Physical Mapping Restriction Mapping

Bioinformatics Algorithms part 2
František Mráz, KSVI

Based on slides from http://bix.ucsd.edu/bioalgorithms/slides.php And other sources

Bioinformatics Algorithms

Contents

Bioinformatics Algorithms

Molecular Scissors - Restriction Enzymes

- HindII - first restriction enzyme - was discovered accidentally in 1970 while studying how the bacterium Haemophilus influenzae takes up DNA from the virus
- Recognizes and cuts DNA at sequences:

GTGCAC

GTTAAC

Bioinformatics Algorithms

Recognition Sites of Restriction Enzymes

Enzyme	Source	Recognition Sequence	Cut
EcoRI	Escherichia coli	5'GAATTC	5'---G AATTC---3'
		3'CTTAAG	3'---CTTAA G---5'
BamHI	Bacillus amyloliquefaciens	5'GGATCC	5'---G GATCC---3'
		3'CCTAGG	3'---CCTAG G---5'
HindIII	Haemophilus influenzae	5'AAGCTT	5'---A AGCTT---3'
		3'TTCGAA	3'---TTCGA A---5'
MstII	Microcoleus species	5'CCTNAGG	5'---CC TNAGG---3'
		3'GGANTCC	3'---GGANT CC---5'
TaqI	Thermus aquaticus	5'TCGA	5'---T CGA---3'
		3'AGCT	3'---AGC T---5'
NotI	Nocardia otitidis	5'GANTC	5'---GC GGCCGC---3'
		3'CTNAG	3'---CGCCGG CG---5'
HinfI	Haemophilus influenzae	5'GANTC	5'---G ANTC---3'
		3'CTNAG	3'---CTNA G---5'
AluI*	Arthrobacter luteus	5'AGCT	5'---AG CT---3'
		3'TCGA	3'---TC GA---5'

[^0]Bioinformatics Algorithms

Restriction Maps

- A map showing positions of restriction sites in a DNA sequence
- If DNA sequence is known then construction of restriction map is a trivial exercise
- In early days of molecular biology DNA sequences were often unknown
- Biologists had to solve the problem of constructing restriction maps without knowing

Bioinformatics Algorithms

Measuring Length of Restriction Fragments

- Restriction enzymes break DNA into restriction fragments.
- Gel electrophoresis is a process for separating DNA by size and measuring sizes of restriction fragments
- Visualization: autoradiography or fluorescence

Direction
of DNA
movement

Bioinformatics Algorithms

Physical Map, Restriction Mapping Problem

- Definition: Let S be a DNA sequence. A physical map consists of a set M of markers and a function $p: M \rightarrow \mathrm{~N}$ that assigns each marker a position of M in S.

N denotes the set of nonnegative integers

- For a set X of points on the line, let

$$
\delta X=\left\{\left|x_{1}-x_{2}\right|: x_{1}, x_{2} \in X\right\}
$$

denote the multiset of all pairwise distances between points in X called partial digest. In the restriction mapping problem, a subset $E \subseteq \delta X$ (of experimentally obtained fragment lengths) is given and the task is to reconstruct X from E.

Bioinformatics Algorithms

Full Restriction Digest: Multiple Solutions

- Reconstruct the order of the fragments from the sizes of the fragments $\{3,5,5,9\}$

- Alternative ordering of restriction fragments:

- Reconstruction from the full restriction digest is impossible.

Bioinformatics Algorithms

Three different problems

- One (full) digest is not enough
- Use 2 restriction enzymes
- Use 1 restriction enzyme, but differently

1. The double digest problem - DDP
2. The partial digest problem - PDP
3. The simplified partial digest problem- SPDP

Bioinformatics Algorithms

Double Digest Mapping

- Use two restriction enzymes; three full digests:
- ΔA - a complete digest of S using A,
- ΔB - a complete digest of S using B, and
- $\quad \triangle A B$ - a complete digest of S using both A and B.
- Computationally, Double Digest problem is more complex than Partial Digest problem

Bioinformatics Algorithms

Double Digest: Example

Physical map

(restriction enzymes A and B)

Bioinformatics Algorithms

Double Digest: Example

Without the information about X (i.e. $\Delta A B$), it is impossible to solve the double digest problem as this diagram illustrates

Bioinformatics Algorithms

Double Digest Problem

Input: $\Delta \boldsymbol{A}$ - fragment lengths from the complete digest with enzyme \boldsymbol{A}.
$\Delta \boldsymbol{B}$ - fragment lengths from the complete digest with enzyme \boldsymbol{B}.
$\Delta A B$ - fragment lengths from the complete digest with both \boldsymbol{A} and \boldsymbol{B}.

