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CG-Islands

• Given 4 nucleotides: probability of occurrence is ~ 1/4.  Thus, 
probability of occurrence of a dinucleotide is ~ 1/16.

• However, the frequencies of dinucleotides in DNA sequences vary 
widely.

• In particular, CG is typically underepresented (frequency of CG is 
typically < 1/16)
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Why CG-Islands?

• CG is the least frequent dinucleotide because C in CG is easily 
methylated (that is, an H-atom is replaced by a CH3-group) and the 
methyl-C has the tendency to mutate into T afterwards

• However, the methylation is suppressed around genes in a genome.  
So, CG appears at relatively high frequency within these CG islands

• So, finding the CG islands in a genome is an important problem
• Classical definition: A CpG island is DNA sequence of length about 

200bp with a C + G content of 50% and a ratio of observed-to-
expected number of CpG’s that is above 0.6. (Gardiner-Garden & 
Frommer, 1987)
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Problems

1. Discrimination problem: Given a short segment of genomic 
sequence. How can we decide whether this segment comes from 
a CpG-island or not?

Markov Model

2. Localisation problem: Given a long segment of genomic 
sequence. How can we find all contained CpG-islands?

Hidden Markov Model
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Markov Model

Definition: A (time-homogeneous) Markov model (of order 1) is a 
system M=(Q,A) consisting of
Q={s1,…,sk}: a finite set of states and
A = (akl): a |Q| x |Q| matrix of probability of changing from state sk to 

state sl. P(xi+1 = sl | xi = sk) = akl with Σl∈S akl = 1 for all k∈S.

Definition: A Markov chain is a chain x0, x1, . . . , xn, . . . of random 
variables, which take states in the state set Q such that 

P(xn = s | ∩j<n xj) = P(xn = s | xn −1) is true for all n > 0 and s ∈ S.

Definition: A Markov chain is called homogeneous, if the probabilities 
are not dependent on n. (At any time i the chain is in a specific state 
xi and at the tick of a clock the chain changes to state xi+1 according 
to the given transition probabilities. 
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Example

Weather in Prague, daily at midday: 
Possible states are rain, sun or clouds.
Transition probabilities:

R  S  C

R .2 .3 .5

S .2 .6 .2

C .3 .3 .4

A Markov chain would be the observation of the weather: 
...rrrrrrccsssssscscscccrrcrcssss...

Types of questions that the model can answer:
1. If it is sunny today, what is the probability that the sun will shine for 

the next seven days?
2. How large is the probability, that it will rain for a month?



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Modeling the begin and end states

• We must specify the initialization of the chain – an initial probability
P(x1) of starting in a particular state. We can add a begin state to the
model that is labeled ’Begin’ and add this to the states set. We will
always assume that x0 = Begin holds. Then the probability of the first
state in the Markov chain is

P(x1 = s) = aBegin,s = P(s),
where P(s) denotes the background probability of state s.

• Similarly, we explicitly model the end of the sequence using an end 
state ’End’. Thus, the probability that we end in state t is

P(End | xn = t) = pt,End.
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Probability of Markov chains

• Given a sequence of states x = x1, x2, x3, … , xL. What is the
probability that a Markov chain will step through precisely this
sequence of states?

P(x) = P(xL, xL−1,…, x1)
= P(xL | xL−1,…, x1) P(xL−1 | xL−2,…, x1) … P(x1),

[by repeated application of P(X, Y ) = P(X|Y )P(Y )]
= P(xL, | xL−1) P(xL−1 | xL−2) … P(x2 | x1) P(x1)
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Example
# Markov chain that generates CpG islands
# (Source: DEKM98, p 50)
# Number of states:
6
# State labels (*=Begin, +=End):
A C G T * +
# Transition matrix:
0.1795 0.2735 0.4255 0.1195 0 0.002
0.1705 0.3665 0.2735 0.1875 0 0.002
0.1605 0.3385 0.3745 0.1245 0 0.002
0.0785 0.3545 0.3835 0.1815 0 0.002
0.2495 0.2495 0.2495 0.2495 0 0.002
0.0000 0.0000 0.0000 0.0000 0 1.000

• In our case the transition matrix P+ for a DNA sequence that comes
from a CG-island, is determined as follows:

• where cst is the number of positions in a training set of CG-islands at
which the state s is followed by the state t.
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Transition
matrices are 
generally
calculated from
training sets.
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Markov chains for CG-islands and non 
CG-islands
# Markov chain for CpG islands # Markov chain for non-CpG islands

# Number of states: # Number of states:

4 4

# State labels: # State labels:

A C G T A C G T

# Transition matrix P+: # Transition matrix P-:

.1795 .2735 .4255 .1195 .2995 .2045 .2845 .2095

.1705 .3665 .2735 .1875 .3215 .2975 .0775 .0775

.1605 .3385 .3745 .1245 .2475 .2455 .2975 .2075

.0785 .3545 .3835 .1815 .1765 .2385 .2915 .2915
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Solving Problem 1 - discrimination
• Given a short sequence x = (x1, x2, … , xL). Does it come from a 

CpG-island (model+)?

• Or does it not come from a non-CpG-island (model−)?

• We calculate the log-odds ratio

with βXY being the log likelihood ratios of corresponding transition
probabilities. For the transition matrices above we calculate for
example βAA = log(0.18/0.3). Often the base 2 log is used, in which
case the unit is in bits.
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Solving Problem 1 - discrimination cont

• If model+ and model− differ substantially then a typical CG-island 
should have a higher probability within the model+ than in the 
model−. The log-odds ratio should become positive.

• Generally we could use a threshold value c* and a test function to 
determine whether a sequence x comes from a CG-island:

φ*(x) :=

where φ*(x) = 1 indicates that x comes from a CG-island.
• Such a test is called Neyman-Pearson-Test.

1 if S(x) > c*

0 if S(x) ≤ c*
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CG Islands and the “Fair Bet Casino”

• The problem of localisations of CG-islands can be modeled after 
a problem named “The Fair Bet Casino”

• The game is to flip coins, which results in only two possible 
outcomes: Head or Tail.

• The Fair coin will give Heads and Tails with same probability ½.
• The Biased coin will give Heads with prob. ¾.
• Thus, we define the probabilities:

• P(H|F) = P(T|F) = ½
• P(H|B) = ¾, P(T|B) = ¼
• The crooked dealer changes between Fair and Biased coins 

with probability 10%
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The Fair Bet Casino Problem

• Input: A sequence x = x1x2x3…xn of coin tosses made by 
two possible coins (F or B).

• Output: A sequence π = π1 π2 π3… πn, with each πi being 
either F or B indicating that xi is the result of tossing the 
Fair or Biased coin respectively.
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Problem…

Fair Bet Casino Fair Bet Casino 
ProblemProblem
Any observed outcome Any observed outcome 
of coin tosses could of coin tosses could 
have been generated have been generated 
by any sequence of by any sequence of 
states!states!

Need to incorporate a way to 
grade different sequences 

differently.

Decoding ProblemDecoding Problem
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P(x|fair coin) vs. P(x|biased coin)

•• Suppose first that dealer never changes coins. Some Suppose first that dealer never changes coins. Some 
definitions:definitions:
•• P(P(xx|fair coin)|fair coin): prob. of the dealer using: prob. of the dealer using

the the F F coin and generating the outcome coin and generating the outcome xx..
•• P(P(xx|biased coin)|biased coin):  prob. of the dealer using    :  prob. of the dealer using    

the the BB coin and generating outcome coin and generating outcome xx..
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P(x|fair coin) vs. P(x|biased coin)

• P(x|fair coin)=P(x1…xn|fair coin)

Πi=1,n p (xi|fair coin)= (1/2)n

• P(x|biased coin)= P(x1…xn|biased coin)=

Π i=1,n p (xi|biased coin)=(3/4)k(1/4)n-k= 3k/4n

• k - the number of Heads in x.
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P(x|fair coin) vs. P(x|biased coin)

• P(x|fair coin) = P(x|biased coin)
• 1/2n = 3k/4n

• 2n = 3k

• n = k log23
• when k = n / log23 (k ~ 0.67n)
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Computing Log-odds Ratio in Sliding 
Windows

x1x2x3x4x5x6x7x8…xn

Consider a sliding window of the outcome sequence.  Find the log-
odds for this short window.

