Hidden Markov Models

Outline

- cG-islands
- The "Fair Bet Casino"
- Hidden Markov Model
- Decoding Algorithm
- Forward-Backward Algorithm
- Profile HMMs
- HMM Parameter Estimation
- Viterbi training
- Baum-Welch algorithm

cG-Islands

- Given 4 nucleotides: probability of occurrence is $\sim 1 / 4$. Thus, probability of occurrence of a dinucleotide is $\sim 1 / 16$.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, cG is typically underepresented (frequency of CG is typically < 1/16)

Why cg-Islands?

- cGis the least frequent dinucleotide because cin cG is easily methylated (that is, an +ratom is replaced by a CH_{3}-group) and the methyl-c has the tendency to mutate into $\mathrm{\tau}$ afterwards
- However, the methylation is suppressed around genes in a genome. So, cGappears at relatively high frequency within these cGislands
- So, finding the cg islands in a genome is an important problem
- Classical definition: A cpgisland is DNA sequence of length about 200bp with a c + Gcontent of 50% and a ratio of observed-toexpected number of cpG's that is above 0.6. (Gardiner-Garden \& Frommer, 1987)

Problems

1. Discrimination problem: Given a short segment of genomic sequence. How can we decide whether this segment comes from a cpG-island or not?

2. Localisation problem: Given a long segment of genomic sequence. How can we find all contained CpG-islands?

Hidden Markov Model

Markov Model

Definition: A (time-homogeneous) Markov model (of order 1) is a system $M=(Q, A)$ consisting of
$Q=\left\{s_{1}, \ldots, s_{k}\right\}$: a finite set of states and
$A=\left(a_{k}\right): a|Q| \times|Q|$ matrix of probability of changing from state s_{k} to state $s_{l} \cdot \mathrm{P}\left(x_{i+1}=s_{l} \mid x_{i}=s_{k}\right)=a_{k l}$ with $\Sigma_{l \in S} a_{k l}=1$ for all $k \in S$.

Definition: A Markov chain is a chain $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ of random variables, which take states in the state set Q such that

$$
\mathrm{P}\left(x_{n}=s \mid \cap_{j<n} x_{j}\right)=\mathrm{P}\left(x_{n}=s \mid x_{n-1}\right) \text { is true for all } n>0 \text { and } s \in S .
$$

Definition: A Markov chain is called homogeneous, if the probabilities are not dependent on n. (At any time i the chain is in a specific state x_{i} and at the tick of a clock the chain changes to state x_{i+1} according to the given transition probabilities.

Example

Weather in Prague, daily at midday:
Possible states are rain, sun or clouds.
Transition probabilities:

	R	S	C
R	$\cdot 2$	$\cdot 3$	$\cdot 5$
S	$\cdot 2$	$\cdot 6$	$\cdot 2$
C	.	3	.3

A Markov chain would be the observation of the weather:

```
...rrrrrrccsssssscscscccrrcrcssss...
```

Types of questions that the model can answer:

1. If it is sunny today, what is the probability that the sun will shine for the next seven days?
2. How large is the probability, that it will rain for a month?

Modeling the begin and end states

- We must specify the initialization of the chain - an initial probability $\mathrm{P}\left(x_{1}\right)$ of starting in a particular state. We can add a begin state to the model that is labeled 'Begin' and add this to the states set. We will always assume that $x_{0}=$ Begin holds. Then the probability of the first state in the Markov chain is

$$
\mathrm{P}\left(x_{1}=s\right)=a_{\text {Begin }, s}=\mathrm{P}(s),
$$

where $\mathrm{P}(s)$ denotes the background probability of state s.

- Similarly, we explicitly model the end of the sequence using an end state 'End'. Thus, the probability that we end in state t is

$$
\mathrm{P}\left(\text { End } \mid x_{n}=t\right)=p_{t, \text { End }} .
$$

Probability of Markov chains

- Given a sequence of states $x=x_{1}, x_{2}, x_{3}, \ldots, x_{L}$. What is the probability that a Markov chain will step through precisely this sequence of states?

$$
\begin{aligned}
\mathrm{P}(x) & =\mathrm{P}\left(x_{L}, x_{L-1}, \ldots, x_{1}\right) \\
& =\mathrm{P}\left(x_{L} \mid x_{L-1}, \ldots, x_{1}\right) \mathrm{P}\left(x_{L-1} \mid x_{L-2}, \ldots, x_{1}\right) \ldots \mathrm{P}\left(x_{1}\right),
\end{aligned}
$$

