
www.bioalgorithms.info An Introduction to Bioinformatics Algorithms

Greedy Algorithms
 And

 Genome Rearrangements

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Outline

• Comparing genomes

• Transforming cabbage into turnip

• Genome rearrangements

• Sorting by reversals

• Pancake flipping problem

• Greedy algorithm for sorting by reversals

• Approximation algorithms

• Breakpoints: a different face of greed

• Breakpoint graphs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparing genome

• What is a genome? The complete inventory of all heritable nucleic

acids that determines the genetic identity of an organism is called

genome.

• Viral genomes – DNA and RNA viruses.

• Bacteria – Circular DNA.

• Eukaryotes – distributed over linear DNA pieces (chromosomes).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Types of comparison

• Within-genome comparisons focus on the genome of a single

species.

• Variations on base composition

• k-tuple frequency

• gene density

• numbers and kinds of transposable elements

• numbers and kinds of segmental duplications.

• Between-genome comparisons employ closely related species for

identifying

• conserved genes

• gene structure and organization

• control elements

More distantly related species are used for phylogenetic profiling.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Compositional measures

• k -tuple compositions of genomes are not uniformly distributed along

the genome.

• Take k = 1 as an example: In the human genome, gene-rich regions

typically have a higher %G+C content than gene-poor regions.

• A statistics for prokaryotic genomes is the GC skew:

 where w is a sequence window.
ww

ww
w #C#G
#C#GGC

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Properties of the Yersinia pestis(mor)
genome

The innermost circle

represents GC skew.

There are regions

where the GC skew

reverses sign. This

indicates recent

inversions.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Codon usage

Differences among species in selection on codon usage.
Average of positive RSCU values (differences in codon
usage for highly and lowly expressed genes) per
species indicate that 6 species have particularly strong
selection on codon bias, spanning low, medium, and
high GC-content genomes. Symbols indicate different
clades within the nematode phylogeny.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Gene content

• Prerequisite: Gene annotation (usually via HMMs; will be later).

• Total no. of predicted genes

• No. of genes duplicated

• Total no. of distinct families

Prvá

sekveno

vaná

baktéria

Kvasnice

na

výrobu

pečiva

Háďatko

(dlhé

1mm)

Octomilka,

Octová

muška

drozofila

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Gene content

• Coding or non-coding sequence (RNA versus protein coding genes).
• Number of genes

• % of coding

• Gene size (average bp)

• Exon size (average bp)

• Exons/gene (average)

• …

Arábovka Thalova,

huseníček rolní

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Clustering Gene Content

• Vectors of the same length could be clustered.

• Based on a n xn distance matrix, a hierarchical clustering can be
performed. This method builds the hierarchy from the individual
elements by progressively merging ”closest” clusters. Distance
between clusters A, B can be computed in various ways:

• complete linkage clustering:

• single linkage clustering:

• average linkage clustering:

 ByAxyxd ,|,max

 ByAxyxd ,|,min

 Ax By

yxd
BcardAcard

,
)()(

1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs. Cabbage: Look and Taste
Different

• Although cabbages and turnips share a recent common ancestor,

they look and taste different

Vodnica,

tuřín
Kapusta

(SK),

zelí (CZ)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Almost Identical
mtDNA gene sequences
• In 1980s Jeffrey Palmer studied evolution of plant organelles by

comparing mitochondrial genomes of the cabbage and turnip

• 99% similarity between genes

• These surprisingly identical gene sequences differed in gene
order

• This study helped pave the way to analyzing genome
rearrangements in molecular evolution

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Turnip vs Cabbage: Different mtDNA
Gene Order

• Gene order comparison:

Before

After

• Evolution is manifested as the divergence in gene order

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Transforming Cabbage into Turnip

B. oleracea
(cabbage) 1 -5 4 -3 2

1 -5 4 -3 -2

 1 -5 -4 -3 -2

1 2 3 4 5

B. campestris
(turnip)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• What are the similarity blocks and how to find them?