Output: \boldsymbol{A} - location of the cuts in the restriction map for the enzyme \boldsymbol{A}.
\boldsymbol{B} - location of the cuts in the restriction map for the enzyme \boldsymbol{B}.

Bioinformatics Algorithms

Double Digest: Multiple Solutions

Double digest

- The decision problem of the DDP is NP-complete.
- All algorithms have problems with more than 10 restriction sites for each enzyme.
- A solution may not be unique and the number of solutions grows exponentially.
- DDP is a favourite mapping method since the experiments are easy to conduct.

Bioinformatics Algorithms

DDP is NP-complete

1) DDP is in NP (easy)
2) given a (multi-)set of integers $X=\left\{x_{1}, \ldots, x_{n}\right\}$. The Set Partitioning Problem (SPP) is to determine whether we can partition X into two subsets X_{1} and X_{2} such that

This problem is known to be NP-complete.

$$
\sum_{x \in X_{1}} X=\sum_{x \in X_{2}} X
$$

Bioinformatics Algorithms

DDP is NP-complete

- Let X be the input of the SPP, assuming that the sum of all elements of X is even. Then set
- $\Delta A=X$,
- $\Delta B=\left\{\frac{K}{2}, \frac{K}{2}\right\}$. with $K=\sum_{i=1}^{n} x_{i}$, and
- $\Delta A B=\triangle A$.
- then there exists an integer n_{0} and indices $\left\{j_{1}, j_{2}, \ldots j_{n}\right\}$ with

$$
\sum_{i=1}^{n_{0}} x_{j_{i}}=\sum_{i=n_{0}+1}^{n} x_{j_{i}}
$$

because of the choice of ΔB and $\Delta A B$. Thus a solution for the SPP exists. Thus SPP is a DDP in which one of the two enzymes produced only two fragments of equal length.

Partial Restriction Digest

- The sample of DNA is exposed to the restriction enzyme for only a limited amount of time to prevent it from being cut at all restriction sites.
- This experiment generates the set of all possible restriction fragments between every two (not necessarily consecutive) cuts.
- This set of fragment sizes is used to determine the positions of the restriction sites in the DNA sequence.

Bioinformatics Algorithms

Multiset of Restriction Fragments

We assume that multiplicity of a fragment can be detected, i.e., the number of restriction fragments of the same length can be determined (e.g., by observing twice as much fluorescence intensity for a double fragment than for a single
 fragment)

Multiset: $\{3,5,5,8,9,14,14,17,19,22\}$

Bioinformatics Algorithms

Partial Digest Fundamentals

\boldsymbol{X} : the set of \boldsymbol{n} integers representing the location of all cuts in the restriction map, including the start and end
n: the total number of cuts
$\delta \boldsymbol{X}$: the multiset of integers representing lengths of each of the fragments produced from a partial digest

Bioinformatics Algorithms

One More Partial Digest Example

\boldsymbol{X}	0	2	4	7	10
0		2	4	7	10
2			2	5	8
4				3	6
7					3
10					

Representation of $\delta \boldsymbol{X}=\{2,2,3,3,4,5,6,7,8,10\}$ as a two dimensional table, with elements of

$$
X=\{0,2,4,7,10\}
$$

along both the top and left side. The elements at (i, j) in the table is

$$
x_{j}-x_{i} \text { for } 1 \leq i<j \leq n .
$$

Bioinformatics Algorithms

Partial Digest Problem: Formulation

- Goal: Given all pairwise distances between points on a line, reconstruct the positions of those points.
- Input: The multiset of pairwise distances L, containing $n(n-1) / 2$ integers.
- Output: A set X, of n integers, such that $\delta X=L$.

Bioinformatics Algorithms

Partial Digest: Multiple Solutions

- It is not always possible to uniquely reconstruct a set X based only on δX.
- For example, the set $X=\{0,2,5\}$ and

$$
(X+10)=\{10,12,15\}
$$

both produce $\delta X=\{2,3,5\}$ as their partial digest set.

