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Bioinformatics Algorithms

• Gene: A sequence of nucleotides coding for protein
• Gene Prediction Problem: Determine the beginning and end 

positions of genes in a genome

• atgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgct
aatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggc
tatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggcta
tgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccga
tgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcg
gctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgc
ggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctg
ggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgca
tgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctat
gctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcgg
ctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgaca
atgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctat
gctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaa
gctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaa
tgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcat
gcggctatgctaagct

Introduction
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• Gene: A sequence of nucleotides coding for protein
• Gene Prediction Problem: Determine the beginning and end 

positions of genes in a genome

• atgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgct
aatgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggc
tatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggcta
tgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccga
tgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcg
gctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgc
ggctatgcaagctgggatcctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctg
ggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaatgca
tgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctat
gctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatgcgg
ctatgctaagctcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgaca
atgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctat
gctaatgcatgcggctatgctaagctcggctatgctaatgaatggtcttgggatttaccttggaatgctaa
gctgggatccgatgacaatgcatgcggctatgctaatgaatggtcttgggatttaccttggaatatgctaa
tgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcat
gcggctatgctaagct

Gene!

Introduction
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• In 1960’s it was discovered that the sequence of codons in a gene 
determines the sequence of amino acids in a protein

an incorrect assumption: the triplets encoding for amino acid sequences 
form contiguous strips of information.

• A paradox: genome size of many eukaryotes does not correspond to 
“genetic complexity”, for example, the salamander genome is 10 
times the size of that of human.

• 1977 – discovery of “split” genes: experiments with mRNA of hexon, 
a viral protein:

Introduction

• mRNA-DNA hybrids formed three 
curious loop structures instead of 
contiguous duplex segments (seen in 
an electron microscope) DNA

mRNA
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Central Dogma and Splicing

exon1 exon2 exon3
intron1 intron2

transcription

translation

splicing

exon = coding
intron = non-coding
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• The Genome of many eukaryotes contain only relatively few genes 
(Human genome 3%).

• Many false splice sites & other signals.
• Very short exons (3bp), especially initial.
• Many very long introns.
• Alternative splicing

Gene prediction is hard
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A. Statistical or ab initio methods: These methods attempt to predict 
genes based on statistical properties of the given DNA sequence.
Programs are e.g. Genscan, GeneID, GENIE and FGENEH.

B. Comparative methods: The given DNA string is compared with a 
similar DNA string from a different species at the appropriate 
evolutionary distance and genes are predicted in both sequences 
based on the assumption that exons will be well conserved, 
whereas introns will not. Programs are e.g. CEM (conserved exon
method) and Twinscan.

C. Homology methods: The given DNA sequence is compared with 
known protein structures. Programs are e.g. TBLASTN or 
TBLASTX, Procrustes and GeneWise.

Approaches to gene finding
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• Coding segments (exons) have typical sequences on either end and
use different subwords than non-coding segments (introns). 

• E.g. for the bases around the transcription start site we may have 
the following observed frequencies (given by this position specific 
weight matrix (PSWM) ):

Pos. -8  -7  -6  -5  -4  -3  -2  -1  +1  +2  +3  +4  +5  +6  +7

A .16 .29 .20 .25 .22 .66 .27 .15   1   0   0 .28 .24 .11 .26
C .48 .31 .21 .33 .56 .05 .50 .58   0   0   0 .16 .29 .24 .40
G .18 .16 .46 .21 .17 .27 .12 .22   0   0   1 .48 .20 .45 .21
T .19 .24 .14 .21 .06 .02 .11 .05   0   1   0 .09 .26 .21 .21

• This can then be used together in a log-likelihood scoring model in 
order to distinguish certain recognition sites (such as transcription 
start sites, or promoter regions) from non-recognition sites.

A. Statistical ab initio methods
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• Most DNA is coding 
• No introns
• Promoters are DNA segments upstream of transcripts that initiate

transcription

• Promoter attracts RNA Polymerase to the transcription start site

A. Gene prediction in prokaryotes
gene structure

5’Promoter 3’

http://www.biochemistry.bham.ac.uk/sjwb/alpharot.gif
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• Upstream transcription start site (TSS; position 0) there are 
promoters 

A. Gene prediction in prokaryotes
gene structure

5’ 3’

5’ untranslated 3’ untranslated
Open reading frame

-35bp   -10bp

promoter

Start codon

Transcription 
Start Site

Stop codon
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Promoter Structure in Prokaryotes (E.Coli)

Transcription starts at offset 0.

