duplications. 

• Between-genome comparisons employ closely related species for 

identifying  

• conserved genes 

• gene structure and organization 

• control elements 

More distantly related species are used for phylogenetic profiling. 
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Compositional measures 

• k -tuple compositions of genomes are not uniformly distributed along 

the genome. 

• Take k = 1 as an example: In the human genome, gene-rich regions 

typically have a higher %G+C content than gene-poor regions. 

• A statistics for prokaryotic genomes is the GC skew: 
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Properties of the Yersinia pestis(mor) 
genome 

The innermost circle 

represents GC skew. 

There are regions 

where the GC skew 

reverses sign. This 

indicates recent 

inversions. 
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Codon usage 

Differences among species in selection on codon usage. 
Average of positive RSCU values (differences in codon 
usage for highly and lowly expressed genes) per 
species indicate that 6 species have particularly strong 
selection on codon bias, spanning low, medium, and 
high GC-content genomes. Symbols indicate different 
clades within the nematode phylogeny. 
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Gene content 

• Prerequisite: Gene annotation (usually via HMMs; will be later). 

• Total no. of predicted genes  

• No. of genes duplicated 

• Total no. of distinct families  

Prvá 
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vaná 
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Gene content 

• Coding or non-coding sequence (RNA versus protein coding genes). 
• Number of genes 

• % of coding 

• Gene size (average bp) 

• Exon size (average bp)  

• Exons/gene (average) 

• …  

 
Arábovka Thalova, 

huseníček rolní 
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Clustering Gene Content 

• Vectors of the same length could be clustered. 

• Based on a n xn distance matrix, a hierarchical clustering can be 
performed. This method builds the hierarchy from the individual 
elements by progressively merging ”closest” clusters. Distance 
between clusters A, B can be computed in various ways: 

• complete linkage clustering:  

• single linkage clustering: 

• average linkage clustering: 

  ByAxyxd  ,|,max

  ByAxyxd  ,|,min

  
 Ax By

yxd
BcardAcard

,
)()(

1



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Turnip vs. Cabbage: Look and Taste 
Different 

• Although cabbages and turnips share a recent common ancestor, 

they look and taste different 

Vodnica, 

tuřín 
Kapusta 

(SK), 

zelí (CZ) 
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Turnip vs Cabbage: Almost Identical 
mtDNA gene sequences 
• In 1980s Jeffrey Palmer studied evolution of plant organelles by 

comparing mitochondrial genomes of the cabbage and turnip 

• 99% similarity between genes 

• These surprisingly identical gene sequences differed in gene 
order 

• This study helped pave the way to analyzing genome 
rearrangements in molecular evolution 
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Turnip vs Cabbage: Different mtDNA 
Gene Order 

• Gene order comparison: 
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Gene Order 
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Turnip vs Cabbage: Different mtDNA 
Gene Order 

• Gene order comparison: 

Before 

After 

•   Evolution is manifested as the divergence in gene order 
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Transforming Cabbage into Turnip 

B. oleracea 
(cabbage) 1        -5        4         -3         2 

1        -5        4         -3       -2 

 1        -5      -4         -3       -2 

1        2        3         4         5 

B. campestris 
(turnip) 
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• What are the similarity blocks and how to find them? 

• What is the architecture of the ancestral genome? 

• What is the evolutionary scenario for transforming one genome into the 
other? 

Unknown ancestor 
~ 75 million years ago 

Mouse (X chrom.) 
 

Human (X chrom.) 

Genome rearrangements 
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History of Chromosome X 

Rat Consortium, Nature, 2004 
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Reversals 
 

• Blocks represent conserved genes. 

1 3 2 

4 

10 

5 
6 

8 

9 

7 

1, 2, 3,  4,  5,  6,   7,  8, 9, 10 
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Reversals 
1 3 2 

4 

10 

5 
6 

8 

9 

7 

1, 2, 3, -8, -7, -6, -5, -4, 9, 10 

 Blocks represent conserved genes. 