- The sets $\{0,1,2,5,7,9,12\}$ and $\{0,1,5,7,8,10,12\}$ present a less trivial example of non-uniqueness. They both digest into:

$$
\{1,1,2,2,2,3,3,4,4,5,5,5,6,7,7,7,8,9,10,11,12\}
$$

Bioinformatics Algorithms

Homometric Sets

	0	1	2	5	7	9	12
0		1	2	5	7	9	12
1			1	4	6	8	11
2				3	5	7	10
5					2	4	7
7						2	5
9							3
12							

	0	1	5	7	8	10	12
0		1	5	7	8	10	12
1			4	6	7	9	11
5				2	3	5	7
7					1	3	5
8						2	4
10							2
12							

Partial Digest: Brute Force

1. Find the restriction fragment of maximum length $\boldsymbol{M} . \boldsymbol{M}$ is the length of the DNA sequence.
2. For every possible set

$$
\boldsymbol{X}=\left\{0, x_{2}, \ldots, x_{n-1}, M\right\}
$$

compute the corresponding $\delta \boldsymbol{X}$
3. If $\delta \boldsymbol{X}$ is equal to the experimental partial digest \boldsymbol{L}, then \boldsymbol{X} is the correct restriction map

Bioinformatics Algorithms

BruteForcePDP

BruteForcePDP((L, n) :

$M \leftarrow$ maximum element in L
for every set of $n-2$ integers $0<x_{2}<\ldots x_{n-1}<M$
$X \leftarrow\left\{0, x_{2}, \ldots, x_{n-1}, M\right\}$
Form δX from X
if $\delta X=L$
return X
output "no solution"

- BruteForcePDP takes $O\left(M^{n-2}\right)$ time since it must examine all possible sets of positions.
- One way to improve the algorithm is to limit the values of x_{i} to only those values which occur in L.

Bioinformatics Algorithms

AnotherBruteForcePDP

AnotherBruteForcePDP(L, n)
$M \leftarrow$ maximum element in L
for every set of $n-2$ integers $0<x_{2}<\ldots x_{n-1}<M$ from L
$X \leftarrow\left\{0, x_{2}, \ldots, x_{n-1}, M\right\}$
Form δX from X
if $\delta X=L$;
return X
output "no solution"

- It is more efficient, but still slow
- If $\boldsymbol{L}=\{2,998,1000\}$ ($\boldsymbol{n}=3, \boldsymbol{M}=1000$), BruteForcePDP will be extremely slow, but AnotherBruteForcePDP will be quite fast Fewer sets are examined, but runtime is still exponential:

$$
O\left(n^{2 n-4}\right)
$$

Bioinformatics Algorithms

Branch and Bound Algorithm for PDP

1. Begin with $\boldsymbol{X}=\{0\}$
2. Remove the largest element in \boldsymbol{L} and place it in \boldsymbol{X}
3. See if the element fits on the right or left side of the restriction map
4. When it fits, find the other lengths it creates and remove those from L
5. Go back to step 2 until \boldsymbol{L} is empty

Bioinformatics Algorithms

Branch and Bound Algorithm for PDP

1. Begin with $\boldsymbol{X}=\{0\}$
2. Remove the largest element in \boldsymbol{L} and place it in \boldsymbol{X}
3. See if the element fits on the right or left side of the restriction map
4. When it fits, find the other lengths it creates and remove those from L
5. Go back to step 2 until \boldsymbol{L} is empty

Bioinformatics Algorithms

Defining $\mathrm{D}(y, \mathrm{X})$

- Before describing PartialDigest, first define

$$
\mathrm{D}(y, x)
$$

as the multiset of all distances between point y and all other points in the set \boldsymbol{X}

$$
\mathrm{D}(y, x)=\left\{\left|y-x_{1}\right|,\left|y-x_{2}\right|, \ldots,\left|y-x_{n}\right|\right\}
$$

for $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

Bioinformatics Algorithms

PartialDigest Algorithm

- S. Skiena

PartialDigest(L):
width \leftarrow Maximum element in L
DELETE(width, L)
$X \leftarrow\{0$, width $\}$
$\operatorname{PLACE}(L, X)$

Bioinformatics Algorithms

PartialDigest Algorithm (cont' d)

