Probabilities and Probabilistic Models

Probabilistic models

- A mode/means a system that simulates an object under consideration.
- A probabilistic mode/is a model that produces different outcomes with different probabilities - it can simulate a whole class of objects, assigning each an associated probability.
- In bioinformatics, the objects usually are DNA or protein sequences and a model might describe a family of related sequences.

Examples

1. The roll of a six-sided dice $-\operatorname{six}$ parameters $p_{1}, p_{2}, \ldots, p_{6}$, where p_{i} is the probability of rolling the number i. For probabilities, $p_{i}>0$ and

$$
\sum_{i} p_{i}=1
$$

2. Three rolls of a dice: the model might be that the rolls are independent, so that the probability of a sequence such as $[2,4,6]$ would be $p_{2} p_{4} p_{6}$.
3. An extremely simple model of any DNA or protein sequence is a string over a 4 (nucleotide) or 20 (amino acid) letter alphabet. Let q_{a} denote the probability, that residue a occurs at a given position, at random, independent of all other residues in the sequence. Then, for a given length n, the probability of the sequence $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} q_{x_{i}}
$$

Conditional, joint, and marginal probabilities

- two dice D_{1} and D_{2}. For $j=1,2$, assume that
- the probability of using die D_{j} is $P\left(D_{j}\right)$, and for $i=1,2, \ldots, 6$, and
- the probability of rolling an i with dice D_{j} is $P_{D_{j}}(i)$.
- In this simple two dice model, the conditional probability of rolling an i with dice D_{j} is: $P\left(i \mid D_{j}\right)=P_{D_{j}}(i)$.
- The joint probability of picking die D_{j} and rolling an i is:

$$
P\left(i, D_{j}\right)=P\left(D_{j}\right) P\left(i \mid D_{j}\right) .
$$

- The probability of rolling i - marginal probability

$$
P(i)=\sum_{j=1}^{2} P\left(i, D_{j}\right)=\sum_{j=1}^{2} P\left(D_{j}\right) P\left(i \mid D_{j}\right)
$$

Maximum likelihood estimation

(maximálne vierohodný odhad)

- Probabilistic models have parameters that are usually estimated from large sets of trusted examples, called a training set.
- For example, the probability q_{a} for seeing amino acid a in a protein sequence can be estimated as the observed frequency f_{a} of a in a database of known protein sequences, such as SWISS-PROT.
- This way of estimating models is called Maximum likelihood estimation, because it can be shown that using the observed frequencies maximizes the total probability of the training set, given the model.
- In general, given a model with parameters and a set of data D, the maximum likelihood estimate (MLE) for θ is the value which maximizes $P(D \mid \theta)$.

Model comparison problem

- An occasionally dishonest casino uses two kinds of dice, of which 99% are fair, but 1% are loaded, so that a 6 appears 50% of the time.
- We pick up a dice and roll $[6,6,6]$. This looks like a loaded dice, is it? This is an example of a model comparison problem.
- I.e., our hypothesis $D_{\text {loaded }}$ is that the dice is loaded. The other alternative is $D_{\text {fair }}$ Which model fits the observed data better? We want to calculate:

$$
P\left(D_{\text {loaded }} \mid[6,6,6]\right)
$$

Prior and posterior probability

- $P\left(D_{\text {loaded }} \mid[6,6,6]\right)$ is the posterior probability that the dice is loaded, given the observed data.
apriórna pravdepodobnost'
- Note that the prior probability of this hypothesis is $1 / 100$ - prior because it is our best guess about the dice before having seen any information about the it.
- The likelihood of the hypothesis $D_{\text {loaded }}$:

$$
P\left([6,6,6] \mid D_{\text {loaded }}\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

- Posterior probability - using Bayes' theorem

Aposteriórna pravdepodobnost

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

Comparing models using Bayes' theorem
 - We set $X=D_{\text {loaded }}$ and $Y=[6,6,6]$, thus obtaining

$$
P\left(D_{\text {loaded }} \mid[6,6,6]\right)=\frac{P\left([6,6,6] \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)}{P([6,6,6])}
$$

- The probability $P\left(D_{\text {loaded }}\right)$ of picking a loaded die is 0.01 .
- The probability $P\left([6,6,6] \mid D_{\text {loaded }}\right)$ of rolling three sixes using a loaded die is $0.5^{3}=0.125$.
- The total probability $P([6,6,6])$ of three sixes is

$$
P\left([6,6,6] \mid D_{\text {loaded }}\right) P\left(D_{\text {loaded }}\right)+P\left([6,6,6] \mid D_{\text {fair }}\right) P\left(D_{\text {fair }}\right) .
$$

- Now,

$$
P\left(D_{\text {loaded }} \mid[6,6,6]\right)=\frac{\left(0.5^{3}\right)(0.01)}{\left(0.5^{3}\right)(0.01)+\left(\frac{1}{6}\right)^{3}(0.99)} \approx 0.214
$$

- Thus, the die is probably fair.

Biological example

- Lets assume that extracellular (ext) proteins have a slightly different composition than intercellular (int) ones. We want to use this to judge whether a new protein sequence x_{1}, \ldots, x_{n} is ext or int.
- To obtain training data, classify all proteins in SWISS-PROT into ext, int and unclassifiable ones.
- Determine the frequencies $f_{a}^{e x t}$ and $f_{a}^{\text {int }}$ of each amino acid a in ext and int proteins, respectively.
- To be able to apply Bayes' theorem, we need to determine the priors $p^{\text {int }}$ and $p^{\text {ext }}$, i.e. the probability that a new (unexamined) sequence is extracellular or intercellular, respectively.

Biological example - cont.

- We have: $P(x \mid e x t)=\prod_{i=1}^{n} q_{x_{i}}^{e x t}$ and $P(x \mid i n t)=\prod_{i=1}^{n} q_{x_{i}}^{\text {int }}$
- If we assume that any sequence is either extracellular or intercellular, then we have

$$
P(x)=p^{\text {ext }} P(x \mid e x t)+p^{\text {int }} P(x \mid \text { int }) .
$$

- By Bayes' theorem, we obtain

$$
P(e x t \mid x)=\frac{P(e x t) P(x \mid e x t)}{P(x)}=\frac{p^{e x t} \prod_{i} q_{x_{i}}^{\text {ext }}}{p^{e x t} \prod_{i} q_{x_{i}}^{e \text { ext }}+p^{\text {int }} \prod_{i} q_{x_{i}}^{\text {int }}}
$$

the posterior probability that a sequence is extracellular.

- (In reality, many transmembrane proteins have both intraand extracellular components and more complex models such as HMMs are appropriate.)

Probability vs. likelihood pravdepodobnost' vs. vierohodnost'

- If we consider $P(X \mid Y)$ as a function of X, then this is called a probability.
- If we consider $P(X \mid Y)$ as a function of Y, then this is called a likelihood.