[by repeated application of $\mathrm{P}(X, Y)=\mathrm{P}(X \mid Y) \mathrm{P}(Y)$]

$$
=\mathrm{P}\left(x_{L}, \mid x_{L-1}\right) \mathrm{P}\left(x_{L-1} \mid x_{L-2}\right) \ldots \mathrm{P}\left(x_{2} \mid x_{1}\right) \mathrm{P}\left(x_{1}\right)
$$

$$
=\mathrm{P}\left(x_{1}\right) \prod_{i=2}^{L} \mathrm{a}_{x_{i-1} x_{i}}=\prod_{i=1}^{L} \mathrm{a}_{x_{i-1} x_{i}}
$$

$$
\vartheta
$$

If $x_{0}=$ Begin

Example

```
# Markov chai n that generates CpG islands
# (Source: DEKNP8, p 50)
# Number of states:
6
# State l abels (*=Begi n, +=End):
A C GT * +
# Transi ti on matri x:
O. 1795 0. 2735 0. 4255 0. 1195 0 0. OO2
0. 1705 0. }3665\mathrm{ 0. 2735 0. 1875 0 0. 002
0. 1605 0. 3385 0. 3745 0. 1245 0 0. 002
0. 0785 0. 3545 0. 3835 0. 1815 0 0.002
0. 2495 0. 2495 0. 2495 0. 2495 0 0. 002
O. 0000
O. 0000 O. 0000
0. 0000 O 1. 000
```


Transition matrices are generally calculated from training sets.

- In our case the transition matrix P^{+}for a DNA sequence that comes from a cG-island, is determined as follows:

$$
p_{s t}^{+}=\frac{c_{s t}^{+}}{\sum_{t^{\prime}} c_{s t^{\prime}}^{+}}
$$

- where $c_{s t}$ is the number of positions in a training set of cG-islands at which the state s is followed by the state t.

Markov chains for CG-islands and non CG-islands

```
# Markov chai n for CpG islands
# Number of states:
4
# State I abel s:
A CGT
# Transiti on matri x P+:
. 1795 . 2735 . 4255 . 1195
. 1705 . 3665 . 2735 . 1875
. 1605 . 3385 . 3745 . 1245
.0785 . 3545 . 3835 . 1815
```

```
# Markov chain for non- CpG islands
```


Markov chain for non- CpG islands

Number of states:

Number of states:

4
4

State l abel s:

State l abel s:

A CGT
A CGT

Transition matri x P- :

Transition matri x P- :

. 2995 . 2045 . 2845 . 2095
. 2995 . 2045 . 2845 . 2095
. 3215 . 2975 . 0775 . 0775
. 3215 . 2975 . 0775 . 0775
. 2475 . 2455 . 2975 . 2075
. 2475 . 2455 . 2975 . 2075
. 1765 . 2385 . 2915 . 2915

```
. 1765 . 2385 . 2915 . 2915
```


Solving Problem 1 - discrimination

- Given a short sequence $x=\left(x_{1}, x_{2}, \ldots, x_{L}\right)$. Does it come from a CpG-island (model ${ }^{+}$)?

$$
\mathrm{P}\left(x \mid \text { model }^{+}\right)=\prod_{i=1}^{L} \mathrm{a}_{x_{i-1} x_{i}}^{+}
$$

- Or does it not come from a non-CpG-island (model ${ }^{-}$)?

$$
\mathrm{P}\left(x \mid \text { model }^{-}\right)=\prod_{i=1}^{L} \mathrm{a}_{x_{i-1} x_{i}}^{-}
$$

- We calculate the log-odds ratio

$$
\mathrm{S}(x)=\log \frac{\mathrm{P}\left(x \mid \text { model }^{+}\right)}{\mathrm{P}\left(x \mid \text { model }^{-}\right)}=\sum_{i=1}^{\llcorner } \log \left(\frac{a_{x_{i-1}-x_{i}}^{+}}{a_{x_{i-1} x_{i}}^{-}}\right)=\sum_{i=2}^{\llcorner } \beta_{x_{i-1} x_{i}}
$$

with $\beta_{X Y}$ being the log likelihood ratios of corresponding transition probabilities. For the transition matrices above we calculate for example $\beta_{A A}=\log (0.18 / 0.3)$. Often the base $2 \log$ is used, in which case the unit is in bits.

Solving Problem 1 - discrimination cont

- If model ${ }^{+}$and model ${ }^{-}$differ substantially then a typical co-island should have a higher probability within the model ${ }^{+}$than in the model- . The log-odds ratio should become positive.
- Generally we could use a threshold value c^{*} and a test function to determine whether a sequence x comes from a cG-island:

$$
\phi^{*}(x):= \begin{cases}1 & \text { if } S(x)>c^{*} \\ 0 & \text { if } S(x) \leq c^{*}\end{cases}
$$

where $\phi^{*}(x)=1$ indicates that x comes from a cG-island.

- Such a test is called Neyman-Pearson-Test.

CG Islands and the "Fair Bet Casino"

- The problem of localisations of cG-islands can be modeled after a problem named "The Fair Bet Casino"
- The game is to flip coins, which results in only two possible outcomes: Head or Tail.
- The Fair coin will give Heads and Tails with same probability $1 / 2$.
- The Biased coin will give Heads with prob. $3 / 4$.
- Thus, we define the probabilities:
- $\mathrm{P}(H \mid F)=\mathrm{P}(T \mid F)=1 / 2$
- $P(H \mid B)=3 / 4, \quad P(T \mid B)=1 / 4$
- The crooked dealer changes between Fair and Biased coins with probability 10%

The Fair Bet Casino Problem

- Input: A sequence $x=x_{1} x_{2} x_{3} \ldots x_{n}$ of coin tosses made by two possible coins (F or B).
- Output: A sequence $\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n}$, with each π_{i} being either F or B indicating that x_{i} is the result of tossing the Fair or Biased coin respectively.