• What is the architecture of the ancestral genome?

• What is the evolutionary scenario for transforming one genome into the
other?

Unknown ancestor
~ 75 million years ago

Mouse (X chrom.)

Human (X chrom.)

Genome rearrangements

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

History of Chromosome X

Rat Consortium, Nature, 2004

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals

• Blocks represent conserved genes.

1 3 2

4

10

5
6

8

9

7

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals
1 3 2

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

 Blocks represent conserved genes.

 In the course of evolution or in a clinical context, blocks 1,…,10
could be misread as 1, 2, 3, -8, -7, -6, -5, -4, 9, 10.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Breakpoints
1 3 2

4

10

5
6

8

9

7

1, 2, 3, -8, -7, -6, -5, -4, 9, 10

The reversion introduced two breakpoints
(disruptions in order).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals: Example

5’ ATGCCTGTACTA 3’

3’ TACGGACATGAT 5’

5’ ATGTACAGGCTA 3’

3’ TACATGTCCGAT 5’

Break

and

Invert

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Types of Rearrangements

Reversal

1 2 3 4 5 6 1 2 -5 -4 -3 6

Translocation

1 2 3

4 5 6

1 2 6

4 5 3

1 2 3 4

5 6
1 2 3 4 5 6

Fusion

Fission

štiepenie

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architectures:
Mouse vs Human Genome
• Humans and mice have similar

genomes, but their genes are
ordered differently

• ~245 rearrangements

• Reversals

• Fusions

• Fissions

• Translocation

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s Syndrome: Mouse
Provides Insight into Human Genetic
Disorder

• Waardenburg’s syndrome is characterized by pigmentary dysphasia

• Gene implicated in the disease was linked to human chromosome 2
but it was not clear where exactly it is located on chromosome 2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Waardenburg’s syndrome and splotch
mice
• A breed of mice (with splotch gene) had similar symptoms caused

by the same type of gene as in humans

• Scientists succeeded in identifying location of gene responsible for
disorder in mice

• Finding the gene in mice gives clues to where the same gene is
located in humans

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Comparative Genomic Architecture of
Human and Mouse Genomes
 To locate where

corresponding gene is in
humans, we have to
analyze the relative
architecture of human
and mouse genomes

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversals and Gene Orders

• Gene order is represented by a permutation

1… i -1ii+1 … j -1j j +1 … n

 1… i -1jj -1 … j+1ij+1 … n

 Reversal (i, j) reverses (flips) the elements from i to j in

i,j)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 = 1 2 3 4 5 6 7 8

 (3,5)

 1 2 5 4 3 6 7 8

Reversals: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 = 1 2 3 4 5 6 7 8

(3,5)

 1 2 5 4 3 6 7 8

(5,6)

 1 2 5 4 6 3 7 8

Reversals: Example

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance Problem

• Goal: Given two permutations, find the shortest series of reversals

that transforms one into another

• Input: Permutations and

• Output: A series of reversals 1, …, t transforming into , such
that t is minimum

• t - reversal distance between and

• d (,) - smallest possible value of t , given and

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals Problem

• Goal: Given a permutation, find a shortest series of reversals that

transforms it into the identity permutation (1 2 … n)

• Input: permutation

• Output: a series of reversals 1, …, t transforming into the

identity permutation such that t is minimum

• t =d () - reversal distance of

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: Example

• t =d () - reversal distance of

• Example :
 = 3 4 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 10 9 8

 4 3 2 1 5 6 7 8 9 10

 1 2 3 4 5 6 7 8 9 10

 So d () = 3

Question: how to find d ()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals:
A Greedy Algorithm

• If sorting permutation = 1 2 3 6 4 5, the first three elements are

already in order so it does not make any sense to break them.