PLACE (L, X) :
if L is empty
output X
return
$y \leftarrow$ maximum element in L
if $\mathrm{D}(y, x) \subseteq L$
Add y to X and remove lengths $\mathrm{D}(y, X)$ from L
PLACE (L, X)
Remove y from X and add lengths $\mathrm{D}(y, X)$ to L
if $D($ width $-y, x) \subseteq L$
Add (width $-y$) to X and remove lengths $\mathrm{D}($ width $-y, X)$ from L
$\operatorname{PLACE}(L, X)$
Remove (width $-y$) from X and add lengths $\mathrm{D}($ width $-y, X)$ to L return

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0\}$

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0\}$

Remove 10 from \boldsymbol{L} and insert it into \boldsymbol{X}. We know this must be the length of the DNA sequence because it is the largest fragment.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,10\}
\end{aligned}
$$

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,10\}
\end{aligned}
$$

Take 8 from \boldsymbol{L} and make $\boldsymbol{y}=2$ or 8 . But since the two cases are symmetric, we can assume $\boldsymbol{y}=2$.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,10\}
\end{aligned}
$$

We find that the distances from $y=2$ to other elements in X are $D(\boldsymbol{y}, \boldsymbol{X})=\{8,2\}$, so we remove $\{8,2\}$ from \boldsymbol{L} and add 2 to \boldsymbol{X}.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,10\}
\end{aligned}
$$

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0,2,10\}$

Take 7 from L and make $y=7$ or $y=10-7=3$. We will explore $\boldsymbol{y}=7$ first, so $\mathrm{D}(y, X)=\{7,5,3\}$.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,10\}
\end{aligned}
$$

For $\boldsymbol{y}=7$ first, $\mathrm{D}(y, X)=\{7,5,3\}=\{|7-0|,|7-2|,|7-10|\}$. Therefore we remove $\{7,5,3\}$ from \boldsymbol{L} and add 7 to \boldsymbol{X}.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,7,10\}
\end{aligned}
$$

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,7,10\}
\end{aligned}
$$

Take 6 from \boldsymbol{L} and make $\boldsymbol{y}=6$. Unfortunately
$\mathrm{D}(y, X)=\{6,4,1,4\}$, which is not a subset of L. Therefore we won't explore this branch.

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0,2,7,10\}$

This time make $y=4$. $\mathrm{D}(y, x)=\{4,2,3,6\}$, which is a subset of \boldsymbol{L} so we will explore this branch. We remove $\{4,2,3,6\}$ from \boldsymbol{L} and add 4 to \boldsymbol{X}.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,4,7,10\}
\end{aligned}
$$

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0,2,4,7,10\}$
L is now empty, so we have a solution, which is X.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,7,10\}
\end{aligned}
$$

To find other solutions, we backtrack.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,2,10\}
\end{aligned}
$$

More backtrack.

Bioinformatics Algorithms

An Example

$L=\{2,2,3,3,4,5,6,7,8,10\}$
$X=\{0,2,10\}$

This time we will explore $y=3 . \mathrm{D}(y, X)=\{3,1,7\}$, which is not a subset of L, so we won't explore this branch.

Bioinformatics Algorithms

An Example

$$
\begin{aligned}
& L=\{2,2,3,3,4,5,6,7,8,10\} \\
& X=\{0,10\}
\end{aligned}
$$

We backtracked back to the root. Therefore we have found all the solutions.

Bioinformatics Algorithms

Analyzing PartialDigest Algorithm

- Still exponential in worst case, but is very fast on average
- Informally, let $T(\boldsymbol{n})$ be time PartialDigest takes to place n cuts
- No branching case: $T(n)<T(n-1)+O(n)$
- Quadratic
- Branching case: $T(n)<2 T(n-1)+O(n)$
- Exponential

Bioinformatics Algorithms

PDP analysis

- No polynomial time algorithm is known for PDP. In fact, the complexity of PDP is an open problem.
- PartialDigest Algorithm by S. Skiena performs well in practice, but may require exponential time.
- This approach is not a popular mapping method, as it is difficult to reliably produce all pairwise distances between restriction sites.

Bioinformatics Algorithms

Simplified partial digest problem

- Given a target sequence S and a single restriction enzyme A. Two different experiments are performed
- on two sets of copies of S :
- In the short experiment, the time span is chosen so that each copy of the target sequence is cut precisely once by the restriction enzyme. Let $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{2 N}\right\}$ be the multi-set of all fragment lengths obtained by the short experiment, where N is the number of restriction sites in S, and
- In the long experiment, a complete digest of S by A is performed. Let $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{N+1}\right\}$ be the multi-set of all fragment lengths obtained by the long experiment.