Fair Bet Casino

Problem
Any observed outcome of coin tosses could have been generated by any sequence of states!

Need to incorporate a way to grade different sequences differently.

Decoding Problem

$\mathrm{P}(x \mid$ fair coin $)$ vs. $\mathrm{P}(x \mid$ biased coin $)$

- Suppose first that dealer never changes coins. Some definitions:
- $\mathrm{P}(x \mid$ fair coin): prob. of the dealer using the F coin and generating the outcome x.
- $\mathrm{P}(x \mid$ biased coin): prob. of the dealer using the B coin and generating outcome x.

$\mathrm{P}(\mathrm{x} \mid$ fair coin) vs. $\mathrm{P}(\mathrm{x} \mid$ biased coin)

- $\mathrm{P}(x \mid$ fair coin $)=\mathrm{P}\left(x_{1} \ldots x_{n} \mid\right.$ fair coin $)$

$$
\prod_{i=1, n} p\left(x_{i} \mid \text { fair coin }\right)=(1 / 2)^{n}
$$

- $\mathrm{P}(x \mid$ biased coin $)=\mathrm{P}\left(x_{1} \ldots x_{n} \mid\right.$ biased coin $)=$
$\prod_{i=1, n} p\left(x_{i} \mid\right.$ biased coin $)=(3 / 4)^{k}(1 / 4)^{n-k}=3^{k} / 4^{n}$
- k - the number of Heads in x.

$\mathrm{P}(x \mid$ fair coin $)$ vs. $\mathrm{P}(x \mid$ biased coin $)$

- $\mathrm{P}(x \mid$ fair coin $)=\mathrm{P}(x \mid$ biased coin $)$

```
        \(1 / 2^{n}=3^{k} / 4^{n}\)
        \(2^{n}=3^{k}\)
        \(n=k \log _{2} 3\)
- when \(k=n / \log _{2} 3 \quad(k \sim 0.67 n)\)
```


Computing Log-odds Ratio in Sliding Windows

Consider a sliding window of the outcome sequence. Find the logodds for this short window.

Hidden Markov Model (HMM)

- Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
- What state should I move to next?
- What symbol - from the alphabet Σ - should I emit?

HMM Parameters

Σ : set of emission characters.
Ex.: $\Sigma=\{H, T\}$ for coin tossing
$\Sigma=\{1,2,3,4,5,6\}$ for dice tossing

Q: set of hidden states, each emitting symbols from Σ.
$Q=\{F, B\}$ for coin tossing
$A=\left(a_{k}\right): a|Q| \times|Q|$ matrix of probability of changing from state k to state l.

$$
\begin{array}{ll}
a_{F F}=0.9 & a_{F B}=0.1 \\
a_{B F}=0.1 & a_{B B}=0.9
\end{array}
$$

$E=\left(e_{k}(b)\right):$ a $|Q| \times|\Sigma|$ matrix of probability of emitting symbol b while being in state k.

$$
\begin{array}{ll}
e_{F}(0)=1 / 2 & e_{F}(1)=1 / 2 \\
e_{B}(0)=1 / 4 & e_{B}(1)=3 / 4
\end{array}
$$

HMM for Fair Bet Casino

- The Fair Bet Casino in HMM terms: $\Sigma=\{0,1\}$ (0 for Tails and 1 Heads)
$Q=\{F, B\}-F$ for Fair $\& B$ for Biased coin.
- Transition Probabilities A

Emission Probabilities E

	Fair	Biased
Fair	$a_{F F}=0.9$	$a_{F B}=0.1$
Biased	$a_{B F}=0.1$	$a_{B B}=0.9$

	Tails(0)	Heads(1)
Fair	$e_{F}(0)=1 / 2$	$e_{F}(1)=1 / 2$
Biased	$e_{B}(0)=1 / 4$	$e_{B}(1)=3 / 4$

HMM for Fair Bet Casino (contd)

HMM model for the Fair Bet Casino Problem

Hidden Paths

- A path $\pi=\pi_{1} \ldots \pi_{n}$ in the HMM is defined as a sequence of states.
- Consider path $\pi=$ FFFBBBBBBFFF and sequence $x=01011101001$

Probability that x_{i} was emitted from state $\pi_{\text {i }}$											
x	O	1	o	1	1	1	o	1	o	O	1
π	F	F	F	B	B	B	B	B	F	F	F
$\mathrm{P}\left(x_{j} \pi_{j}\right)$	1/2	1/2	1/2	3/4	3/4	3/4	1/4	3/4	1/2	1/2	1/2
$\mathrm{P}\left(\pi_{\mathrm{i}-1} \rightarrow \pi_{\mathrm{i}}\right)$			$9 / 1$	1/	$9 /$	9	9	/	$1 /$	9	9/10