• The length of the already sorted prefix of is denoted prefix ()

 prefix () = 3

• This results in an idea for a greedy algorithm: increase prefix () at
every step

• 1 2 3 6 4 5 → 1 2 3 4 6 5 → 1 2 3 4 5 6

• Number of steps to sort permutation of length n is at most (n – 1)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the smallest number of
reversals and takes 5 steps on = 6 1 2 3 4 5 :

 Step 1: 1 6 2 3 4 5 Step 1: 5 4 3 2 1 6

 Step 2: 1 2 6 3 4 5 Step 2: 1 2 3 4 5 6

 Step 3: 1 2 3 6 4 5

 Step 4: 1 2 3 4 6 5

 Step 5: 1 2 3 4 5 6

 SimpleReversalSort optimal solution – 2 steps

 5 steps

 So, SimpleReversalSort() is not optimal

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Algorithms

• Optimal algorithms are unknown for many problems;

approximation algorithms are used.

• These algorithms find approximate solutions rather than optimal
solutions.

• The approximation ratio of an algorithm A on input is:

 A () / OPT ()

where

 A () - solution produced by algorithm A

 OPT () - optimal solution of the problem

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance
Guarantee
• Approximation ratio (performance guarantee) of algorithm A: max

approximation ratio of all inputs of size n

• For algorithm A that minimizes objective function (minimization
algorithm):

• max|| = n A () / OPT ()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance
Guarantee
• Approximation ratio (performance guarantee) of algorithm A: max

approximation ratio of all inputs of size n

• For algorithm A that minimizes objective function (minimization
algorithm):

 max|| = n A () / OPT ()

• For maximization algorithm:

 min|| = n A () / OPT ()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Approximation Ratio/Performance
Guarantee
• Approximation ratio (performance guarantee) of algorithm A: max

approximation ratio of all inputs of size n

• For algorithm A that minimizes objective function (minimization
algorithm):

 max|| = n A () / OPT ()

• For maximization algorithm:

 min|| = n A () / OPT ()

• For A = SimpleReversalSort()

 max|| = n SimpleReversalSort () / OPT () (n−1) / 2

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Adjacency & Breakpoints

= 23…n -1n

• An adjacency – a pair of adjacent elements i and i + 1 that are

 consecutive I +1 = i 1

• A breakpoint – a pair of adjacent elements that are not consecutive

π = 5 6 2 1 3 4

0 5 6 2 1 3 4 7

adjacencies

breakpoints

Extend π with π 0 = 0 and π 7 = 7

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Each reversal eliminates at most 2 breakpoints.

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

 Each reversal eliminates at most 2 breakpoints.

 This implies:

 reversal distance ≥ #breakpoints / 2

 = 2 3 1 4 6 5

 0 2 3 1 4 6 5 7 b() = 5

 0 1 3 2 4 6 5 7 b() = 4

 0 1 2 3 4 6 5 7 b() = 2

 0 1 2 3 4 5 6 7 b() = 0

Reversal Distance and Breakpoints

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting By Reversals: A Better Greedy
Algorithm
BreakPointReversalSort()

 while b () > 0

 Among all possible reversals, choose reversal

 minimizing b ()

 (i, j)

 output

 return

Problem: how good it approximates d()

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Strips

• Strip: an interval between two consecutive breakpoints in a

permutation

• Decreasing strip: strip of elements in decreasing order (e.g. 6 5

and 3 2).

• Increasing strip: strip of elements in increasing order (e.g. 7 8)

 0 1 9 4 3 7 8 2 5 6 10

• A single-element strip can be declared either increasing or decreasing.

We will choose to declare them as decreasing with exception of the

strips with 0 and n+1

pás

klesajúci pás

rastúci pás

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of Breakpoints

Theorem 1:

 If permutation contains at least one decreasing strip, then there

exists a reversal which decreases the number of breakpoints

 (i.e. b() < b()).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider
• For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

• Choose decreasing strip with the smallest element k in
(k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

• Choose decreasing strip with the smallest element k in
(k = 2 in this case)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

• Choose decreasing strip with the smallest element k in

(k = 2 in this case)

• Find k – 1 in the permutation – it is in an increasing strip!