Log-odds value

0

Fair coin most likely 
used

Biased coin most likely 
used

Disadvantages:
- the length of CG-island is not known in advance
- different windows may classify the same position differently
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Hidden Markov Model (HMM)

•• Can be viewed as an abstract machine with Can be viewed as an abstract machine with kk hidden hidden states that emits states that emits 
symbols from an alphabet symbols from an alphabet ΣΣ..

•• Each state has its own probability distribution, and the machineEach state has its own probability distribution, and the machine
switches between states according to this probability distributiswitches between states according to this probability distribution.on.

•• While in a certain state, the machine makes 2 decisions:While in a certain state, the machine makes 2 decisions:
•• What state should I move to next?What state should I move to next?
•• What symbol What symbol -- from the alphabet from the alphabet ΣΣ -- should I emit?should I emit?
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HMM Parameters

Σ: set of emission characters.
Ex.: Σ = { H, T } for coin tossing
Σ = {1, 2, 3, 4, 5, 6} for dice tossing

Q: set of hidden states, each emitting symbols from Σ.
Q={F,B} for coin tossing

A = (akl): a |Q| x |Q| matrix of probability of changing from state k to 
state l.

aFF = 0.9     aFB = 0.1
aBF = 0.1     aBB = 0.9

E = (ek(b)): a |Q| x |Σ| matrix of probability of emitting symbol b while 
being in state k.

eF(0) = ½ eF(1) = ½
eB(0) = ¼ eB(1) = ¾
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HMM for Fair Bet Casino
• The Fair Bet Casino in HMM terms:

Σ = {0, 1} (0 for Tails and 1 Heads)
Q = {F,B} – F for Fair & B for Biased coin.

• Transition Probabilities A Emission Probabilities E

Fair Biased

Fair aaFFFF = 0.9= 0.9 aaFBFB = 0.1= 0.1

Biased aaBFBF = 0.1= 0.1 aaBBBB = 0.9= 0.9

Tails(0) Heads(1)

Fair eeFF(0) = (0) = ½½ eeFF(1) = (1) = ½½

Biased eeBB(0) = (0) = ¼¼ eeBB(1) = (1) = ¾¾
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HMM for Fair Bet Casino (cont’d)

HMM model for the HMM model for the Fair Bet Casino Fair Bet Casino ProblemProblem
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Hidden Paths
• A path π = π1… πn in the HMM is defined as a sequence of 

states.
• Consider path π = FFFBBBBBFFF and 

sequence x = 01011101001

x 0  1  0  1  1 1  0  1  0  0  1

π =   F F  F  B  B  B  B B  F  F  F

P(P(xxii||ππii)) ½½ ½½ ½½ ¾¾ ¾¾ ¾¾ ¼¼ ¾¾ ½½ ½½ ½½

P(P(ππii--1 1 ππii)) ½½ 99//1010
99//1010

11//10 10 
99//10 10 

99//1010
99//1010

99//1010
11//10 10 

99//10 10 
99//1010

Transition probability from state πi -1 to state πi

Probability that x was emitted from state πi πii
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• P(x|π): Probability that the sequence x=x1x2…xn was generated by 
the path π= π1 π2… πn :

n

P(x|π)       = P(x1) ·Π P(xi| πi) · P(πi→ πi+1)
i=1

n

= aπ0, π1 ·Π eπi (xi) · aπi, πi+1
i=1

π0 = Begin

P(x|π) Calculation
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• P(x|π): Probability that the sequence x=x1x2…xn was generated by 
the path π= π1 π2… πn :

n

P(x|π)       = P(x1) ·Π P(xi| πi) · P(πi→ πi+1)
i=1

n

= aπ0, π1 ·Π eπi (xi) · aπi, πi+1
i=1

n

= Π eπi (xi) · aπi, πi+1
i=0

P(x|π) Calculation
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Decoding Problem

• Goal: Find an optimal hidden path of states given observations.

• Input: Sequence of observations x = x1…xn generated by an HMM 
M(Σ, Q, A, E)

• Output: A path that maximizes P(x|π) over all possible paths π.

Solves Problem 2 - localisation



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Building Manhattan for Decoding Problem

• Andrew Viterbi used the Manhattan grid model to solve the 
Decoding Problem.