"Transition probability from state π_{i-1} to state π_{i}

$\mathrm{P}(\mathrm{x} \mid \pi)$ Calculation

- $\mathrm{P}(x \mid \pi)$: Probability that the sequence $x=x_{1} x_{2} \ldots x_{n}$ was generated by the path $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$:

$$
\begin{aligned}
\mathrm{P}(x \mid \pi) & =\mathrm{P}\left(x_{1}\right) \cdot \prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right) \\
& =a_{\pi_{0,}, \pi_{1}} \cdot \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}} \\
\pi_{0} & =\text { Begin }
\end{aligned}
$$

$\mathrm{P}(\mathrm{x} \mid \pi)$ Calculation

- $\mathrm{P}(x \mid \pi)$: Probability that the sequence $x=x_{1} x_{2} \ldots x_{n}$ was generated by the path $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$:

$$
\begin{aligned}
\mathrm{P}(x \mid \pi) & =\mathrm{P}\left(x_{1}\right) \cdot \prod_{i=1}^{n} \mathrm{P}\left(x_{i} \mid \pi_{i}\right) \cdot \mathrm{P}\left(\pi_{i} \rightarrow \pi_{i+1}\right) \\
& =a_{\pi_{0}, \pi_{1}} \cdot \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i,}, \pi_{i+1}} \\
& =\prod_{i=0}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i,}, \pi_{i+1}}
\end{aligned}
$$

Decoding Problem

- Goal: Find an optimal hidden path of states given observations.
- Input: Sequence of observations $x=x_{1} \ldots x_{n}$ generated by an HMM $M(\Sigma, Q, A, E)$
- Output: A path that maximizes $\mathrm{P}(x \mid \pi)$ over all possible paths π.
\Longrightarrow Solves Problem 2 - localisation

Building Manhattan for Decoding Problem

- Andrew Viterbi used the Manhattan grid model to solve the Decoding Problem.
- Every choice of $\pi=\pi_{1} \ldots \pi_{n}$ corresponds to a path in a graph.
- The only valid direction in the graph is eastward.
- This graph has $|Q|^{2}(n-1)$ edges.

Edit Graph for Decoding Problem

Decoding Problem vs. Alignment Problem

Valid directions in the alignment problem.

Valid directions in the decoding problem.

Decoding Problem as Finding a Longest Path in a DAG

- The Decoding Problem is reduced to finding a longest path in the directed acyclic graph (DAG) above.
- Notes: the length of the path is defined as the product of its edges' weights, not the sum.
- Every path in the graph has the probability $\mathrm{P}(x \mid \pi)$.
- The Viterbi algorithm finds the path that maximizes $\underline{P}(x \mid \pi)$ among all possible paths.
- The Viterbi algorithm runs in $O\left(n|Q|^{2}\right)$ time.

Decoding Problem: weights of edges

The weight w is given by:
???

Decoding Problem: weights of edges

$$
\mathrm{P}(x \mid \pi)=\prod_{i=0}^{n} e_{\pi_{i+1}}\left(x_{i+1}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

The weight w is given by:

Decoding Problem: weights of edges

i-th term $=e_{\pi i+1}\left(x_{i+1}\right) \cdot a_{\pi_{i}, \pi_{i+1}}$

The weight w is given by:
?

Decoding Problem: weights of edges

$$
i \text {-th term }=e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}=e_{l}\left(x_{i+1}\right) \cdot a_{k l} \text { for } \pi_{i}=k, \pi_{i+1}=l
$$

The weight $w=e_{l}\left(x_{i+1}\right) \cdot a_{k l}$

Decoding Problem and Dynamic Programming

$\mathrm{s}_{l, i+1}=\max _{k \in Q}\left\{s_{k, i} \cdot\right.$ weight of edge between (k, i) and $\left.(1, i+1)\right\}=$

$$
\begin{gathered}
\max _{k \in Q}\left\{s_{k, i} \cdot \quad a_{k l} \cdot e_{l}\left(x_{i+1}\right)\right. \\
e_{l}\left(x_{i+1}\right) \cdot \max _{k \in Q}\left\{s_{k, i} \cdot a_{k \mid}\right\}
\end{gathered}
$$

Decoding Problem (contd)

- Initialization:

$$
\begin{aligned}
& s_{b e g i n, 0}=1 \\
& s_{k, 0}=0 \text { for } k \neq \text { begin. }
\end{aligned}
$$

- Let π^{*} be the optimal path. Then,

$$
P\left(x \mid \pi^{*}\right)=\max _{k \in Q}\left\{s_{k, n} \cdot a_{k, e n d}\right\}
$$

Viterbi Algorithm

- The value of the product can become extremely small, which leads to overflowing.
- To avoid overflowing, use log value instead.

$$
s_{k, i+1}=\log e_{l}\left(x_{i+1}\right)+\max _{k \in Q}\left\{s_{k, i}+\log \left(a_{k)}\right)\right\}
$$

Forward-Backward Problem

Given: a sequence of coin tosses generated by an HMM.
Goal: find the probability that the dealer was using a biased coin at a particular time.