• Where are breakpoints adjacent to k and k – 1 ?

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• For = 1 4 6 5 7 8 3 2

 0 1 4 6 5 7 8 3 2 9 b() = 5

• Choose decreasing strip with the smallest element k in
(k = 2 in this case)

• Find k – 1 in the permutation – it is in an increasing strip!

• Where are breakpoints adjacent to k and k – 1 ?

• Reverse the segment between k and k − 1:

• 0 1 4 6 5 7 8 3 2 9 b() = 5

• 0 1 2 3 8 7 5 6 4 9 b() = 4

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reducing the Number of Breakpoints
Again
 • If there is no decreasing strip, there may be no reversal that

reduces the number of breakpoints (i.e. b() ≥ b() for any

reversal).

• By reversing an increasing strip (# of breakpoints stay unchanged), we

will create a decreasing strip at the next step. Then the number of

breakpoints will be reduced in the next step (Theorem 1).

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Things To Consider (cont’d)

• There are no decreasing strips in , for:

 = 0 1 2 5 6 7 3 4 8 b() = 3

 (6,7)

 = 0 1 2 5 6 7 4 3 8 b() = 3

 (6,7) does not change the # of breakpoints

 (6,7) creates a decreasing strip thus guaranteeing that the next

step will decrease the # of breakpoints.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort()

 while b () > 0

 if has a decreasing strip

 Among all possible reversals, choose reversal that
 minimizes b ()

 else

 Choose a reversal that flips an increasing strip in

 output

 return

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

• ImprovedBreakPointReversalSort is an approximation algorithm

with a performance guarantee of at most 4

• It eliminates at least one breakpoint in every two steps; at most

2b() steps

• Approximation ratio: 2b() / d()

• Optimal algorithm eliminates at most 2 breakpoints in every step:

d() b() / 2

• Performance guarantee:

 (2b () / d ()) [2b () / (b () / 2)] = 4

ImprovedBreakpointReversalSort:
Performance Guarantee

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutations

• Up to this point, all permutations to sort were unsigned

• But genes have directions… so we should consider signed

permutations

5’ 3’

= 1 -2 - 3 4 -5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Breakpoint Graph

1) Represent the elements of the permutation = 2 3 1 4 6 5 as

vertices in a graph (ordered along a line)

 0 2 3 1 4 6 5 7

1) Connect vertices in order given by with black edges (black path)

1) Connect vertices in order given by 1 2 3 4 5 6 with grey edges

(grey path)

4) Superimpose black and grey paths

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Two Equivalent Representations of
the Breakpoint Graph

 0 2 3 1 4 6 5 7

 0 1 2 3 4 5 6 7

• Consider the following Breakpoint Graph

• If we line up the gray path (instead of black path) on a horizontal

line, then we would get the following graph

• Although they may look different, these two graphs are the same

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

What is the Effect of the Reversal ?

• The gray paths stayed the same for both graphs

• There is a change in the graph at this point

• There is another change at this point

How does a reversal change the breakpoint graph?

 0 1 2 3 4 5 6 7

 0 1 2 3 4 5 6 7

Before: 0 2 3 1 4 6 5 7

After: 0 2 3 5 6 4 1 7

• The black edges are unaffected by the reversal so they remain the

same for both graphs

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Estimating reversal distance by
Cycle Decomposition

 0 1 2 3 4 5 6 7

• A reversal removes 2 edges (red) and replaces them with 2 new

edges (blue)

• A breakpoint graph can be decomposed into cycles that have

edges with alternating patterns (solid / dashed).

• What effects have reversal on these cycles ?