Bioinformatics Algorithms

SPDP

- Example: Given these (unknown) restriction sites (in kb):

- We obtain $\Lambda=\{2 k b, 6 k b, 1 k b, 4 k b, 3 k b\}$ from the long experiment.
- The short experiment yields:

- $\Gamma=\{2 k b, 14 k b, 8 k b, 8 k b, 9 k b, 7 k b, 13 k b, 3 k b\}$

Bioinformatics Algorithms

SPDP

- In the following we assume that $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{2 N}\right\}$ is sorted in nondecreasing order.
- For each pair of fragment lengths γ_{i} and $\gamma_{2 N-i+1}$, we have

$$
\gamma_{i}+\gamma_{2 N-i+1}=L, \text { where } L \text { is the length of } S .
$$

- Each such pair $\left\{\gamma_{i}, \gamma_{2 N-i+1}\right\}$ of complementary lengths corresponds to precisely one restriction site in the target sequence S, which is either at position γ_{i} or at position $\gamma_{2 N-i+1}$.
- Let $P_{i}=\left\langle\gamma_{i}, \gamma_{2 N-i+1}\right\rangle$ and $P_{2 N-i+1}=\left\langle\gamma_{2 N-i+1}, \gamma_{i}\right\rangle$ denote the two possible orderings of the pair $\left\{\gamma_{i}, \gamma_{2 N-i+1}\right\}$. We call the first component a of any such ordered pair $P=\langle a, b\rangle$ the prefix of P.

Bioinformatics Algorithms

SPDP

- We obtain a set X of putative restriction site positions as follows: For each complementary pair $\left\{\gamma_{i}, \gamma_{2 N-i+1}\right\}$, we choose one of the two possible orderings P_{i} and $P_{2 N-i+1}$, and then add the corresponding prefix to X.
- Any such ordered choice $X=\left\langle x_{1}, \ldots, x_{N}\right\rangle$ of putative restriction sites gives rise to a multi-set of integers $R=\left\{r_{1}, \ldots, r_{N+1}\right\}$, with
- $r_{i}:=\left\{\begin{array}{l}x_{i} \\ x_{i}-x_{i-1} \\ L-x_{N}\end{array}\right.$
if $i=1$
if $i=2, \ldots, N$
if $i=N+1$.

Bioinformatics Algorithms

SPDP

- Simplified Partial Digest Problem (SPDP): Given multi-sets Γ and Λ of fragment lengths, determine a choice of orderings of all complementary fragment lengths in Γ such that the arising set R equals Λ.
- Example: In the example above we have

$$
\begin{aligned}
\Gamma & =\{2 k b, 3 k b, 7 k b, 8 k b, 8 k b, 9 k b, 13 k b, 14 k b\} \\
\Lambda & =\{2 k b,, 6 k b, 1 k b, 4 k b, 3 k b\}
\end{aligned}
$$

- We obtain $P_{1}=\langle 2,14\rangle, \quad P_{8}=\langle 14,2\rangle$,

$$
P_{2}=\langle 3,13\rangle, \quad P_{7}=\langle 13,3\rangle,
$$

$$
P_{3}=\langle 7,9\rangle, \quad P_{6}=\langle 9,7\rangle,
$$

$$
P_{4}=\langle 8,8\rangle, \quad P_{5}=\langle 8,8\rangle .
$$

Because of the long experiment we obtain $Q=\left\{P_{1}, P_{7}, P_{6}, P_{4}\right\}$ and $X=\{2$, $8,9,13\}$, from which we get $R=\{2,6,1,4,3\}$, our restriction site map.

Bioinformatics Algorithms

SPDP

- Simplified Partial Digest Problem (SPDP): Given multi-sets Γ and Λ of fragment lengths, determine a choice of orderings of all complementary fragment lengths in Γ such that the arising set R equals Λ.
- Example: In the example above we have

$$
\begin{aligned}
\Gamma & =\{2 k b, 3 k b, 7 k b, 8 k b, 8 k b, 9 k b, 13 k b, 14 k b\} \\
\Lambda & =\{2 k b,, 6 k b, 1 k b, 4 k b, 3 k b\}
\end{aligned}
$$

- We obtain $P_{1}=\langle 2,14\rangle, \quad P_{8}=\langle 14,2\rangle$,

$$
P_{2}=\langle 3,13\rangle, \quad P_{7}=\langle 13,3\rangle,
$$

$$
P_{3}=\langle 7,9\rangle, \quad P_{6}=\langle 9,7\rangle,
$$

$$
P_{4}=\langle 8,8\rangle, \quad P_{5}=\langle 8,8\rangle .
$$

Because of the long experiment we obtain $Q=\left\{P_{1}, P_{7}, P_{6}, P_{4}\right\}$ and $X=\{2$, $8,9,13\}$, from which we get $R=\{2,6,1,4,3\}$, our restriction site map.