Forward Algorithm

- Define $f_{k, i}$ (forward probability) as the probability of emitting the prefix $x_{1} \ldots x_{i}$ and reaching the state $\pi=k$.
- The recurrence for the forward algorithm:

$$
f_{k, i}=e_{k}\left(x_{i}\right) \cdot \sum_{I \in Q} f_{l, i-1} \cdot a_{l k}
$$

Backward Algorithm

- However, forward probability is not the only factor affecting $\mathrm{P}\left(\pi_{i}=k \mid x\right)$.
- The sequence of transitions and emissions that the HMM undergoes between π_{i+1} and π_{n} also affect $\mathrm{P}\left(\pi_{i}=k \mid x\right)$.
forward x_{i} backward

Backward Algorithm (conta)

- Define backward probability $b_{k, i}$ as the probability of being in state $\pi_{i}=k$ and emitting the suffix $x_{i+1} \ldots x_{n}$.
- The recurrence for the backward algorithm:

$$
b_{k, i}=\sum_{l \in Q} e_{l}\left(x_{i+1}\right) \cdot b_{l, i+1} \cdot a_{k l}
$$

Backward-Forward Algorithm

- The probability that the dealer used a biased coin at any moment i :

$$
\mathrm{P}\left(\pi_{i}=k \mid x\right)=\frac{\mathrm{P}\left(x, \pi_{i}=k\right)}{\mathrm{P}(x)}=\frac{f_{k}(i) \cdot b_{k}(i)}{\mathrm{P}(x)}
$$

$\mathrm{P}(x)$ is the sum of $\mathrm{P}\left(x, \pi_{i}=k\right)$ over all k

Finding Distant Members of a Protein Family

- A distant cousin of functionally related sequences in a protein family may have weak pairwise similarities with each member of the family and thus fail significance test.
- However, they may have weak similarities with many members of the family.
- The goal is to align a sequence to all members of the family at once.
- Family of related proteins can be represented by their multiple alignment and the corresponding profile.

Profile Representation of Protein Families

- Aligned DNA sequences can be represented by a $4 \times n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.

\mathbf{A}	.72	.14	0	0	.72	.72	0	0
\mathbf{T}	.14	.72	0	0	0	.14	.14	.86
\mathbf{G}	.14	.14	.86	.44	0	.14	0	0
\mathbf{C}	0	0	.14	.56	.28	0	.86	.14

- Protein family can be represented by a $20 \times n$ profile representing frequencies of amino acids.

Profiles and HMMs

- HMMs can also be used for aligning a sequence against a profile representing protein family.
- A $20 \times n$ profile P corresponds to n sequentially linked match states M_{1}, \ldots, M_{n} in the profile HMM of P.
- Multiple alignment of a protein family shows variations in conservation along the length of a protein
- Example: after aligning many globin proteins, the biologists recognized that the helices region in globins are more conserved than others.

What are Profile HMMs?

- A Profile HMM is a probabilistic representation of a multiple alignment.
- A given multiple alignment (of a protein family) is used to build a profile HMM.
- This model then may be used to find and score less obvious potential matches of new protein sequences.
- Multiple alignment is used to construct the HMM model.
- Assign each column to a Match state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities

Profile HMM

A profile HMM

Building a profile HMM

- Multiple alignment is used to construct the HMM model.
- Assign each column to a Match state in HMM. Add Insertion and Deletion state.
- Estimate the emission probabilities according to amino acid counts in column. Different positions in the protein will have different emission probabilities.
- Estimate the transition probabilities between Match, Deletion and Insertion states
- The HMM model gets trained to derive the optimal parameters.

States of Profile HMM

- Match states $M_{1} \ldots M_{n}$ (plus begin/end states)
- Insertion states $I_{0} I_{1} \ldots I_{n}$
- Deletion states $D_{1} \ldots D_{n}$

Probabilities in Profile HMM

- Transition probabilities:
- $\log \left(a_{M I}\right)+\log \left(a_{I M}\right)=$ gap initiation penalty
- $\log \left(a_{\| I}\right)=$ gap extension penalty
- Emission probabilities:
- Probabilty of emitting a symbol a at an insertion state l_{j} :

$$
e_{l j}(a)=p(a)
$$

where $p(a)$ is the frequency of the occurrence of the symbol a in all the sequences.

Profile HMM Alignment

- Define $v^{M}{ }_{j}$ (i) as the logarithmic likelihood score of the best path for matching $x_{1} . . x_{i}$ to profile HMM ending with x_{i} emitted by the state M_{j}.
- $v_{j}^{\prime}(i)$ and $v^{D}{ }_{j}(i)$ are defined similarly.

Profile HMM Alignment: Dynamic Programming

$$
v_{j}^{M}(i)=\log \left(e_{M_{j}}\left(x_{i}\right) / p\left(x_{i}\right)\right)+\max \left\{\begin{array}{l}
v_{j-1}^{M}(i-1)+\log \left(a_{M_{j-1}, M_{j}}\right) \\
v_{j-1}^{\prime}(i-1)+\log \left(a_{j-1}, M_{j}\right) \\
v_{j-1}^{D}(i-1)+\log \left(a_{D_{j-1}, M_{j}}\right)
\end{array}\right.
$$

$$
v_{j}^{\prime}(i)=\log \left(e_{l j}\left(x_{i}\right) / p\left(x_{i}\right)\right)+\max \left\{\begin{array}{l}
v_{j}^{M}(i-1)+\log \left(a_{M_{j}}, l_{j}\right) \\
v_{j}^{\prime}(i-1)+\log \left(a_{l_{j}}, l_{j}\right) \\
v_{j}^{D}(i-1)+\log \left(a_{D_{j}}, l_{j}\right)
\end{array}\right.
$$

Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding path through a profile HMM

Making a Collection of HMM for Protein Families

- Use Blast to separate a protein database into families of related proteins
- Construct a multiple alignment for each protein family.
- Construct a profile HMM model and optimize the parameters of the model (transition and emission probabilities).
- Align the target sequence against each HMM to find the best fit between a target sequence and an HMM

Application of Profile HMM to Modeling Globin Proteins

- Globins represent a large collection of protein sequences
- 400 globin sequences were randomly selected from all globins and used to construct a multiple alignment.
- Multiple alignment was used to assign an initial HMM
- This model then get trained repeatedly with model lengths chosen randomly between 145 to 170, to get an HMM model optimized probabilities.

How Good is the Globin HMM?

- 625 remaining globin sequences in the database were aligned to the constructed HMM resulting in a multiple alignment. This multiple alignment agrees extremely well with the structurally derived alignment.
- 25,044 proteins, were randomly chosen from the database and compared against the globin HMM.
- This experiment resulted in an excellent separation between globin and non-globin families.

PFAM

- Pfam decribes protein domains
- Each protein domain family in Pfam has:
- Seed alignment: manually verified multiple
alignment of a representative set of sequences.
- HMM built from the seed alignment for further database searches.
- Full alignment generated automatically from the HMM
- The distinction between seed and full alignments facilitates Pfam updates.
- Seed alignments are stable resources.
- HMM profiles and full alignments can be updated with newly found amino acid sequences.

PFAM Uses

- Pfam HMMs span entire domains that include both well-conserved motifs and less-conserved regions with insertions and deletions.
- It results in modeling complete domains that facilitates better sequence annotation and leeds to a more sensitive detection.

HMM Parameter Estimation

- So far, we have assumed that the transition and emission probabilities are known.
- However, in most HMM applications, the probabilities are not known. It's very hard to estimate the probabilities.

HMM Parameter Estimation Problem

- Given
- HMM with states and alphabet (emission characters)
- Independent training sequences $x^{1}, \ldots x^{m}$
- Find HMM parameters Θ (that is, $a_{k}, e_{k}(b)$) that maximize

$$
P\left(x^{1}, \ldots, x^{m} \mid \Theta\right)
$$

the joint probability of the training sequences.

Maximize the likelihood

$P\left(x^{1}, \ldots, x^{m} \mid \Theta\right)$ as a function of Θ is called the likelihood of the model.
The training sequences are assumed independent, therefore

$$
P\left(x^{1}, \ldots, x^{m} \mid \Theta\right)=\Pi_{i} P\left(x^{i} \mid \Theta\right)
$$

The parameter estimation problem seeks Θ that realizes

In practice the log likelihood is computed to avoid underflow errors

$$
\max \prod_{i} \mathrm{P}\left(x^{i} \mid \Theta\right)
$$

Two situations

Known paths for training sequences

- CpG islands marked on training sequences
- One evening the casino dealer allows us to see when he changes dice

Unknown paths

- CpG islands are not marked
- Do not see when the casino dealer changes dice

Known paths

$A_{k l}=\#$ of times each $k \rightarrow l$ is taken in the training sequences
$E_{k}(b)=\#$ of times b is emitted from state k in the training sequences
Compute $a_{k l}$ and $e_{k}(b)$ as maximum likelihood estimators:

$$
\begin{aligned}
& a_{k l}=A_{k l} / \sum_{l^{\prime}} A_{k l^{\prime}} \\
& e_{k}(b)=E_{k}(b) / \sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)
\end{aligned}
$$

Pseudocounts

\square Some state k may not appear in any of the training sequences. This means $A_{k l}=0$ for every state I and $a_{k l}$ cannot be computed with the given equation.
\square To avoid this overfitting use predetermined pseudocounts $r_{k l}$ and $r_{k}(b)$.

$$
\begin{aligned}
& A_{k l}=\text { \# of transitions } k \rightarrow l+r_{k l} \\
& E_{k}(b)=\text { \# of emissions of } b \text { from } k+r_{k}(b)
\end{aligned}
$$

The pseudocounts reflect our prior biases about the probability values.

Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most probable path for training sequence x.