 0 1 2 3 4 4 5 6 7

5 6
2 3

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Effects of Reversals
Case 1:

Both edges belong to the same cycle

• Remove the center black edges and replace them with new black
edges (there are two ways to replace them)

a) After this replacement, there now exists 2 cycles instead of 1 cycle

c () – c () = 1

This is called a proper reversal
since there’s a cycle increase
after the reversal.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Effects of Reversals
Case 1:

Both edges belong to the same cycle

• Remove the center black edges and replace them with new black

edges (there are two ways to replace them)

a) After this replacement, there now exists 2 cycles instead of 1 cycle

b) Or after this replacement, there still exists 1 cycle

c () – c () = 0

Therefore, after the reversal
c () – c () = 0 or 1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Effects of Reversals (Continued)

Case 2:

Both edges belong to different cycles

• Remove the center black edges and replace them with new black edges

• After the replacement, there now exists 1 cycle instead of 2 cycles

c () – c () = -1

Therefore, for every permutation
 and reversal

 c () – c () -1

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal Distance and Maximum
Cycle Decomposition

• Since the identity permutation of size n contains the maximum

cycle decomposition of n +1, c (identity) = n +1

• c (identity) – c () equals the number of cycles that need to be

“added” to c () while transforming into the identity

• Based on the previous theorem, at best after each reversal,
the cycle decomposition could increase by one, then:
 d () = c (identity) – c () = n +1 – c ()

• Yet, not every reversal can increase the cycle decomposition

Therefore, d () ≥ n +1 – c ()

For most biological systems the equality holds

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

The Complexity Reversal Distance

• 1997 - Alberto Caprara: Sorting by reversals is difficult. RECOMB

1997, ACM Press, 75-83.

• Computing reversal distance is NP-hard!

• Surprisingly, signed version of the problem is of polynomial

complexity

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutation

• Genes are directed fragments of DNA and we represent a

genome by a signed permutation

• If genes are in the same position but there orientations

are different, they do not have the equivalent gene order

• For example, these two permutations have the same

order, but each gene’s orientation is the reverse;

therefore, they are not equivalent gene sequences

 1 2 3 4 5

 -1 2 -3 -4 -5

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Signed Permutation

• The polynomial algorithm for computing signed reversal sorting

1. Basic sorting until we get a positive permutation.

2. If the permutation is not sorted then continue with hurdles

removal.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Basic sorting

• As usual, we will assume that is framed by 0 and n + 1, and that

those extra elements are always positive:

 …nn +1

• An oriented pair (i, j) is a pair of consecutive integers, that is | i |

− | j | = ±1, with opposite signs, i.e. i + j = ±1.

• Example

• (0 3 1 6 5 -2 4 7)

• (0 3 1 6 5 -2 4 7) # pair (1,-2) induces reversal

• (0 3 1 2 -5 -6 4 7)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Basic sorting

• An oriented pair (i, j) is a pair of consecutive integers, that is | i |

− | j | = ±1, with opposite signs, i.e. i + j = ±1.

• Example

• (0 3 1 6 5 -2 4 7)

• (0 3 1 6 5 -2 4 7) # pair (1,-2) induces reversal

• (0 3 1 2 -5 -6 4 7)

• In general, the reversals by an oriented pair will be:

• (i, j − 1), if i + j = +1

 (0 3 1 6 5 -2 4 7) (0 -5 -6 -1 -3 -2 4 7)

 (0 3 1 -6 5 -2 4 7) (0 3 1 4 2 -5 6 7)

• (i + 1, j), if i + j = −1

 (0 3 1 6 5 -2 4 7) (0 3 1 2 -5 -6 4 7)

 (0 -3 1 6 5 2 4 7) (0 -3 -2 -5 -6 -1 4 7)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Reversal score and basic sorting

• The score of an (oriented) reversal is defined as the number of
oriented pairs in the resulting permutation.

• Example

 (0 3 1 6 5 -2 4 7) reversal (1,4)

 (0 -5 -6 -1 -3 -2 4 7) score 4 !

• Basic sorting: As long as has an oriented pair, choose the
oriented reversal that has maximal score.