• Every choice of π = π1… πn corresponds to a path in a graph.
• The only valid direction in the graph is eastward.
• This graph has |Q|2(n-1) edges.



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info

Edit Graph for Decoding Problem

Q
states

n layers
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Decoding Problem vs. Alignment 
Problem

Valid directions in the Valid directions in the 
alignment problem.alignment problem.

Valid directions in the Valid directions in the 
decoding problem.decoding problem.
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Decoding Problem as Finding a 
Longest Path in a DAG

•• The The Decoding ProblemDecoding Problem is reduced to finding a longest path in the is reduced to finding a longest path in the 
directed acyclic graph (DAG)directed acyclic graph (DAG) above.above.

•• Notes:Notes: the length of the path is defined as the the length of the path is defined as the productproduct of its edgesof its edges’’
weights, not theweights, not the sum.sum.

•• Every path in the graph has the probability Every path in the graph has the probability P(P(x|x|ππ))..

•• The The ViterbiViterbi algorithm finds the path that maximizes algorithm finds the path that maximizes PP((x|x|ππ)) among all among all 
possible paths.possible paths.

•• The The ViterbiViterbi algorithm runs in algorithm runs in O(O(n|Q|n|Q|22)) time.time.
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Decoding Problem: weights of edges

w

The weight w is given by:

???

(k, i ) (l, i+1)
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Decoding Problem: weights of edges

w

The weight w is given by:

??

n

P(x|π) = Π e πi +1 (xi +1) . a πi, πi +1
i=0

(k, i ) (l, i+1)
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Decoding Problem: weights of edges

w

The weight w is given by:

?

i-th term = e πi+1 (xi+1) . a πi, πi+1

(k, i ) (l, i+1)
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Decoding Problem: weights of edges

w

The weight  w = el(xi+1) . akl

i-th term = e πi (xi) . a πi, πi+1 = el(xi+1). akl for  πi =k, πi+1=l

(k, i ) (l, i+1)
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Decoding Problem and Dynamic 
Programming

ssl,i+1l,i+1 = = maxmaxkk ∈∈ QQ {{ssk,ik,i ·· weight of edge betweenweight of edge between ((k,ik,i )) andand ((l,i+1l,i+1))}} ==

maxmaxkk ∈∈ QQ {{ssk,ik,i ·· aaklkl ·· eell ((xxi+1i+1)) }} ==

eell ((xxi+1i+1)) ·· maxmaxkk ∈∈ QQ {{ssk,ik,i ·· aaklkl}}
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Decoding Problem (cont’d)

•• Initialization:Initialization:
ssbegin,0begin,0 = 1= 1
ssk,0k,0 = 0= 0 for for k k ≠≠ beginbegin..

•• Let Let ππ** be the optimal path. Then,be the optimal path. Then,

P(P(xx||ππ**) = ) = maxmaxkk ∈∈ QQ {{ssk,nk,n . . aak,endk,end}}
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Viterbi Algorithm

• The value of the product can become extremely small, which leads
to overflowing.

• To avoid overflowing, use log value instead. 

sk,i+1= log el(xi+1) + max k ∈ Q {sk,i + log(akl)}
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Forward-Backward Problem

Given: a sequence of coin tosses generated by an HMM.
Goal: find the probability that the dealer was using a biased coin at
a particular time.
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• Define fk,i (forward probability) as the probability of emitting the 
prefix x1…xi and reaching the state π = k.

• The recurrence for the forward algorithm:

fk,i = ek(xi) . Σ fl,i-1 . alk
l Є Q

Forward Algorithm
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Backward Algorithm

• However, forward probability is not the only factor affecting 
P(πi = k|x).

• The sequence of transitions and emissions that the HMM 
undergoes between πi+1 and πn also affect P(πi = k|x).

forward      xi backward
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Backward Algorithm (cont’d)

• Define backward probability bk,i as the probability of being in state 
πi = k and emitting the suffix xi+1…xn.

• The recurrence for the backward algorithm:

bk,i = Σ el(xi+1) . bl,i+1 . akl
l ∈Q
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Backward-Forward Algorithm

• The probability that the dealer used a biased coin at any 
moment i:

P(x, πi = k) fk(i) . bk(i)
P(πi = k | x) = _______________ = ______________

P(x) P(x)

P(x) is the sum of P(x, πi = k) over all k
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Finding Distant Members of a Protein 
Family
• A distant cousin of functionally related sequences in a protein family 

may have weak pairwise similarities with each member of the family 
and thus fail significance test. 