 In the course of evolution or in a clinical context, blocks 1,…,10 
could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10. 
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Reversals and Breakpoints 
1 3 2 

4 

10 

5 
6 

8 

9 

7 

1, 2, 3, -8, -7, -6, -5, -4, 9, 10 

The reversion introduced two breakpoints 
(disruptions in order). 
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Reversals: Example 

5’ ATGCCTGTACTA 3’ 

3’ TACGGACATGAT 5’ 

5’ ATGTACAGGCTA 3’ 

3’ TACATGTCCGAT 5’ 

Break 

and 

Invert 
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Types of Rearrangements 

Reversal 

1  2  3  4  5  6 1  2 -5 -4 -3  6 

Translocation 

1  2  3  

4 5  6 

1  2 6  

4  5 3  

1  2  3  4   

5  6 
1  2  3  4  5  6 

Fusion 

Fission 

štiepenie 
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Comparative Genomic Architectures: 
Mouse vs Human Genome 
• Humans and mice have similar 

genomes, but their genes are 
ordered differently 

• ~245 rearrangements 

• Reversals 

• Fusions 

• Fissions 

• Translocation 
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Waardenburg’s Syndrome: Mouse 
Provides Insight into Human Genetic 
Disorder 
  

• Waardenburg’s syndrome is characterized by pigmentary dysphasia 

• Gene implicated in the disease was linked to human chromosome 2 
but it was not clear where exactly it is located on chromosome 2  
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Waardenburg’s syndrome and splotch 
mice 
• A breed of mice (with splotch gene) had similar symptoms caused 

by the same type of gene as in humans 

 

• Scientists succeeded in identifying location of gene responsible for 
disorder in mice 

 

• Finding the gene in mice gives clues to where the same gene is 
located in humans 
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Comparative Genomic Architecture of 
Human and Mouse Genomes 
   To locate where 

corresponding gene is in 
humans, we have to 
analyze the relative 
architecture of human 
and mouse genomes 
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Reversals and Gene Orders 

• Gene order is represented by a permutation 

1… i -1ii+1 … j -1j j +1 … n 

 



 

 1… i -1jj -1 … j+1ij+1 … n 

 

 Reversal (i, j ) reverses (flips) the elements from i  to j  in  

i,j) 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

 
             = 1 2 3 4 5 6 7 8                  
                                                                               

     (3,5) 
 
                    1 2 5 4 3 6 7 8 





Reversals: Example 
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             = 1 2 3 4 5 6 7 8                  
                                                                               

(3,5) 
 
                    1 2 5 4 3 6 7 8 
 

(5,6) 
 
                    1 2 5 4 6 3 7 8 
 

Reversals: Example 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Reversal Distance Problem 

 
• Goal: Given two permutations, find the shortest series of reversals 

that transforms one into another 

 

• Input: Permutations   and 



• Output: A series of reversals 1, …, t  transforming   into , such 
that t  is minimum  

 

• t - reversal distance between  and 

• d (, ) - smallest possible value of t , given   and 
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Sorting By Reversals Problem 

 
• Goal: Given a permutation, find a shortest series of reversals that 

transforms it into the identity permutation ( 1 2 … n  )  

 

• Input: permutation 

 

• Output: a series of reversals 1, …, t  transforming  into the 

identity permutation such that t  is minimum 

 

• t =d ( ) - reversal distance of 
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Sorting By Reversals: Example 

• t =d ( ) - reversal distance of 

 
• Example : 
                         =  3  4  2  1  5  6  7 10  9   8 

                               4  3  2  1  5  6  7 10  9   8 

                               4  3  2  1  5  6  7   8  9 10 

                               1  2  3  4  5  6  7   8  9 10 

        So d ( ) = 3 

 
Question: how to find d ( )  
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Sorting By Reversals:  
A Greedy Algorithm 
 
• If sorting permutation  = 1 2 3 6 4 5, the first three elements are 

already in order so it does not make any sense to break them.  

• The length of the already sorted prefix of  is denoted prefix ( ) 

   prefix ( ) = 3 

• This results in an idea for a greedy algorithm: increase prefix ( ) at 
every step 

• 1 2 3 6 4 5  →  1 2 3 4 6 5 → 1 2 3 4 5 6 

 

• Number of steps to sort permutation of length n is at most (n – 1) 
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Analyzing SimpleReversalSort 

• SimpleReversalSort does not guarantee the smallest number of 
reversals and takes 5 steps on   = 6 1 2 3 4 5 : 

 

 Step 1: 1 6 2 3 4 5   Step 1:  5 4 3 2 1 6      

 Step 2: 1 2 6 3 4 5    Step 2:  1 2 3 4 5 6 

 Step 3: 1 2 3 6 4 5 

 Step 4: 1 2 3 4 6 5 

 Step 5: 1 2 3 4 5 6 

 

 SimpleReversalSort   optimal solution – 2 steps 

 5 steps 

      So, SimpleReversalSort() is not optimal 
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Approximation Algorithms 

 
• Optimal algorithms are unknown for many problems; 

approximation algorithms are used. 