• Pribnow Box (-10)

• Gilbert Box (-30)

• Ribosomal Binding Site (+10)
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• Detect potential coding regions by looking at ORFs
– A genome of length n is comprised of (n/3) codons
– Stop codons (TAA, TAG or TGA) break genome into segments 

between consecutive Stop codons
– The subsegments of these that start from the Start codon (ATG) are 

ORFs
• ORFs in different frames may overlap

Genomic Sequence

Open reading frame

ATG TGA

Open Reading Frames (ORFs)
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Six Frames in a DNA Sequence

• stop codons – TAA, TAG, TGA

• start codons – ATG

GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG

CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC

GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG
GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG
GACGTCTGCTTTGGAGAACTACATCAACCGGACTGTGGCTGTTATTACTTCTGATGGCAGAATGATTGTG

CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC
CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC
CTGCAGACGAAACCTCTTGATGTAGTTGGCCTGACACCGACAATAATGAAGACTACCGTCTTACTAACAC
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1. Evaluation of ORF length
– In an “random” DNA, the average distance between stop codons is 

64/3 ≈ 21 which is much less than the average length of a protein 
(≈300)

– Simple algorithm, poor performance
2. Evaluation of codon usage

– Codon usage in coding regions differs form the codon usage in non-
coding regions

3. Evaluation of codon preference
– One aminoacid is coded by several different codons, some of them are 

used more often than the others (see below)
4. Markov models and HMMs

ORF prediction
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2. ORF prediction – codon usage

I. Codon usage (see below)
• Create a 64-element hash table and count the frequencies of 

codons in an ORF
• Uneven use of the codons may characterize a real gene
• This compensate for pitfalls of the ORF length test

II. Hexamer counts 
• Frequency of occurrences of oligonucleotides of length 6 in a 

reading frame
• Usually modeled as fifth-order Hidden Markov Models

P(xn=s | ∩j<n xj)  =  P(xn=s | xn-1xn-2xn-3xn-4xn-5)
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• Vector with 64 components – frequencies of usage for each codon

2. ORF prediction – codon usage

AA Codon /1000

Gly GGG 1.89

Gly GGA 0.44

Gly GGU 52.99

Gly GGC 34.55

… … …

Glu GAG 15.68

Glu GAA 57.20

… … …

Asp GAU 21.63

Asp GAC 43.26
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Codon Usage in Human Genome

• Amino acids typically have more than one codon, but in nature 
certain codons are more in use

Percents of
usage among all
codons encoding

Stp
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AA  codon  /1000  frac
Ser  TCG    4.31  0.05
Ser  TCA   11.44  0.14
Ser  TCT   15.70  0.19
Ser  TCC   17.92  0.22
Ser  AGT   12.25  0.15
Ser  AGC   19.54  0.24

Pro  CCG    6.33  0.11
Pro  CCA   17.10  0.28
Pro  CCT   18.31  0.30
Pro  CCC   18.42  0.31

AA  codon  /1000  frac
Leu CTG   39.95  0.49
Leu CTA    7.89  0.10
Leu CTT   12.97  0.16
Leu CTC   20.04  0.25

Ala  GCG    6.72  0.10
Ala  GCA   15.80  0.23
Ala  GCT   20.12  0.29
Ala  GCC   26.51  0.38 

Gln CAG   34.18  0.75
Gln CAA   11.51  0.25

Codon Usage in Mouse Genome
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• For each reading frame a codon preference statistics at each 
position is computed. The statistic is calculated over a window of 
length lw (lw is usually between 25 and 50), where the window is 
moved along the sequence in increments of three bases, 
maintaining the reading frame. The magnitude of the codon 
preference statistic is a measure of the likeness of a particular 
window of codons to a predetermined preferred usage.

• The statistic is based on the concept of synonymous codons. 
Synonymous codons are those codons specifying the same amino 
acid.