• However, they may have weak similarities with many members of 
the family.  

• The goal is to align a sequence to all members of the family at once.
• Family of related proteins can be represented by their multiple 

alignment and the corresponding profile.
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Profile Representation of Protein 
Families

• Aligned DNA sequences can be represented by  a 4 × n profile matrix
reflecting the frequencies of nucleotides in every aligned position.

• Protein family can be represented by a 20 × n profile representing 
frequencies of amino acids.
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Profiles and HMMs

• HMMs can also be used for aligning a sequence against a profile 
representing protein family.

• A 20 × n profile P corresponds to n sequentially linked match states 
M1,…,Mn in the profile HMM of P.

• Multiple alignment of a protein family shows variations in 
conservation along the length of a protein

• Example: after aligning many globin proteins, the biologists 
recognized that the helices region in globins are more conserved
than others.
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What are Profile HMMs ?

• A Profile HMM is a probabilistic representation of a multiple 
alignment.

• A given multiple alignment (of a protein family) is used to build a 
profile HMM.

• This model then may be used to find and score less obvious 
potential matches of new protein sequences.

• Multiple alignment is used to construct the HMM model.
• Assign each column to a Match state in HMM. Add Insertion and 

Deletion state. 
• Estimate the emission probabilities according to amino acid counts 

in column. Different positions in the protein will have different 
emission probabilities
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Profile HMM

A profile HMMA profile HMM
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Building a profile HMM

• Multiple alignment is used to construct the HMM model.
• Assign each column to a Match state in HMM. Add Insertion and 

Deletion state. 
• Estimate the emission probabilities according to amino acid counts 

in column. Different positions in the protein will have different 
emission probabilities.

• Estimate the transition probabilities between Match, Deletion and
Insertion states

• The HMM model gets trained to derive the optimal parameters.
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States of Profile HMM

• Match states    M1…Mn (plus begin/end states) 
• Insertion states I0I1…In
• Deletion states D1…Dn
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Probabilities in Profile HMM

• Transition probabilities:
• log(aMI) + log(aIM) = gap initiation penalty
• log(aII) = gap extension penalty

• Emission probabilities:
• Probabilty of emitting a symbol a at an insertion state Ij:

eIj(a) = p(a)
where p(a) is the frequency of the occurrence of the symbol a in all the 
sequences.
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Profile HMM Alignment

• Define vM
j (i) as the logarithmic likelihood score of the best path for 

matching x1..xi to profile HMM ending with xi emitted by the state Mj.

• vI
j (i) and vD

j (i) are defined similarly.
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Profile HMM Alignment: Dynamic 
Programming

vM
j-1(i-1) + log(aMj-1,Mj )

vM
j(i) = log (eMj(xi)/p(xi)) + max vI

j-1(i-1) + log(aIj-1,Mj )

vD
j-1(i-1) + log(aDj-1,Mj )

vM
j(i-1) + log(aMj, Ij)

vI
j(i) = log (eIj(xi)/p(xi)) + max vI

j(i-1) + log(aIj, Ij)
vD

j(i-1) + log(aDj, Ij)
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Paths in Edit Graph and Profile HMM

A path through an edit graph and the corresponding path through a 
profile HMM
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Making a Collection of HMM for Protein 
Families

• Use Blast to separate a protein database into families of related 
proteins  

• Construct a multiple alignment for each protein family.
• Construct a profile HMM model and optimize the parameters of the

model (transition and emission probabilities).
• Align the target sequence against each HMM to find the best fit 

between a target sequence and an HMM
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Application of Profile HMM to Modeling 
Globin Proteins
• Globins represent a large collection of protein sequences 
• 400 globin sequences were randomly selected from all globins and 

used to construct a multiple alignment.
• Multiple alignment was used to assign an initial HMM
• This model then get trained repeatedly with model lengths chosen

randomly between 145 to 170, to get an HMM model optimized 
probabilities. 
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How Good is the Globin HMM?

• 625 remaining globin sequences in the database were aligned to the 
constructed HMM resulting  in a multiple alignment. This multiple 
alignment agrees extremely well with the structurally derived 
alignment.

• 25,044 proteins, were randomly chosen from the database and 
compared against the globin HMM.

• This experiment resulted in an excellent separation between globin
and non-globin families.
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PFAM
• Pfam decribes protein domains
• Each protein domain family in Pfam has:

- Seed alignment: manually verified multiple  
alignment of a representative set of sequences.
- HMM built from the seed alignment for further  
database searches.
- Full alignment generated automatically from the  HMM

• The distinction between seed and full alignments facilitates Pfam
updates.

- Seed alignments are stable resources.
- HMM profiles and full alignments can be updated with

newly found amino acid sequences. 
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PFAM Uses
• Pfam HMMs span entire domains that include both well-conserved 

motifs and less-conserved regions with insertions and deletions.
• It results in modeling complete domains that facilitates better 

sequence annotation and leeds to a more sensitive detection.
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HMM Parameter Estimation

• So far, we have assumed that the transition and emission 
probabilities are known.

• However, in most HMM applications, the probabilities are not known.  
It’s very hard to estimate the probabilities.
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HMM Parameter Estimation Problem

• Given
− HMM with states and alphabet (emission characters)
− Independent training sequences x1, … xm

• Find HMM parameters Θ (that is, akl, ek(b)) that maximize 
P(x1, …, xm | Θ)

the joint probability of the training sequences. 
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Maximize the likelihood
P(x1, …, xm | Θ) as a function of Θ is called the likelihood of the model.
The training sequences are assumed independent, therefore

P(x1, …, xm | Θ) = Πi P(xi | Θ)
The parameter estimation problem seeks Θ that realizes

In practice the log likelihood is computed to avoid underflow errors

max∏ P(xi|Θ)
i
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Two situations

Known paths for training sequences
− CpG islands marked on training sequences
− One evening the casino dealer allows us to see when he changes dice
Unknown paths 
− CpG islands are not marked
− Do not see when the casino dealer changes dice
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Known paths
Akl = # of times each k → l is taken in the training sequences
Ek(b) = # of times b is emitted from state k in the training sequences
Compute akl and ek(b) as maximum likelihood estimators:
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Pseudocounts
Some state k may not appear in any of the training sequences. This 
means Akl = 0 for every state l and akl cannot be computed with the 
given equation.
To avoid this overfitting use predetermined pseudocounts rkl and 
rk(b).

Akl = # of transitions k→l +  rkl

Ek(b) = # of emissions of b from k + rk(b)
The pseudocounts reflect our prior biases about the probability values.
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Unknown paths: Viterbi training

Idea: use Viterbi decoding to compute the most probable path for 
training sequence x.

Start with some guess for initial parameters and compute π* the most 
probable path for x using initial parameters.

Iterate until no change in π* :
Determine Akl and Ek(b) as before
Compute new parameters akl and ek(b) using the same formulas as 

before
Compute new π* for x and the current parameters
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Viterbi training analysis

The algorithm converges precisely

There are finitely many possible paths.

New parameters are uniquely determined by the current π*.

There may be several paths for x with the same probability, hence 
must compare the new π* with all previous paths having highest 
probability.

Does not maximize the likelihood Πx P(x | Θ) but the contribution to 
the likelihood of  the most probable path Πx P(x | Θ, π*)

In general performs less well than Baum-Welch
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Unknown paths: Baum-Welch

Idea:
1. Guess initial values for parameters.

art and experience, not science
2. Estimate new (better) values for parameters.

how ?
3. Repeat until stopping criteria is met.

what criteria ?
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Better values for parameters

• Would need the Akl and Ek(b) values but cannot count (the path is 
unknown) and do not want to use a most probable path.

• For all states k,l, symbol b and training sequence x

Compute Akl and Ek(b) as expected values, given the current 
parameters
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Notation

• For any sequence of characters x emitted along some unknown 
path π, denote by πi = k the assumption that the state at position i
(in which xi is emitted) is k.
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Probabilistic setting for Ak,l

Given x1, … ,xm consider a discrete probability space with elementary 
events

εk,l, = “k → l is taken in x1, …, xm ”
For each x in {x1,…,xm} and each position i in x let Yx,i be a random variable

defined by 

Define Y = Σx Σi Yx,i random variable that counts # of times the event εk,l
happens in x1,…,xm.
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The meaning of Akl

Let Akl be the expectation of Y

E(Y ) = Σx Σι E(Yx,i) = Σx Σi P(Yx,i = 1) =

ΣxΣi P({εk,l | πi = k and πi+1 = l }) =

ΣxΣi P(πi = k, πi+1 = l | x) 

Need to compute P(πi = k, πi+1 = l | x)
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Probabilistic setting for Ek(b)
Given x1, … ,xm consider a discrete probability space with elementary 

events
εk,b = “b is emitted in state k in x1, … ,xm ”

For each x in {x1,…,xm} and each position i in x let Yx,i be a random 
variable defined by 

Define Y = Σx Σi Yx,i random variable that counts # of times the event 
εk,b happens in x1,…,xm.
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The meaning of Ek(b)

Let Ek(b) be the expectation of Y

E(Y) = Σx Σi E(Yx,i) = Σx Σi P(Yx,i = 1) =
Σx Σi P({εk,b | xi = b and πi = k }) 

Need to compute P(πi = k | x)
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Computing new parameters

Consider x = x1…xn training sequence
Concentrate on positions i and i+1

Use the forward-backward values: 
fki = P(x1 … xi , πi = k)
bki = P(xi+1 … xn | πi = k)
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Compute Akl (1)

Prob k → l is taken at position i of x
P(πi = k, πi+1 = l | x1…xn) = P(x, πi = k, πi+1 = l) / P(x)

Compute P(x) using either forward or backward values
We’ll show that P(x, πi = k, πi+1 = l) = bli+1 ·el(xi+1) ·akl ·fki

Expected # times k → l is used in training sequences
Akl = Σx Σi (bli+1 ·el(xi+1) ·akl ·fki) / P(x)
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Compute Akl (2)

P(x, πi = k, πi+1 = l ) = 
P(x1…xi, πi = k, πi+1 = l, xi+1…xn) =
P(πi+1 = l, xi+1…xn | x1…xi, πi = k)·P(x1…xi ,πi =k)=
P(πi+1 = l, xi+1…xn | πi = k)·fki =
P(xi+1…xn | πi = k, πi+1 = l )·P(πi+1 = l | πi = k)·fki =
P(xi+1…xn | πi+1 = l)·akl ·fki =
P(xi+2…xn | xi+1, πi+1 = l ) · P(xi+1 | πi+1 = l ) ·akl ·fki =
P(xi+2…xn | πi+1 = l ) ·el(xi+1) ·akl ·fki =
bli+1 ·el(xi+1) ·akl ·fki
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Compute Ek(b)

Probability xi of x is emitted in state k
P(πi = k | x1…xn) = P(πi = k, x1…xn )/P(x)
P(πi = k, x1…xn) = P(x1…xi, πi = k,xi+1…xn) = 
P(xi+1…xn | x1…xi, πi = k) · P(x1…xi, πi = k) =
P(xi+1…xn | πi = k) · fki = bki · fki

Expected # times b is emitted in state k
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Finally, new parameters

Can add pseudocounts as before.
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Stopping criteria

Cannot actually reach maximum (optimization of continuous functions)
Therefore need stopping criteria.
• Compute the log likelihood of  the model for current Θ

Compare with previous log likelihood.
Stop if small difference.

• Stop after a certain number of iterations.

∑ Θ
x

xP )|(log
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The Baum-Welch algorithm

Initialization:
Pick the best-guess for model parameters

(or arbitrary)
Iteration:

1. Forward for each x
2. Backward for each x
3. Calculate Akl, Ek(b)
4. Calculate new akl, ek(b)
5. Calculate new log-likelihood

Until log-likelihood does not change much
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Baum-Welch analysis

• Log-likelihood is increased by iterations
Baum-Welch is a particular case of the EM (expectation maximization) 
algorithm

• Convergence to local maximum. Choice of initial parameters 
determines local maximum to which the algorithm converges
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Speech Recognition

• Create an HMM of the words in a language 
• Each word is a hidden state in Q.
• Each of the basic sounds in the language is a symbol in Σ.

• Input: use speech as the input sequence.
• Goal: find the most probable sequence of states.

Quite successful
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