• These algorithms find approximate solutions rather than optimal 
solutions. 

• The approximation ratio of an algorithm A on input   is: 

                    A () / OPT () 

where  

     A () - solution produced by algorithm A                  

 OPT () - optimal solution of the problem 
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Approximation Ratio/Performance 
Guarantee 
• Approximation ratio (performance guarantee) of algorithm A: max 

approximation ratio of all inputs of size n 

• For algorithm A that minimizes objective function (minimization 
algorithm): 

• max|| = n A () / OPT  () 
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Approximation Ratio/Performance 
Guarantee 
• Approximation ratio (performance guarantee) of algorithm A: max 

approximation ratio of all inputs of size n 

• For algorithm A that minimizes objective function (minimization 
algorithm): 

  max|| = n A () / OPT () 

• For maximization algorithm: 

  min|| = n A () / OPT () 
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Approximation Ratio/Performance 
Guarantee 
• Approximation ratio (performance guarantee) of algorithm A: max 

approximation ratio of all inputs of size n 

• For algorithm A that minimizes objective function (minimization 
algorithm): 

  max|| = n A () / OPT () 

• For maximization algorithm: 

  min|| = n A () / OPT () 

 

• For A = SimpleReversalSort() 

 max|| = n SimpleReversalSort () / OPT ()  (n−1) / 2 
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Adjacency & Breakpoints 

= 23…n -1n 

•  An adjacency – a pair of adjacent elements  i and  i + 1 that are 

  consecutive I +1 = i   1 

•  A breakpoint – a pair of adjacent elements that are not consecutive 

π = 5  6  2  1  3  4 

 

0  5  6  2  1  3  4  7 

adjacencies 

breakpoints 

Extend π with π 0 = 0 and π 7 = 7 
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 Each reversal eliminates at most 2 breakpoints. 





  =   2  3  1  4  6  5 

       0  2  3  1  4  6  5  7     b() = 5 

     0  1  3  2  4  6  5  7        b() = 4 

     0  1  2  3  4  6  5  7   b() = 2 

     0  1  2  3  4  5  6  7                 b() = 0 

Reversal Distance and Breakpoints 
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 Each reversal eliminates at most 2 breakpoints. 

 This implies:  

      reversal distance  ≥  #breakpoints / 2 

  =   2  3  1  4  6  5 

     0  2  3  1  4  6  5  7     b() = 5 

     0  1  3  2  4  6  5  7      b() = 4 

     0  1  2  3  4  6  5  7   b() = 2 

     0  1  2  3  4  5  6  7                  b() = 0 

Reversal Distance and Breakpoints 
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Sorting By Reversals: A Better Greedy 
Algorithm 
BreakPointReversalSort() 

 while b () > 0 

  Among all possible reversals, choose reversal   

   minimizing b (  ) 

      (i, j ) 

  output 

 return 

Problem: how good it approximates d() 
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Strips 

• Strip: an interval between two consecutive breakpoints in a 

permutation  

• Decreasing strip: strip of elements in decreasing order (e.g. 6 5 

and 3 2 ). 

• Increasing strip: strip of elements in increasing order (e.g. 7 8) 

                

                 0  1  9  4  3  7  8  2  5  6 10  

 

• A single-element strip can be declared either increasing or decreasing. 

We will choose to declare them as decreasing with exception of the 

strips with 0 and n+1 

 

pás 

klesajúci  pás 

rastúci  pás 
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Reducing the Number of Breakpoints 

Theorem 1: 

     If permutation contains at least one decreasing strip, then there 

exists a reversal  which decreases the number of breakpoints  

     (i.e. b( ) < b() ). 
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Things To Consider 
• For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b() = 5 

• Choose decreasing strip with the smallest element k in 
( k = 2 in this case)  
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Things To Consider (cont’d) 

• For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b() = 5 

• Choose decreasing strip with the smallest element k in             
( k = 2 in this case)  
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Things To Consider (cont’d) 

• For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b() = 5 

• Choose decreasing strip with the smallest element k in             

( k = 2 in this case)  

• Find k – 1 in the permutation – it is in an increasing strip! 

• Where are breakpoints adjacent to k and k – 1 ? 
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Things To Consider (cont’d) 

• For   = 1 4 6 5 7 8 3 2   

             0  1  4  6  5  7  8  3  2  9      b() = 5 

• Choose decreasing strip with the smallest element k in 
( k = 2 in this case)  

• Find k – 1 in the permutation – it is in an increasing strip! 

• Where are breakpoints adjacent to k and k – 1 ? 

• Reverse the segment between k and k − 1: 

• 0  1  4  6  5  7  8  3  2  9  b() = 5 

 

• 0  1  2  3  8  7  5  6  4  9  b() = 4 
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Reducing the Number of Breakpoints 
Again 
 • If there is no decreasing strip, there may be no reversal   that 

reduces the number of breakpoints (i.e. b()  ≥ b() for any  

reversal ).  

• By reversing an increasing strip (# of breakpoints stay unchanged), we 

will create a decreasing strip at the next step. Then the number of 

breakpoints will be reduced in the next step (Theorem 1). 
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Things To Consider (cont’d) 

• There are no decreasing strips in , for: 

 

  = 0  1  2  5  6  7  3  4  8    b() = 3 

 (6,7) 

   = 0  1  2  5  6  7  4  3  8    b() = 3  



 (6,7) does not change the # of breakpoints 

 (6,7) creates a decreasing strip thus guaranteeing that the next 

step will decrease the # of breakpoints. 
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ImprovedBreakpointReversalSort 

ImprovedBreakpointReversalSort() 

  while b () > 0 

   if  has a decreasing strip 

   Among all possible reversals, choose reversal   that 
 minimizes b (  ) 

   else 

   Choose a reversal  that flips an increasing strip in 

         

        output 

  return 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

• ImprovedBreakPointReversalSort is an approximation algorithm 

with a performance guarantee of at most 4 

• It eliminates at least one breakpoint in every two steps;  at most 

2b() steps 

• Approximation ratio: 2b()  / d() 

• Optimal algorithm eliminates at most 2 breakpoints in every step: 

d()  b() / 2 

• Performance guarantee: 

  (2b () / d ())    [2b () / (b () / 2)]  =  4 

ImprovedBreakpointReversalSort: 
Performance Guarantee  
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Signed Permutations 

• Up to this point, all permutations to sort were unsigned 

• But genes have directions… so we should consider signed 

permutations 

 

 

5’ 3’ 

=    1        -2      - 3      4         -5 
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Breakpoint Graph 

1) Represent the elements of the permutation  = 2 3 1 4 6 5 as 

vertices in a graph (ordered along a line) 

    0           2            3           1          4            6           5            7 

1) Connect vertices in order given by  with black edges (black path) 

1) Connect vertices in order given by 1 2 3 4 5 6 with grey edges  

(grey path) 

4)    Superimpose black and grey paths 
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Two Equivalent Representations of 
the Breakpoint Graph 

    0           2            3           1          4            6           5            7 

    0           1            2           3          4            5           6            7 

• Consider the following Breakpoint Graph 

• If we line up the gray path  (instead of black path) on a horizontal 

line, then we would get the following graph 

• Although they may look different, these two graphs are the same 
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What is the Effect of the Reversal ? 

• The gray paths stayed the same for both graphs 

• There is a change in the graph at this point 

• There is another change at this point 

How does a reversal change the breakpoint graph?   

    0           1            2           3          4            5           6            7 

    0           1            2           3          4            5           6            7 

Before: 0 2 3 1 4 6 5 7 

After:   0 2 3 5 6 4 1 7 

• The black edges are unaffected by the reversal so they remain the 

same for both graphs 
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Estimating reversal distance by 
Cycle Decomposition 

  0       1       2       3       4       5       6        7 

• A reversal removes  2 edges (red) and replaces them with 2 new 

edges (blue) 

• A breakpoint graph can be decomposed into cycles that have 

edges with alternating patterns (solid / dashed). 

• What effects have reversal on these cycles ? 

  0       1       2       3       4 4       5       6        7 

5       6  
2       3 
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Effects of Reversals 
Case 1:  

Both edges belong to the same cycle 

• Remove the center black edges and replace them with new black 
edges (there are two ways to replace them) 

a) After this replacement, there now exists 2 cycles instead of 1 cycle 

c () – c () = 1 

This is called a proper reversal 
since there’s a cycle increase 
after the reversal. 
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Effects of Reversals 
Case 1:  

Both edges belong to the same cycle 

• Remove the center black edges and replace them with new black 

edges (there are two ways to replace them) 

a) After this replacement, there now exists 2 cycles instead of 1 cycle 

b) Or after this replacement, there still exists 1 cycle 

c () – c () = 0 

Therefore, after the reversal   
c () – c () = 0 or 1  
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Effects of Reversals (Continued) 

Case 2: 

Both edges belong to different cycles 

• Remove the center black edges and replace them with new black edges 

• After the replacement, there now exists 1 cycle instead of 2 cycles 

c () – c () = -1 

Therefore, for every permutation 
 and reversal 

 c () – c ()  -1 
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Reversal Distance and Maximum 
Cycle Decomposition 

• Since the identity permutation of size n  contains the maximum 

cycle decomposition of n +1,  c (identity ) = n +1 

• c (identity ) – c () equals the number of cycles that need to be 

“added” to c () while transforming  into the identity 

• Based on the previous theorem, at best after each reversal, 
the cycle decomposition could increase by one, then:                                        
     d ( ) = c (identity ) – c ( ) = n +1 – c ( ) 

• Yet, not every reversal can increase the cycle decomposition 

Therefore, d ( ) ≥ n +1 – c ( ) 

For most biological systems the equality holds 
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The Complexity Reversal Distance 

• 1997 - Alberto Caprara: Sorting by reversals is difficult. RECOMB  

1997, ACM Press, 75-83. 

• Computing reversal distance is NP-hard! 

• Surprisingly, signed version of the problem is of polynomial 

complexity 
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Signed Permutation 

• Genes are directed fragments of DNA and we represent a 

genome by a signed permutation 

• If genes are in the same position but there orientations 

are different, they do not have the equivalent gene order 

• For example, these two permutations have the same 

order, but each gene’s orientation is the reverse; 

therefore, they are not equivalent gene sequences 

        1       2        3        4       5 

        -1       2       -3      -4      -5 
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Signed Permutation 

• The polynomial algorithm for computing signed reversal sorting 

1. Basic sorting until we get a positive permutation. 

2. If the permutation is not sorted then continue with hurdles 

removal. 
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Basic sorting 

• As usual, we will assume that  is framed by 0 and n + 1, and that 

those extra elements are always positive:  

   …nn +1  

• An oriented pair (i, j ) is a pair of consecutive integers, that is | i | 

− | j | = ±1, with opposite signs, i.e.  i + j = ±1. 

• Example 

• (0 3 1 6  5 -2 4 7) 

• (0 3 1 6  5 -2 4 7) # pair (1,-2) induces reversal 

• (0 3 1 2 -5 -6 4 7) 
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Basic sorting 

• An oriented pair (i, j ) is a pair of consecutive integers, that is | i | 

− | j | = ±1, with opposite signs, i.e.  i + j = ±1. 

• Example 

• (0 3 1 6 5 -2 4 7) 

• (0 3 1 6 5 -2 4 7) # pair (1,-2) induces reversal 

• (0 3 1 2 -5 -6 4 7) 

• In general, the reversals by an oriented pair will be: 

•  (i, j − 1 ), if i + j = +1 

      (0 3 1 6 5 -2 4 7)  (0 -5 -6 -1 -3 -2 4 7) 

      (0 3 1 -6 5 -2 4 7)  (0 3 1 4 2 -5 6 7)  

• (i + 1, j ),  if i + j = −1  

      (0 3 1 6 5 -2 4 7)  (0 3 1 2 -5 -6  4 7)  

       (0 -3 1 6 5 2 4 7)  (0 -3 -2 -5 -6 -1 4 7)  
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Reversal score and basic sorting 

• The score of an (oriented) reversal is defined as the number of 
oriented pairs in the resulting permutation. 

• Example 

     (0  3  1  6  5 -2 4 7) reversal (1,4) 

     (0 -5 -6 -1 -3 -2 4 7) score 4 ! 

• Basic sorting: As long as  has an oriented pair, choose the 
oriented reversal that has maximal score. 

• Example 

• Step 1: (0  3  1  6  5 –2  4  7) two oriented pairs (1,-2) and (3,-2) with 
      score 2 and 4. 

• Step 2: (0 -5 -6 -1 -3 -2  4  7) pairs (0,-1),(-3,4),(-5,4) and (-6,7) 

• Step 3: (0 -5 -6 -1  2  3  4  7) pairs (0,-1),(-1,2),(-5,4) and (-6,7) 
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Basic sorting cont. 

• (0 -5 –6  1  2  3  4  7)  

• (0 -5 -4 -3 -2 -1  6  7) 

• (0  1  2  3  4  5  6  7) 

• This elementary strategy of Basic sorting is sufficient to optimally 

sort almost all permutations that arise from biological data! 

 

• Claim 1: Basic sorting applies k  reversals to a permutation , 

yielding a permutations ’ such that d () = d (’) + k. 

 

1. Basic sorting until we get a positive permutation 

2. If the permutation is not sorted then continue with hurdles 

removal 
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Sorting positive permutations 

• Such permutations are called reduced if they do not contain 

consecutive elements. 

• How to reduce a permutation? 

 

 (0 3 8 9 7 4 5 6 10 1 2 11 12) 

 

        (0 2 5 4 3 6 1 7) 

 

• We suppose circular order by setting 0 to be successor of n+1 

• Framed interval: encompasses all integers between i and i+k 

belong to the interval [i . . . i + k].  

• Consider permutation: (02543617). The whole permutation is a 

framed interval, as well as 25436 and, by circularity, 61702. 
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Tough regions: Hurdles 

• A hurdle in  is a framed interval that contains no shorter framed 

interval. 

• When a permutation has only one or two hurdles, one reversal is 

sufficient to create enough oriented pairs to completely sort the 

permutation with Basic sorting. 

• Two operations break hurdles: hurdle cutting and hurdle merging. 
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Breaking Hurdles 

• Hurdle cutting: Reversing segment between i and i + 1 of a hurdle: 

i . . . i + 1 . . . i + k 

(0  2  4  3  1  5)  (0 −3 −4 −2  1  5) 

 which can be sorted in 4 reversals. 

• Hurdle merging: Merging the end points of two hurdles. 

i . . . i + k . . . i’ . . . i’ + k’ 

(0 2 5 4 3 6 1 7)  (0 2 5 4 3 −6 1 7) 

 which can be sorted in 5 reversals. 
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Super Hurdles 

• A simple hurdle is a hurdle whose cutting decreases the number of 

hurdles. Hurdles that are not simple are called super hurdles. 

• Example 

1. (0 2 5 4 3 6 1 7) has two hurdles; after cutting and sorting the hurdle  

• 2  5  4  3  6  

• 2 -4 -5  3  6 

• 2 -4 -3  5  6 

• 2  3  4  5  6 

  we get (0 2 3 4 5 6 1 7) – it collapses to (0 2 1 3) (a reduction!) and 
 has only one hurdle. 

2. (0 2 4 3 5 1 6 8 7 9) also contains two hurdles; after cutting and 
sorting the hurdle 2 4 3 5 the resulting reduced permutation has still 
two hurdles (0 2 3 4 5 1 6 8 7 9) reduction (0 2 1 3 5 4 6)  
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Breaking Hurdles 

• Hurdles removal: If a permutation has 2k hurdles, k  2, merge any 
two non-consecutive hurdles. If a permutation has 2k + 1 hurdles, 
k   1, then if it has one simple hurdle, cut it; If it has none, merge 
two non-consecutive hurdles, or consecutive ones if k = 1. 

 

• For proofs of all the algorithms and claims – see:  

• A very elementary presentation of the Hannenhalli-Pevzner Theory by 
Anne Bergeron http://citeseer.ist.psu.edu/599900.html 

• Maximal exposure can be obtained from: Efficient algorithms for 
multichromosomal genome rearrangements by Glen Tesler 
http://math.ucsd.edu/gptesler/pub_jcss.html 
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GRIMM Web Server 
 

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM 

• GRIMM web server computes 

the reversal distances between 

signed permutations: 

    