Start with some guess for initial parameters and compute π^{*} the most probable path for x using initial parameters.
Iterate until no change in π^{*} :
Determine $A_{k \mid}$ and $E_{k}(b)$ as before
Compute new parameters $a_{k l}$ and $e_{k}(b)$ using the same formulas as before
Compute new π^{\star} for x and the current parameters

Viterbi training analysis

\square The algorithm converges precisely
There are finitely many possible paths.
New parameters are uniquely determined by the current π^{*}.
There may be several paths for x with the same probability, hence must compare the new π^{*} with all previous paths having highest probability.
\square Does not maximize the likelihood $\Pi_{x} P(x \mid \Theta)$ but the contribution to the likelihood of the most probable path $\Pi_{x} \mathrm{P}\left(x \mid \Theta, \pi^{*}\right)$
\square In general performs less well than Baum-Welch

Unknown paths: Baum-Welch

Idea:

1. Guess initial values for parameters.
art and experience, not science
2. Estimate new (better) values for parameters.
how?
3. Repeat until stopping criteria is met.
what criteria?

Better values for parameters

- Would need the $A_{k l}$ and $E_{k}(b)$ values but cannot count (the path is unknown) and do not want to use a most probable path.
- For all states k, l, symbol b and training sequence x

Compute $A_{k l}$ and $E_{k}(b)$ as expected values, given the current parameters

Notation

- For any sequence of characters x emitted along some unknown path π, denote by $\pi_{i}=k$ the assumption that the state at position i (in which x_{i} is emitted) is k.

Probabilistic setting for $A_{k, l}$

Given x^{1}, \ldots, x^{m} consider a discrete probability space with elementary events

$$
\varepsilon_{k, l,}=" k \rightarrow l \text { is taken in } x^{1}, \ldots, x^{m} "
$$

For each x in $\left\{x^{1}, \ldots, x^{m}\right\}$ and each position i in x let $Y_{x, i}$ be a random variable defined by

$$
Y_{x, i}\left(\varepsilon_{k, l}\right)= \begin{cases}1, & \text { if } \pi_{i}=k \text { and } \pi_{i+1}=l \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y=\Sigma_{x} \Sigma_{i} Y_{x, i}$ random variable that counts \# of times the event $\varepsilon_{k, l}$ happens in x^{1}, \ldots, x^{m}.

The meaning of $A_{k l}$

Let $A_{k l}$ be the expectation of Y

$$
\begin{aligned}
\mathrm{E}(Y)= & \sum_{x} \Sigma_{l} \mathrm{E}\left(Y_{x, i}\right)=\Sigma_{x} \Sigma_{i} \mathrm{P}\left(Y_{x, i}=1\right)= \\
& \Sigma_{x} \Sigma_{i} \mathrm{P}\left(\left\{\varepsilon_{k, l} \mid \pi_{i}=k \text { and } \pi_{i+1}=l\right\}\right)= \\
& \Sigma_{x} \Sigma_{i} \mathrm{P}\left(\pi_{i}=k, \pi_{i+1}=l \mid x\right)
\end{aligned}
$$

Need to compute $\mathrm{P}\left(\pi_{i}=k, \pi_{i+1}=\| x\right)$

Probabilistic setting for $E_{k}(b)$

Given x^{1}, \ldots, x^{m} consider a discrete probability space with elementary events

$$
\varepsilon_{k, b}=" b \text { is emitted in state } k \text { in } x^{1}, \ldots, x^{m} "
$$

For each x in $\left\{x^{1}, \ldots, x^{m}\right\}$ and each position i in x let $Y_{x, i}$ be a random variable defined by

$$
Y_{x, i}\left(\varepsilon_{k, b}\right)= \begin{cases}1, & \text { if } x_{i}=b \text { and } \pi_{i}=k \\ 0, & \text { otherwise }\end{cases}
$$

Define $Y=\Sigma_{x} \Sigma_{i} Y_{x, i}$ random variable that counts\# of times the event $\varepsilon_{k, b}$ happens in x^{1}, \ldots, x^{m}.

The meaning of $E_{k}(b)$

Let $E_{k}(b)$ be the expectation of Y

$$
\begin{aligned}
\mathrm{E}(Y)= & \Sigma_{x} \Sigma_{i} \mathrm{E}\left(Y_{x, i}\right)=\Sigma_{x} \Sigma_{i} \mathrm{P}\left(Y_{x, i}=1\right)= \\
& \Sigma_{x} \Sigma_{i} \mathrm{P}\left(\left\{\varepsilon_{k, b} \mid x_{i}=b \text { and } \pi_{i}=k\right\}\right) \\
& \sum_{x} \sum_{\left\{i \mid x_{i}=b\right\}} P\left(\left\{\varepsilon_{k, b} \mid x_{i}=b, \pi_{i}=k\right\}\right)=\sum_{x} \sum_{\left\{i \mid x_{i}=b\right\}} P\left(\pi_{i}=k \mid x\right)
\end{aligned}
$$

Need to compute $\mathrm{P}\left(\pi_{i}=k \mid x\right)$

Computing new parameters

Consider $x=x_{1} \ldots x_{n}$ training sequence
Concentrate on positions i and $i+1$

Use the forward-backward values:

$$
\begin{aligned}
& f_{k i}=\mathrm{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
& b_{k i}=\mathrm{P}\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right)
\end{aligned}
$$

Compute $A_{k l}$ (1)

Prob $k \rightarrow l$ is taken at position i of x

$$
\mathrm{P}\left(\pi_{i}=k, \pi_{i+1}=l \mid x_{1} \ldots x_{n}\right)=\mathrm{P}\left(x, \pi_{i}=k, \pi_{i+1}=l\right) / \mathrm{P}(x)
$$

Compute $\mathrm{P}(x)$ using either forward or backward values
We'll show that $\mathrm{P}\left(x, \pi_{i}=k, \pi_{i+1}=l\right)=b_{l i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}$

Expected \# times $k \rightarrow I$ is used in training sequences

$$
A_{k l}=\Sigma_{x} \Sigma_{i}\left(b_{l i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}\right) / P(x)
$$

Compute $A_{k l}$ (2)

$\mathrm{P}\left(x, \pi_{i}=k, \pi_{i+1}=l\right)=$
$\mathrm{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k, \pi_{i+1}=l, x_{i+1} \ldots x_{n}\right)=$
$\mathrm{P}\left(\pi_{i+1}=I, x_{i+1} \ldots x_{n} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \cdot \mathrm{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)=$
$\mathrm{P}\left(\pi_{i+1}=l, x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right) \cdot f_{k i}=$
$\mathrm{P}\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k, \pi_{i+1}=l\right) \cdot \mathrm{P}\left(\pi_{i+1}=l \mid \pi_{i}=k\right) \cdot f_{k i}=$
$\mathrm{P}\left(x_{i+1} \ldots x_{n} \mid \pi_{i+1}=l\right) \cdot a_{k l} \cdot f_{k i}=$
$\mathrm{P}\left(x_{i+2} \ldots x_{n} \mid x_{i+1}, \pi_{i+1}=l\right) \cdot \mathrm{P}\left(x_{i+1} \mid \pi_{i+1}=l\right) \cdot a_{k l} \cdot f_{k i}=$
$\mathrm{P}\left(x_{i+2} \ldots x_{n} \mid \pi_{i+1}=l\right) \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}=$
$b_{l i+1} \cdot e_{l}\left(x_{i+1}\right) \cdot a_{k l} \cdot f_{k i}$

Compute $\mathrm{E}_{k}(b)$

Probability x_{i} of x is emitted in state k

$$
\begin{aligned}
& \mathrm{P}\left(\pi_{i}=k \mid x_{1} \ldots x_{n}\right)=\mathrm{P}\left(\pi_{i}=k, x_{1} \ldots x_{n}\right) / \mathrm{P}(x) \\
& P\left(\pi_{i}=k, x_{1} \ldots x_{n}\right)=\mathrm{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k, x_{i+1} \ldots x_{n}\right)= \\
& \mathrm{P}\left(x_{i+1} \ldots x_{n} \mid x_{1} \ldots x_{i}, \pi_{i}=k\right) \cdot \mathrm{P}\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)= \\
& \mathrm{P}\left(x_{i+1} \ldots x_{n} \mid \pi_{i}=k\right) \cdot f_{k i}=b_{k i} \cdot f_{k i}
\end{aligned}
$$

Expected \# times b is emitted in state k

$$
E_{k}(b)=\sum_{x} \sum_{i: x_{i}=b}\left(f_{k i} \cdot b_{k i}\right) / P(x)
$$

Finally, new parameters

$$
\begin{aligned}
& a_{k l}=A_{k l} / \sum_{l^{\prime}} A_{k l l^{\prime}} \\
& e_{k}(b)=E_{k}(b) / \sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)
\end{aligned}
$$

Can add pseudocounts as before.

Stopping criteria

Cannot actually reach maximum (optimization of continuous functions) Therefore need stopping criteria.

- Compute the log likelihood of the model for current Θ

$$
\sum_{x} \log P(x \mid \Theta)
$$

Compare with previous log likelihood.
Stop if small difference.

- Stop after a certain number of iterations.

The Baum-Welch algorithm

Initialization:
Pick the best-guess for model parameters (or arbitrary)
Iteration:

1. Forward for each x
2. Backward for each x
3. Calculate $A_{k}, E_{k}(b)$
4. Calculate new $a_{k j}, e_{k}(b)$
5. Calculate new log-likelihood

Until log-likelihood does not change much

Baum-Welch analysis

- Log-likelihood is increased by iterations

Baum-Welch is a particular case of the EM (expectation maximization) algorithm

- Convergence to local maximum. Choice of initial parameters determines local maximum to which the algorithm converges

Speech Recognition

- Create an HMM of the words in a language
- Each word is a hidden state in Q.
- Each of the basic sounds in the language is a symbol in Σ.
- Input: use speech as the input sequence.
- Goal: find the most probable sequence of states.

Quite successful