3. ORF prediction – codon preference
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• Example:
Leucine, Alanine and Tryptophan are coded by 6, 4 and 1 different 
codons respectively. Hence in a uniformly random DNA they should
occur in the ratio 6:4:1. But in a protein they occur in the ratio 6.9:6.5:1.

• For a codon c
fc codon’s frequency of occurrence in the window.
Fc the total number of occurrences of c’s synonymous family in the

window.
rc the calculated number of occurrences of c in a random sequence of

length lw with the same base composition as the sequence being 
analyzed.

Rc the calculated number of occurrences of c’s synonymous family in a 
random sequence of length lw with the same base composition as 
the sequence being analyzed.

3. ORF prediction – codon preference
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fc codon’s frequency of occurrence in the window.
Fc the total number of occurrences of c’s synonymous family in the 

window.
rc the calculated number of occurrences of c in a random sequence of length lw with 

the same base composition as the sequence being analyzed.
Rc the calculated number of occurrences of c’s synonymous family in a random 

sequence of length lw with the same base composition as the sequence being 
analyzed.

• The codon c preference statistic:

– if pc =1 c is used equally in a random sequence and in the codon 
frequency table

3. ORF prediction – codon preference

cc

cc
c Rr

Ffp
/
/

=
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• When an aminoacid is coded by codons c1, c2, …,ck, then obviously

• The probability of the sequence in the window w is then

• Log-based score is used instead and the codon preference statistics for 
each window is

• A correction: 0 in the 

codon frequency table 

is replaced by 1/Fc
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3. ORF prediction – codon preference
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4. ORF prediction – using Markov 
models and HMM

• There are many more ORFs than real genes. E.g., the E. coli genome 
contains about 6600 ORFs but only about 4400 real genes. Markov 
model and an HMM can be used to distinguish between non-coding 
ORFs and real genes.

• DNA can be modeled as 64-state Markov chain of codons:
– Probabilities that a certain codon is followed by another one in a coding 

ORF is computed.
– Probability of the chain is then computed in the form of log-odds score.
– Non-coding ORF has log-odds distribution centered around 0.

Non-coding
coding
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• Alternating exons and introns

• intron starts usually by AG and ends by GT
• Types of exons

1. Initial exons
2. Internal exons
3. Terminal exons
4. Single-exon genes, i.e. genes without introns.

A. Gene prediction in eukaryotes
gene structure
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Consensus splice sites – splicing
signals
• Try to recognize location of 

splicing signals at exon-intron
junctions
– This has yielded a weakly 

conserved donor splice site 
and acceptor splice site

• Profiles for sites are still weak, 
and lends the problem to the 
Hidden Markov Model (HMM) 
approaches, which capture the 
statistical dependencies 
between sites
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Splice site detection

5’ 3’
Donor site

Position
% -8 … -2 -1 0 1 2 … 17
A 26 … 60 9 0 1 54 … 21
C 26 … 15 5 0 1 2 … 27
G 25 … 12 78 99 0 41 … 27
T 23 … 13 8 1 98 3 … 25

• In the exon-intron junctions there is a large similarity to the 
consensus sequence → algorithms based on position specific 
weight matrices. 

• However, this is far too simple, since it does not use all the 
information encoded in a gene. Thus more integrated approaches 
are sought. This naturally leads us to Hidden Markov Models.
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A simple HMM M for gene detection

• States are ‘in exon’ and ‘in intron’
• p probability that the process stays ‘in exon’; 1–p probability that the 

process switches into ‘in intron’
• q probability that the process stays ‘in intron’; 1–q probability that the 

process switches into ‘in exon’
• The probability that an exon has length k is

P(exon of length k | M) = pk (1–p)

exon intron
0.4 0.6

0.6

0.4
P(A)=0.2
P(C)=0.3
P(G)=0.3
P(T)=0.2

P(A)=0.25
P(C)=0.25 
P(G)=0.25 
P(T)=0.25
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A simple HMM M for gene detection

• pk (1–p) implies geometric distribution which does not correspond to 
the real distribution of lengths of introns and exons

introns initial exons
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A simple HMM M for gene detection

• pk (1–p) implies geometric distribution which does not correspond to 
the real distribution of lengths of introns and exons

internal exons terminal exons
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A simple HMM M for gene detection

• If an exon is too short (under 50bp), the spliceosome (enzyme that 
performs the splicing) has not enough room. 

• Exons that are longer than 300 bp are difficult to locate. 
• Typical numbers for vertebrates: 

• mean gene length ≈ 30kb, 
• mean coding region length ≈ 1−2kb.

• we need other models that can model biological exon lengths
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Ribosomal Binding Site
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TestCode

• Statistical test described by James Fickett in 1982: tendency for 
nucleotides in coding regions to be repeated with periodicity of 3
– Judges randomness instead of codon frequency.
– Finds “putative” coding regions, not introns, exons, or splice sites.

• TestCode finds ORFs based on compositional bias with a periodicity 
of three.
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TestCode Statistics

• Define a window size no less than 200 bp, slide the window 
along the sequence down 3 bases. In each window:
– Calculate for each base {A, T, G, C}

• max (n3k+1, n3k+2, n3k) / min ( n3k+1, n3k+2, n3k)

• Use these values to obtain a probability from a lookup table (which was a 
previously defined and determined experimentally with known coding 
and noncoding sequences

• Probabilities can be classified as indicative of " coding” or 
“noncoding” regions, or “no opinion” when it is unclear what 
level of randomization tolerance a sequence carries

• The resulting sequence of probabilities can be plotted
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TestCode Sample Output

Coding

No opinion

Non-coding
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Popular Gene Prediction Algorithms

• GENSCAN: uses modified Hidden Markov Models (HMMs) –
semi-Markov model – based on statistical methods and on data 
from an annotated training set

• TWINSCAN 
– Uses both HMM and similarity (e.g., between human and 

mouse genomes)
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B. Comparative gene finding
• Idea: the level of sequence conservation between two species 

depends on the function of the DNA, e.g. coding sequence is more
conserved than intergenic sequence.

• Program Rosetta:
– first computes a global alignment of two homologous sequences
– and then attempts to predict genes in both sequences simultaneously.

• A conserved exon method: that uses local conservation.
• Orthologous Genes: homologous genes in two species that have a 

common ancestor.
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Using Known Genes to Predict New 
Genes

• Some genomes may be very well-studied, with many genes having 
been experimentally verified.

• Closely-related organisms may have similar genes.
• Unknown genes in one species may be compared to genes in some 

closely-related species.
• Most human genes have mouse orthologs:

– 95% of coding exons are in a one-to-one correspondence between the two 
genomes. 

– 75% of orthologous coding exons have equal length, and 
– 95% have equal length modulo 3. 
– Intron lengths differ by an average of 50%. 
– The coding sequence similarity between the two organisms is around 85%,
– the intron sequence similarity is around 35%, 
– 5’ UTRs and 3’ UTRs around 68%.
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Similarity-Based Approach to Gene 
Prediction

• Genes in different organisms are similar
• The similarity-based approach uses known genes in one 

genome to predict (unknown) genes in another genome
• Problem: Given a known gene and an unannotated genome 

sequence, find a set of substrings of the genomic sequence 
whose concatenation best fits the gene

• We try to identify small islands of similarity corresponding to 
similarities between exons
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Reverse Translation

• Given a known protein, find a gene in the genome which codes for it.
• One might infer the coding DNA of the given protein by reversing the 

translation process
– Inexact: amino acids map to > 1 codon.
– This problem is essentially reduced to an alignment problem.

• This reverse translation problem can be modeled as traveling in 
Manhattan grid with free horizontal jumps
– Complexity of Manhattan is n3

• Every horizontal jump models an insertion of an intron
• Problem with this approach:  would match nucleotides pointwise and 

use horizontal jumps at every opportunity
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Comparing Genomic DNA Against 
mRNA

Portion of genome

m
RN

A 

(codon sequence)

exon3exon1 exon2intron1 intron2
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Using Similarities to Find the Exon
Structure

• The known frog gene is aligned to different locations in the human 
genome

• Find the “best” path to reveal the exon structure of human gene

Frog G
ene (know

n)

Human Genome
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Finding Local Alignments
• Use local alignments to find all islands of similarity 

Human Genome

Frog G
enes (know

n)
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Chaining Local Alignments

• Find substrings that match a given gene sequence (candidate 
exons)

• Define a candidate exons as 
(l, r, w)

(left, right, weight defined as score of local alignment)
• Look for a maximum chain of substrings

– Chain: a set of non-overlapping nonadjacent intervals. 
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Exon Chaining Problem

• Locate the beginning and end of each interval (2n points)
• Find the “best” path

3
4

11
9

15
5

5

0 2 3 5 6 11 13 16 20 25 27 28 30 32
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Exon Chaining Problem: Formulation

• Exon Chaining Problem: Given a set of putative exons, find a 
maximum set of non-overlapping putative exons.

• Input: a set of weighted intervals (putative exons).

• Output: A maximum chain of intervals from this set.
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Exon Chaining Problem: Graph 
Representation

• This problem can be solved with dynamic programming in O(n) time.
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Exon Chaining Algorithm

ExonChaining (G, n ) //Graph, number of intervals
for i ← to 2n

si ← 0
for i ← 1 to 2n

if vertex vi in G corresponds to right end of the interval I
j ← index of vertex for the left end of the interval I
w ← weight of the interval I
sj ← max {sj + w, si -1}

else
si ← si-1

return s2n
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Exon Chaining: Deficiencies

– Poor definition of the putative exon endpoints.
– Optimal chain of intervals may not correspond to any valid 

alignment:
– First interval may correspond to a suffix, whereas second interval may 

correspond to a prefix.
– Combination of such intervals is not a valid alignment.
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Infeasible Chains

• Red local similarities form two non -overlapping  intervals but do not 
form a valid global alignment

Human Genome

Frog G
enes (know

n)
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Spliced Alignment

• Mikhail Gelfand and colleagues proposed a spliced alignment
approach of using a protein within one genome to reconstruct the
exon-intron structure of a (related) gene in another genome. 
– Begins by selecting either all putative exons between potential acceptor 

and donor sites or by finding all substrings similar to the target protein 
(as in the Exon Chaining Problem). 

– This set is further filtered in such way that attempts to retain all true 
exons, with some false ones. 
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Spliced Alignment Problem: 
Formulation

• Goal: Find a chain of blocks in a genomic sequence that best 
fits a target sequence

• Input: Genomic sequences G, target sequence T, and a set of 
candidate exons B. 

• Output: A chain of exons Γ such that the global alignment score 
between Γ* and  T is maximum among all chains of blocks from 
B.

Γ* – the concatenation of all exons from chain Γ
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Lewis Carroll Example
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Spliced Alignment: Idea

• Compute the best alignment between i-prefix of genomic sequence 
G and j-prefix of target T:

S(i,j)

• But what is “i-prefix” of G?
• There may be a few i-prefixes of G depending on which block B we 

are in. 
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Spliced Alignment: Idea

• Compute the best alignment between i-prefix of genomic sequence 
G and j-prefix of target T:

S(i,j)

• But what is “i-prefix” of G?
• There may be a few i-prefixes of G depending on which block B we 

are in.
• Compute the best alignment between i-prefix of genomic sequence 

G and j-prefix of target T under the assumption that the alignment 
uses the block B at position i

S(i,j,B)
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• Given a position i, let Γ = (B1, . . . ,Bk, . . . ,Bt) be a chain such that 
some block Bk contains i.

• We define
Γ*(i ) = B1* B2 * . . . *Bk(i )

as the concatenation of B1. . . Bk-1 and the i-prefix of Bk.
• Then

S(i, j, k) = maxall chains Γ containing block Bk s(Γ*(i ), T(j )),
is the optimal score for aligning a chain of blocks up to position i in 
G to the j-prefix of T. 

• The values of this matrix can be computed using dynamic 
programming.

Bk(i)

The score of a prefix alignment

B1 B2 Bk-1…
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Spliced Alignment Initialization

1. For j=0, S(i, 0, B) corresponds to an aligment of blocks in front of B
to gaps and gfirst(B)…gi to gaps

1. For j>0 and when there does not exist a block preceding B

• first(B) = index of the first base of B

( )
( )

∑
=

=
i

Bfirstl
indelBiS ,0,

( ) ( )( )jiBfirst ttggsBjiS KK 1,,, =
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Spliced Alignment Recurrence

• If i is not the starting vertex of block B:
S(i, j, B) = 

max { S(i – 1, j, B) – indel penalty
S(i, j – 1, B) – indel penalty
S(i – 1, j – 1, B) + δ(gi, tj ) }

• If i is the starting vertex of block B:
S(i, j, B) = 

max { S(i, j – 1, B) – indel penalty
maxall blocks B’ preceding block B S(end(B’), j, B’) – indel penalty 
maxall blocks B’ preceding block B S(end(B’), j – 1, B’) + δ(gi, tj ) }

• After computing the three-dimensional table S(i, j, B), the score of the 
optimal spliced alignment is:

maxall blocks BS(end(B), length(T), B)
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Spliced Alignment: Complications

• Considering multiple i-prefixes leads to slow down. running time: 
O(mn2 |B|)

where m is the target length, n is the genomic sequence length and
|B| is the number of blocks.

• A mosaic effect: short exons are easily combined to fit any target 
protein
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Spliced Alignment: Speedup
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Spliced Alignment: Speedup

• P(i,j)=maxall blocks B preceding position i S(end(B), j, B)
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Exon Chaining vs Spliced Alignment

• In Spliced Alignment, every path spells out string obtained by 
concatenation of labels of its edges. The weight of the path is 
defined as optimal alignment score between concatenated labels 
(blocks) and target sequence

– Defines weight of entire path in graph, but not the weights for 
individual edges.

• Exon Chaining assumes the positions and weights of exons are 
pre-defined.
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Gene Prediction: Aligning Genome 
vs. Genome

• Align entire human and mouse genomes.

• Predict genes in both sequences simultaneously as chains of 
aligned blocks (exons).

• This approach does not assume any annotation of either human 
or mouse genes. 
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Gene Prediction Tools

• GENSCAN/Genome Scan
• TwinScan
• Glimmer
• GenMark
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The GENSCAN Algorithm
• Algorithm is based on probabilistic model of gene structure similar to 

Hidden Markov Models (HMMs).
• GENSCAN uses a training set in order to estimate the HMM 

parameters, then the algorithm returns the exon structure using 
maximum likelihood approach standard to many HMM algorithms 
(Viterbi algorithm). 
– Biological input: Codon bias in coding regions, gene structure (start and 

stop codons, typical exon and intron length, presence of promoters, 
presence of genes on both strands, etc)

– Covers cases where input sequence contains no gene, partial gene, 
complete gene, multiple genes. 

• GENSCAN limitations:
– Does not use similarity search to predict genes. 
– Does not address alternative splicing. 
– Could combine two exons from consecutive genes together
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• Incorporates similarity information into GENSCAN: predicts gene 
structure which corresponds to maximum probability conditional 
on similarity information

• Algorithm is a combination of two sources of information
– Probabilistic models of exons-introns
– Sequence similarity information

GenomeScan
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TwinScan

• Aligns two sequences and marks each base as gap ( - ), 
mismatch (:), match (|), resulting in a new alphabet of 12 letters: 
Σ = {A-, A:, A |, C-, C:, C |, G-, G:, G |, T-, T:, T|}.

• Run Viterbi algorithm using emissions ek(b) where b ∈ Σ, k.
• The emission probabilities are estimated from human/mouse 

gene pairs. 
– Ex. eI(x|) < eE(x|) since matches are favored in exons, and 

eI(x-) > eE(x-)
since gaps (as well as mismatches) are favored in introns. 

– Compensates for dominant occurrence of poly-A region in introns

http://www.standford.edu/class/cs262/
Spring2003/Notes/ln10.pdf
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Glimmer

• Gene Locator and Interpolated Markov ModelER
• Finds genes in bacterial DNA
• Uses interpolated Markov Models
• Made of 2 programs

– BuildIMM
• Takes sequences as input and outputs the Interpolated Markov Models 

(IMMs)
– Glimmer

• Takes IMMs and outputs all candidate genes
• Automatically resolves overlapping genes by choosing one, hence limited
• Marks “suspected to truly overlap” genes for closer inspection by user
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GenMark

• Based on non-stationary Markov chain models

• Results displayed graphically with coding vs. noncoding probability 
dependent on position in nucleotide sequence
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