Bioinformatics Algorithms

SPDP - algorithm

- the algorithm generates all possible choices of ordered pairs - when called with variable i, it considers both alternatives P_{i} and $P_{2 N-i+1}$.
- During a call, the current list of restriction sites $X=\left\langle x_{1}, \ldots, x_{k}\right\rangle$ and the list $R=\left\langle r_{1}, \ldots, r_{k}, r_{k+1}\right\rangle$ of all fragment lengths are passed as a parameter. Note that $x_{1}<x_{2}<\ldots<x_{k}$.
- When processing a new corresponding pair of fragment lengths, the last element r_{k+1} of the list R is replaced by two new fragment lengths that arise because the last fragment is split by the new restriction site.
- Initially, X and R are empty.
- $\operatorname{SPDP}\left(X=\left\langle x_{1}, \ldots, x_{k}\right\rangle, R=\left\langle r_{1}, \ldots, r_{k}, r_{k+1}\right\rangle, i\right)$

Index of the next pair

Already placed restriction sites

Corresponding fragments

The last fragment can be split by further restrictions sites

Bioinformatics Algorithms

```
                    SPDP - algorithm
                                    Already placed
                                    restriction sites
Algorithm SPDP \(\left(X=\left\langle x_{1}, \ldots, x_{k}\right\rangle, R=\left\langle r_{1}, \ldots, r_{k}, r_{k+1}\right\rangle, i\right)\) : Index of the next pair
if \(k=N\) and \(R=\Lambda\) then print \(X\)
// output putative restriction sites
else if \(i \leq 2 N\) then
    Consider \(P_{i}=\langle a, b\rangle\)
    if \(b \notin X\) then // the reversed ordering of \(P_{i}\) was
                                    // not used
```

```
if }k=0\mathrm{ then
```

if }k=0\mathrm{ then
Set }\mp@subsup{R}{}{\prime}=\langlea,b\rangle,\mp@subsup{X}{}{\prime}=\langlea
Set }\mp@subsup{R}{}{\prime}=\langlea,b\rangle,\mp@subsup{X}{}{\prime}=\langlea
if }a\in\Lambda\mathrm{ then call SPDP(}\mp@subsup{X}{\prime}{\prime},\mp@subsup{R}{}{\prime},i+1
if }a\in\Lambda\mathrm{ then call SPDP(}\mp@subsup{X}{\prime}{\prime},\mp@subsup{R}{}{\prime},i+1
else
Set $p=a-\left(L-r_{k+1}\right)$ and $q=L-a / /$ new fragment lengths,
// $a-\left(L-r_{k+1}\right)$ equals $a-x_{k}$ for $k \geq 1$
if $p \in \Lambda$ then
Set $R^{\prime}=\left\langle r_{1}, \ldots, r_{k \prime} p, q\right\rangle$
Set $X^{\prime}=\left\langle x_{1}, \ldots, x_{k}, a\right\rangle \quad / /$ add a to the set of restriction sites
Call $\operatorname{SPDP}\left(X_{,}^{\prime}, R^{\prime}, i+1\right) \quad / /$ continue using a in this tree's lineage
Call $\operatorname{SPDP}(X, R, i+1)$
// consider other alternative

```

\section*{Bioinformatics Algorithms}

\section*{SPDP - algorithm}
- Clearly, the worst case running time complexity of this algorithm is exponential. However, it seems to work quite well in practice.
- This algorithm is designed for ideal data. In practice there are two problems:
1. Fragment length determination by gels leads to imprecise measurements, down to about \(2-7 \%\) in good experiments. This can be addressed by using interval arithmetic in the above algorithm.
2. The second problem is missing fragments. The SPDP does not suffer from this problem much because both digests are easy to perform. Moreover, the short experiment must give rise to complementary values and any failure to do so can be detected. The long experiment should give rise to precisely \(N+1\) fragments.

\section*{Bioinformatics Algorithms}

\section*{Summary}
```


[^0]: * $=$ blunt ends