• Example

• Step 1: (0 3 1 6 5 –2 4 7) two oriented pairs (1,-2) and (3,-2) with
 score 2 and 4.

• Step 2: (0 -5 -6 -1 -3 -2 4 7) pairs (0,-1),(-3,4),(-5,4) and (-6,7)

• Step 3: (0 -5 -6 -1 2 3 4 7) pairs (0,-1),(-1,2),(-5,4) and (-6,7)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Basic sorting cont.

• (0 -5 –6 1 2 3 4 7)

• (0 -5 -4 -3 -2 -1 6 7)

• (0 1 2 3 4 5 6 7)

• This elementary strategy of Basic sorting is sufficient to optimally

sort almost all permutations that arise from biological data!

• Claim 1: Basic sorting applies k reversals to a permutation ,

yielding a permutations ’ such that d () = d (’) + k.

1. Basic sorting until we get a positive permutation

2. If the permutation is not sorted then continue with hurdles

removal

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Sorting positive permutations

• Such permutations are called reduced if they do not contain

consecutive elements.

• How to reduce a permutation?

 (0 3 8 9 7 4 5 6 10 1 2 11 12)

 (0 2 5 4 3 6 1 7)

• We suppose circular order by setting 0 to be successor of n+1

• Framed interval: encompasses all integers between i and i+k

belong to the interval [i . . . i + k].

• Consider permutation: (02543617). The whole permutation is a

framed interval, as well as 25436 and, by circularity, 61702.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Tough regions: Hurdles

• A hurdle in is a framed interval that contains no shorter framed

interval.

• When a permutation has only one or two hurdles, one reversal is

sufficient to create enough oriented pairs to completely sort the

permutation with Basic sorting.

• Two operations break hurdles: hurdle cutting and hurdle merging.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Breaking Hurdles

• Hurdle cutting: Reversing segment between i and i + 1 of a hurdle:

i . . . i + 1 . . . i + k

(0 2 4 3 1 5) (0 −3 −4 −2 1 5)

 which can be sorted in 4 reversals.

• Hurdle merging: Merging the end points of two hurdles.

i . . . i + k . . . i’ . . . i’ + k’

(0 2 5 4 3 6 1 7) (0 2 5 4 3 −6 1 7)

 which can be sorted in 5 reversals.

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Super Hurdles

• A simple hurdle is a hurdle whose cutting decreases the number of

hurdles. Hurdles that are not simple are called super hurdles.

• Example

1. (0 2 5 4 3 6 1 7) has two hurdles; after cutting and sorting the hurdle

• 2 5 4 3 6

• 2 -4 -5 3 6

• 2 -4 -3 5 6

• 2 3 4 5 6

 we get (0 2 3 4 5 6 1 7) – it collapses to (0 2 1 3) (a reduction!) and
 has only one hurdle.

2. (0 2 4 3 5 1 6 8 7 9) also contains two hurdles; after cutting and
sorting the hurdle 2 4 3 5 the resulting reduced permutation has still
two hurdles (0 2 3 4 5 1 6 8 7 9) reduction (0 2 1 3 5 4 6)

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Breaking Hurdles

• Hurdles removal: If a permutation has 2k hurdles, k 2, merge any
two non-consecutive hurdles. If a permutation has 2k + 1 hurdles,
k 1, then if it has one simple hurdle, cut it; If it has none, merge
two non-consecutive hurdles, or consecutive ones if k = 1.

• For proofs of all the algorithms and claims – see:

• A very elementary presentation of the Hannenhalli-Pevzner Theory by
Anne Bergeron http://citeseer.ist.psu.edu/599900.html

• Maximal exposure can be obtained from: Efficient algorithms for
multichromosomal genome rearrangements by Glen Tesler
http://math.ucsd.edu/gptesler/pub_jcss.html

An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

GRIMM Web Server

http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM

• GRIMM web server computes

the reversal distances between

signed permutations:

